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We carry out Monte Carlo simulations to discuss critical properties of a classical two-dimensional XY frustrated
helimagnet on a square lattice. We find two successive phase transitions upon the temperature decreasing: the first
one is associated with breaking of a discrete Z2 symmetry and the second one is of the Berezinskii-Kosterlitz-
Thouless (BKT) type at which the SO(2) symmetry breaks. Thus, a narrow region exists on the phase diagram
between lines of the Ising and the BKT transitions that corresponds to a chiral spin liquid.

DOI: 10.1103/PhysRevB.85.174404 PACS number(s): 64.60.De, 75.30.Kz

I. INTRODUCTION

Frustrated magnets have attracted much attention in recent
years. Exotic spin-liquid phases, which have been found in
some of them, are of special interest.1 A chiral spin-liquid
phase is an example of such an exotic state of matter in which
there are neither quasi-long-range nor long-range magnetic
orders, but a chiral order parameter ⟨Si × Sj ⟩ is nonzero.
Existence of such a phase is discussed in context of one-
dimensional frustrated quantum magnetic systems,2 and it is
found experimentally in Ref. 3.

In larger dimensions, one of the systems in which the
chiral spin-liquid phase can be found at finite temperature is a
classical planar (XY ) helimagnet with Z2 ⊗ SO(2) symmetry
in which the helical structure results from a competition
of exchange interactions between localized spins. Critical
behavior of spin systems from this class is described by two
order parameters. Aside from the conventional magnetization
with SO(2) symmetry, one has to take into account also
the chiral order parameter that is an Ising variable with Z2
symmetry. This parameter characterizes the direction of the
helix twist and distinguishes left-handed and right-handed
helical structures.

In three-dimensional (3D) helimagnets, the phase transi-
tions on the magnetic and the chiral order parameters occur
simultaneously. It was found numerically that the transition
is of the weak first order or of the “almost-second-order”4,5

type in helical antiferromagnets on a body-centered tetragonal
lattice6 and on a simple cubic lattice with an extra competing
exchange coupling along one axis.7 These systems belong
to the same (pseudo)universality class as, e.g., the model
on a stacked-triangular lattice8 and V2,2 Stiefel model.9 The
possibility of existence and stabilization of the chiral spin-
liquid phase by, e.g., Dzyaloshinsky-Moria interaction in 3D
helimagnets, is discussed recently in Ref. 10.

In two dimensions (2D), the situation is rather different.11

Two successive transitions were observed with the temperature
decreasing. The chiral order appears as a result of the first
transition that is of the Ising type. Another one is the
Berezinskii-Kosterlitz-Thouless (BKT) transition driven by
the unbinding of vortex-antivortex pairs.12 Then, the chiral
spin-liquid phase arises between these transitions with the
chiral order and without a magnetic one. Various 2D systems
from the class Z2 ⊗ SO(2) were investigated numerically (see
Ref. 13 for review): triangular antiferromagnet,14,15 J1-J2

model,16 the Coulomb gas system of half-integer charges,17

two coupled XY models,18 Ising-XY model,13,19,20 and the
generalized fully frustrated XY model.21 And surely, the most
famous of them is the fully frustrated XY model (FFXY )
introduced by Villain.22 This model is of great interest because
it describes a superconducting array of Josephson junctions
under an external transverse magnetic field.23 It was found
that the temperature of the Ising transition TI is 1%–3% larger
than that of the BKT transition for most of above-named
systems.11,13,23,24

Korshunov argued25 that a phase transition, driven by un-
binding of kink-antikink pairs on the domain walls associated
with the Z2 symmetry, can take place in models similar to 2D
FFXY one at temperatures appreciably smaller than TBKT (see
also Ref. 26). Such a transition could lead to a decoupling of
phase coherence across domain boundaries, producing in this
way two separate bulk transitions with TBKT < TI .27 It was
pointed out, however, in Ref. 25 that these two continuous
transitions can merge into a single first-order one. These con-
clusions do not depend on the particular form of interactions in
the system as soon as the ground-state degeneracy remains the
same. They are confirmed by numerical studies of the models
mentioned above.11,13–17,23,24

Nevertheless, the situation remains contradictory in 2D
helimagnets belonging to the same Z2 ⊗ SO(2) class as
the FFXY model and the antiferromagnet on the triangular
lattice. Garel and Doniach28 (see also Ref. 29) considered the
simplest helimagnet on a square lattice with an extra competing
exchange coupling along one axis that is described by the
Hamiltonian

H =
∑

x

(J1 cos(ϕx − ϕx+a) + J2 cos(ϕx − ϕx+2a)

− Jb cos(ϕx − ϕx+b)), (1)

where the sum runs over sites x = (xa,xb) of the lattice, a =
(1,0) and b = (0,1) are unit vectors of the lattice, the coupling
constants J1,2 are positive. Using arguments of Ref. 30, they
concluded28 that at low temperatures the vertices are bound
by strings, which would inhibit the BKT transition and make
the Ising transition occur first with the temperature increasing.
Kolezhuk noticed31 that those arguments are not valid for a
helimagnet, and showed that the Ising transition temperature
is larger than the BKT one at least near the Lifshitz point
J2 = J1/4. It was found by Monte Carlo simulations in the
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recent paper32 that TBKT > TI at J2 = 0.3 and J1 = Jb = 1
(i.e., very near the Lifshitz point) in accordance with Ref. 28
and in contrast to Ref. 31.

To account for the discordance between results for helical
magnets and the general arguments for Z2 ⊗ SO(2) class,
we perform extensive Monte Carlo simulations of the model
(1) for different values of J2. We obtain reliable results at
J2 > 0.4J1 which show that TBKT < TI . On the other hand,
the value of TI close to the Lifshitz point is hiding among
effects of the finite-size scaling and is not accessible for
ordinary estimation methods. We obtain the Ising transition
temperature from the chiral-order-parameter distribution and
find that TBKT < TI near the Lifshitz point too. At the same
time, we find in accordance with results of Ref. 32 that the
specific heat and susceptibilities have subsidiary peaks at
low T < TBKT near the Lifshitz point. These are anomalies
which are attributed in Ref. 32 to the Ising phase transition.
However, we demonstrate that these anomalies do not signify
a continuous phase transition. Apparently, their origin is in
metastable states, which lead also to a peculiar distribution
of the chiral order parameter. We find no such features in the
specific heat and susceptibilities far from the Lifshitz point (at
J2 > 0.4J1). As a result, we obtain the phase diagram shown
in Fig. 1.

The rest of this paper is organized as follows. We discuss in
Sec. II the model (1) in more detail and introduce quantities to
be found in our calculations. Numerical results are discussed
in Sec. III. In particular, the Ising and the BKT transitions
are considered in Secs. III A and III B, respectively. The
neighborhood of the Lifshitz point and the phase diagram are
discussed in Sec. III C. Section IV contains our conclusions.

II. MODEL AND METHODS

We consider the model (1) of the classical XY magnet on a
square lattice. We set J1 = Jb = 1 for simplicity, and the value
of the extra exchange interaction J2 is a variable. The Lifshitz
point corresponds to J2 = 1/4 in this notation. The system
has a collinear antiferromagnetic ground state at J2 < 1/4. To
discuss the phase transition from the (quasi-)antiferromagnetic
phase to the paramagnetic one, we consider J2 = 0 and 0.1 (see
Fig. 1). The ground state has a helical ordering at J2 > 1/4.

FIG. 1. (Color online) Phase diagram of the model (1) that is
found in this paper.

FIG. 2. (Color online) Distribution of the value E′
b defined in

Eq. (9) for J2 = 0.5, L = 42 and three T values: T > TI , T < TBKT,
and TBKT < T < TI .

The turn angle θ0 between two neighboring spins along the a
axis is given by cos θ0 = −J1/4J2 at zero temperature.

To discuss the number and the sequence of phase transitions
from the (quasi-)helical phase to the paramagnetic one, we
consider J2 ≈ 0.309, 0.5, and 1.76 corresponding at T = 0
to angles of commensurate helices θ0 = 4π/5, 2π/3, and
6π/11, respectively. We use lattices with L2 cites, where L
is divisible by the size of the helix pitch and it lies in the
range from 20 to 120. We apply the periodic (toric) boundary
conditions as well as the cylindrical ones (i.e., with the periodic
condition along the b axis and the free one along the a
axis). We have found that both conditions lead to the same
values of transition temperatures and indexes. In contrast,
values of Binder’s cumulants and the chiral-order-parameter
distribution at J2 ≈ 0.309 depend on boundary conditions as
we discuss below in detail. Standard Metropolis algorithm33

has been used. The thermalization was maintained within
4 × 105 Monte Carlo steps in each simulation. Averages have
been calculated within 3.6 × 106 steps for ordinary points and
6 × 106 for points close to the critical ones. We have used also

FIG. 3. (Color online) Distribution of the value E′
a defined in

Eq. (10) for J2 = 0.5, T = 0.67 < TI , and different L.
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We study Heisenberg antiferromagnets with nearest- (J1) and third- (J3) neighbor exchange on the
square lattice. In the limit of spin S ! 1, there is a zero temperature (T) Lifshitz point at J3 ! 1

4 J1, with
long-range spiral spin order at T ! 0 for J3 > 1

4 J1. We present classical Monte Carlo simulations and a
theory for T > 0 crossovers near the Lifshitz point: spin rotation symmetry is restored at any T > 0, but
there is a broken lattice reflection symmetry for 0 " T < Tc # $J3 % 1

4 J1&S2. The transition at T ! Tc is
consistent with Ising universality. We also discuss the quantum phase diagram for finite S.
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Frustrated antiferromagnets have recently attracted
much interest in connection with the possibility of stabiliz-
ing unconventional low-temperature (T) phases, with novel
types of ‘‘quantum order’’ [1]. A very promising candidate
for a spin-liquid phase is the J1 % J3 model

Ĥ ! J1
X

hi;ji
Ŝi ' Ŝj ( J3

X

hhi;jii
Ŝi ' Ŝj; (1)

where Ŝi are spin-S operators on a square lattice and
J1; J3 ) 0 are the nearest- and third-neighbor antiferro-
magnetic couplings along the two coordinate axes. For
this model, early large N computations, [2] and recent
large scale density matrix renormalization group
(DMRG) calculations for S ! 1=2 [3] have suggested the
existence of a gapped spin-liquid state with exponentially
decaying spin correlations and no broken translation sym-
metry in the regime of strong frustration (J3=J1 ’ 0:5).

This Letter will describe properties of the above model
for large S and discuss consequences for general S. Our
results, obtained by classical Monte Carlo simulations and
a theory described below, are summarized in Fig. 1 for the
limit S ! 1. There is a T ! 0 state with long-range spiral
spin order for J3 > 1

4 J1. We establish that at 0< T < Tc #
$J3 % 1

4 J1&S2, above this state there is a phase with broken
discrete symmetry of lattice reflections about the x and y
axes, while spin rotation invariance is preserved. This
phase has ‘‘Ising nematic’’ order. We present strong nu-
merical evidence that the transition at Tc is indeed in the
Ising universality class. Such Ising nematic order[4] was
originally proposed in Ref. [2] for S ! 1=2 in a T ! 0
spin-liquid phase described by a Z2 gauge theory [5]. Thus
the same Ising nematic order can appear when spiral spin
order is destroyed either by thermal fluctuations (as in the
present Letter; see Fig. 1) or by quantum fluctuations (as in
Ref. [2]). Our large S results are therefore consonant with
the possibility of a spin-liquid phase at S ! 1=2 as de-
scribed in Refs. [2,3]; we will discuss the quantum finite S
phase diagram further towards the end of the Letter. We

also suggest that discrete lattice symmetries may play a
role near other quantum critical points with spiral order [6].

Broken discrete symmetries have also been discussed
[7,8] in the context of the J1 % J2 model, with first- and
second-neighbor couplings on the square lattice. However,
this model has only collinear, commensurate spin correla-
tions, and this makes both the classical and quantum theory
quite different from that considered here. As will become
clear below, the spiral order and associated Lifshitz point
play a central role in the structure of our theory and in the T
dependence of observables.

J3

T

J1 / 4

Spiral LRO

Tc
ξspin~ S / T 1/2

ξspin~ ec'S2 / T

Neel LRO
Lifshitz point

ξspin~ ecS2 / T

FIG. 1. Phase diagram of Ĥ in the limit S ! 1. The shaded
region has a broken symmetry of lattice reflections about the x
and y axes, leading to Ising nematic order. The Ising transition is
at the temperature Tc # $J3 % 1

4 J1&S2. The spin correlation
length, !spin, is finite for all T > 0, with the T dependencies as
shown, with c=2 ! c0 ! 8"jJ3 % 1

4 J1j; the crossovers between
the different behaviors of !spin are at the dashed lines at T #
jJ3 % 1

4 J1jS2. Spin rotation symmetry is broken only at T ! 0
where !spin ! 1. There is no Lifshitz point at finite S because it
is preempted [13] by quantum effects within the dotted semi-
circle: here there is a T ! 0 spin gap !# S exp$%~cS& and spin
rotation symmetry is preserved. This semicircular region extends
over T # jJ3 % 1

4 J1jS#!. Further details on the physics within
this region appear at the end of the Letter.
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metry in the regime of strong frustration (J3=J1 ’ 0:5).

This Letter will describe properties of the above model
for large S and discuss consequences for general S. Our
results, obtained by classical Monte Carlo simulations and
a theory described below, are summarized in Fig. 1 for the
limit S ! 1. There is a T ! 0 state with long-range spiral
spin order for J3 > 1

4 J1. We establish that at 0< T < Tc #
$J3 % 1

4 J1&S2, above this state there is a phase with broken
discrete symmetry of lattice reflections about the x and y
axes, while spin rotation invariance is preserved. This
phase has ‘‘Ising nematic’’ order. We present strong nu-
merical evidence that the transition at Tc is indeed in the
Ising universality class. Such Ising nematic order[4] was
originally proposed in Ref. [2] for S ! 1=2 in a T ! 0
spin-liquid phase described by a Z2 gauge theory [5]. Thus
the same Ising nematic order can appear when spiral spin
order is destroyed either by thermal fluctuations (as in the
present Letter; see Fig. 1) or by quantum fluctuations (as in
Ref. [2]). Our large S results are therefore consonant with
the possibility of a spin-liquid phase at S ! 1=2 as de-
scribed in Refs. [2,3]; we will discuss the quantum finite S
phase diagram further towards the end of the Letter. We

also suggest that discrete lattice symmetries may play a
role near other quantum critical points with spiral order [6].

Broken discrete symmetries have also been discussed
[7,8] in the context of the J1 % J2 model, with first- and
second-neighbor couplings on the square lattice. However,
this model has only collinear, commensurate spin correla-
tions, and this makes both the classical and quantum theory
quite different from that considered here. As will become
clear below, the spiral order and associated Lifshitz point
play a central role in the structure of our theory and in the T
dependence of observables.

J3

T

J1 / 4

Spiral LRO

Tc
ξspin~ S / T 1/2

ξspin~ ec'S2 / T

Neel LRO
Lifshitz point

ξspin~ ecS2 / T

FIG. 1. Phase diagram of Ĥ in the limit S ! 1. The shaded
region has a broken symmetry of lattice reflections about the x
and y axes, leading to Ising nematic order. The Ising transition is
at the temperature Tc # $J3 % 1

4 J1&S2. The spin correlation
length, !spin, is finite for all T > 0, with the T dependencies as
shown, with c=2 ! c0 ! 8"jJ3 % 1

4 J1j; the crossovers between
the different behaviors of !spin are at the dashed lines at T #
jJ3 % 1

4 J1jS2. Spin rotation symmetry is broken only at T ! 0
where !spin ! 1. There is no Lifshitz point at finite S because it
is preempted [13] by quantum effects within the dotted semi-
circle: here there is a T ! 0 spin gap !# S exp$%~cS& and spin
rotation symmetry is preserved. This semicircular region extends
over T # jJ3 % 1

4 J1jS#!. Further details on the physics within
this region appear at the end of the Letter.
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Ising nematic order

at T=0 only

Ising nematic order parameter !" ! "M=T#$
"h"2i% hj"ji2# (Fig. 4, upper panel), and by universal T
dependence in Binder’s fourth cumulant U4 !
1% h"4i=3h"2i2 (not shown). The critical exponent #
can be estimated from the size dependence of the T corre-
sponding to the maximum of the susceptibility, which is
expected to scale as Tmax"L# ! Tc & aL%1=#, where Tc is
the thermodynamic critical temperature; Fig. 4 (upper in-
set) shows # ! 1, as expected. The exponent $ is also in
agreement with Ising universality. This can be extracted
from the scaling law j"j ! L%$=#f"x#, where f"x# is the
scaling function and x ! %L1=# with % ! jT % Tcj; this
scaling is shown in Fig. 4, upper inset, with Tc !
0:303"1# estimated from the position of the maximum of
the susceptibility and the behavior of the Binder’s cumu-
lant. Excellent data collapse is obtained for $=# ! 1=8.

We have repeated a similar analysis for several values of
J3=J1 and the complete phase diagram is shown in Fig. 5,
where we have plotted Tc versus J3=J1. We find that Tc
vanishes linearly for J3=J1 ! 1=4; a theory for this behav-
ior will now be presented.

Near the classical Lifshitz point, we can model quantum
and thermal fluctuations by a continuum unit vector field
n"r; %#, where r ! "x; y# is spatial coordinate, % is imagi-
nary time, and n2 ! 1 at all r, %. This field is proportional
to the Néel order parameter with Ŝj / "%1#xj&yjn"rj; %#.
Spiral order will therefore appear as sinusoidal depen-
dence of n on r. The action for n is the conventional
O(3) nonlinear sigma model, expanded to include quartic
gradient terms ( !h ! kB ! lattice spacing ! 1): Sn !
R1=T
0 d%

R

d2rLn with

Ln ! !?
2

"@%n#2 &
&
2
'"@xn#2 & "@yn#2(

& '1
2
'"@2xn#2 & "@2yn#2( & '2@2xn ) @2yn

& (1'"@xn ) @yn#2 & "@yn ) @yn#2(
& (2"@xn ) @yn#2 ) ) ) (3)

where the ellipses denote a finite number of additional (i
couplings involving four powers of n and four spatial
derivatives invariant under spin rotations and lattice sym-
metries. In the limit S ! 1, we have !? ! 1="8J1#, & !
"J1 % 4J3#S2, '1 ! "16J3 % J1#S2=12, '2 ! 0, and all
(i ! 0. Notice that & crosses zero at the Lifshitz point
and so can be regarded as the tuning parameter; & ! 0
generally locates the Lifshitz point for when &< 0 it is
energetically advantageous to have a r-dependent spiral in
n.

A convenient analysis of the properties of Sn is provided
by a direct generalization of the 1=N expansion of
Ref. [11]. The results quoted in Fig. 1 and its caption
were obtained from the N ! 1 saddle point equation,
and (apart from certain preexponential factors) all func-
tional forms are exact. The saddle point implements the
constraint n2 ! 1 and takes the form

3T
X

!n

Z d2k
4)2 !n"k;!n# ! 1; (4)

where k is a wave vector, !n is a Matsubara frequency, and
!n is the dynamic staggered spin susceptibility with

!n"k;!n# ! 'm2 & !?!2
n & &"k2x & k2y#

&'1"k4x & k4y# & 2'2k2xk2y(%1:
(5)

The parameter m is determined by solving Eq. (4).
In the classical limit, S ! 1, we need only retain the

!n ! 0 term in Eq. (4) [12]. A solution for m exists for all
T > 0, and leads to the crossovers in the spin correlation
length *spin shown in Fig. 1. The value of *spin, and the
pitch of the spiral order * !!!!!!!!%&

p
, as T ! 0 are obtained

from the spatial Fourier transform of !n"k; 0#.
To investigate the Ising nematic order, we need to study

correlations of the order parameter ""r; %# which we define
by a gradient expansion of Eq. (2)

" ! n ) @x@yn% @xn ) @yn: (6)

The Ising susceptibility, !", is then
!" ! R1=T

0 d%
R

d2rh""r; %#""0; 0#i.
In the classical limit, S ! 1, important exact properties

of !" follow from the ultraviolet finiteness of the two-
dimensional field theory with Boltzmann weight
exp'%"1=T#R d2rLn( and n independent of %. Under a
length rescaling analysis of this theory in which the 'i and
(i are fixed, we see that both T and & scale as inverse
length squared. These scaling dimensions establish that in
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FIG. 5. Critical temperature as a function of the frustration
ratio J3=J1.
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We begin by recalling [9] the ground states of H at S !
1. There is conventional Néel order with magnetic wave
vector ~Q ! "!;!# for J3=J1 $ 1

4 . For J3=J1 > 1
4 , the

ground state has planar incommensurate antiferromagnetic
order at a wave vector ~Q ! "Q;Q#, with Q decreasing from
! as J3=J1 > 1

4 and approaching Q ! !=2 monotonically
for J3=J1 ! 1. The spiral order is incommensurate for 1

4 <
J3=J1 <1, except at J3=J1 ! 0:5 where Q ! 2!=3, cor-
responding to an angle of 120 % between spins (see Fig. 2).
Interestingly, for each spiral state with ~Q ! "Q;Q# there is
a distinct but equivalent configuration at ~Q? ! "&Q;Q#
(for Q ! !). This state cannot be obtained from the one
with wave vector ~Q by a global spin rotation. Instead, the
two configurations are connected by a global rotation
combined with a reflection about the x or y axes. The
global symmetry of the classical ground state is O"3# '
Z2, with an additional twofold degeneracy beyond that of
the Néel case.

One of the main claims in Fig. 1 is that the broken Z2
symmetry survives for a finite range of T > 0, while con-
tinuous O(3) symmetry is immediately restored at any
nonzero T. We established this by extensive Monte Carlo
simulation using a combination of Metropolis and over-
relaxed algorithm for periodic clusters of size up to M !
120' 120, and for several values of J3=J1 between 0.25
and 4. Indeed, the presence of a finite T phase transition is
clearly indicated by a sharp peak of the specific heat which
is illustrated in Fig. 3 [10]. This sharp feature is to be
contrasted to the broad maximum displayed by the same
quantity for J3=J1 < 1

4 , i.e., when the classical ground state
displays ordinary Néel order. In particular, the maximum
of the specific heat is consistent with a logarithmic depen-
dence on system size (see the inset of Fig. 3) corresponding
to a critical exponent " ! 0, in agreement with Ising
universality.

This critical behavior can be directly related to the
broken lattice reflection symmetry by studying an appro-
priate Ising nematic order parameter. From the symmetries
of Fig. 2, we deduce that the order parameter is # !
1=M"Pa#a# with

#a ! "Ŝ1 ( Ŝ3 & Ŝ2 ( Ŝ4#a; (2)

where a labels each plaquette of the square lattice and
"1; 2; 3; 4# are its corners. The variables #a are zero for a
Néel antiferromagnet, while they assume opposite signs on
the two degenerate ground states in the spiral phase.
Consequently, a phase with Ising nematic order is signaled
by a h#ai ! 0.

Our numerical results contain strong evidence for a
continuous Ising phase transition between a low T phase
with h#i ! 0, and a homogeneous high T phase with
h#i ! 0. The divergence in the specific heat (Fig. 3) is
accompanied by a divergence in the susceptibility of the

4 3

21

(Q,Q)
1 2

4 3

(Q,−Q)

FIG. 2. The two different minimum energy configurations with
magnetic wave vectors ~Q ! "Q;Q# and ~Q? ! "Q;&Q# with
Q ! 2!=3, corresponding to J3=J1 ! 0:5.
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the maximum of the specific heat.
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Ising exponents $ ! 1=8 and % ! 1, and Tc ! 0:303. Top:
temperature dependence of the susceptibility of # for J3=J1 !
0:5. The inset shows the size scaling of the temperature corre-
sponding to the maximum of the susceptibility.
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We begin by recalling [9] the ground states of H at S !
1. There is conventional Néel order with magnetic wave
vector ~Q ! "!;!# for J3=J1 $ 1

4 . For J3=J1 > 1
4 , the

ground state has planar incommensurate antiferromagnetic
order at a wave vector ~Q ! "Q;Q#, with Q decreasing from
! as J3=J1 > 1

4 and approaching Q ! !=2 monotonically
for J3=J1 ! 1. The spiral order is incommensurate for 1

4 <
J3=J1 <1, except at J3=J1 ! 0:5 where Q ! 2!=3, cor-
responding to an angle of 120 % between spins (see Fig. 2).
Interestingly, for each spiral state with ~Q ! "Q;Q# there is
a distinct but equivalent configuration at ~Q? ! "&Q;Q#
(for Q ! !). This state cannot be obtained from the one
with wave vector ~Q by a global spin rotation. Instead, the
two configurations are connected by a global rotation
combined with a reflection about the x or y axes. The
global symmetry of the classical ground state is O"3# '
Z2, with an additional twofold degeneracy beyond that of
the Néel case.

One of the main claims in Fig. 1 is that the broken Z2
symmetry survives for a finite range of T > 0, while con-
tinuous O(3) symmetry is immediately restored at any
nonzero T. We established this by extensive Monte Carlo
simulation using a combination of Metropolis and over-
relaxed algorithm for periodic clusters of size up to M !
120' 120, and for several values of J3=J1 between 0.25
and 4. Indeed, the presence of a finite T phase transition is
clearly indicated by a sharp peak of the specific heat which
is illustrated in Fig. 3 [10]. This sharp feature is to be
contrasted to the broad maximum displayed by the same
quantity for J3=J1 < 1

4 , i.e., when the classical ground state
displays ordinary Néel order. In particular, the maximum
of the specific heat is consistent with a logarithmic depen-
dence on system size (see the inset of Fig. 3) corresponding
to a critical exponent " ! 0, in agreement with Ising
universality.

This critical behavior can be directly related to the
broken lattice reflection symmetry by studying an appro-
priate Ising nematic order parameter. From the symmetries
of Fig. 2, we deduce that the order parameter is # !
1=M"Pa#a# with

#a ! "Ŝ1 ( Ŝ3 & Ŝ2 ( Ŝ4#a; (2)

where a labels each plaquette of the square lattice and
"1; 2; 3; 4# are its corners. The variables #a are zero for a
Néel antiferromagnet, while they assume opposite signs on
the two degenerate ground states in the spiral phase.
Consequently, a phase with Ising nematic order is signaled
by a h#ai ! 0.

Our numerical results contain strong evidence for a
continuous Ising phase transition between a low T phase
with h#i ! 0, and a homogeneous high T phase with
h#i ! 0. The divergence in the specific heat (Fig. 3) is
accompanied by a divergence in the susceptibility of the
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magnetic wave vectors ~Q ! "Q;Q# and ~Q? ! "Q;&Q# with
Q ! 2!=3, corresponding to J3=J1 ! 0:5.
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FIG. 4. Bottom: T dependence of the order parameter, #, [see
Eq. (2)] for different cluster sizes and J3=J1 ! 0:5. The inset
shows the data collapse according to the scaling hypothesis with
Ising exponents $ ! 1=8 and % ! 1, and Tc ! 0:303. Top:
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Tising

TKT

Vector spin chiral phase 
is present,


but the temperature interval

is tiny. 

Can be enhanced by 

DM interaction + phonons,

Onoda, Nagaosa PRL 2007



Vector chirality in 1d (T=0)



Today: Search for vector chirality without magnetic order in 

quantum 2d models

Cheshire Cat’s smile 

✴ Spin-current phase



✴ Vector chirality

✴ 1/3 magnetization plateau and its instabilities:
• spin-current phase

✴ Minimal s=1 XXZ model of spin-current phase
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Phase diagram of the Heisenberg (XXX) model in the field

Seabra, Momoi, Sindzingre, Shannon 2011

Gvozdikova, Melchy, Zhitomirsky 2010

Z2  vortex (chirality ordering) transition



Quantum fluctuations, S >> 1, T=0.
J’ = J: Quantum fluctuations select co-planar and collinear phases

hc2 - hc1 = (0.6/2S) hsat

UUD plateau is due to interactions between spin waves

up-up-down collinear state



PRB 2013

Need to understand end-points

J 0
J

Spatially anisotropic model



0 hsath

0 hsath1/3-plateau

Spatially anisotropic model: classical vs quantum

∑∑ −⋅=
〉〈 i

z
i

ij
jiij hJH SSS

Umbrella state: 
favored classically;
energy gain (J-J’)2/J

Planar states: favored by 
quantum fluctuations;
energy gain J/S

J
′ ̸= J

δ = S(J − J ′)2/J2
The competition is controlled by 
dimensionless parameter

S = 1

S =
1

2

J 0
J

Alicea, Chubukov, OS PRL  2009



Emergent Ising order near the end-point of the 1/3 
magnetization plateau

H =
X

hi,ji

Jij ~Si · ~Sj

O

hc2

hsat

δ1 3 4

A

B

C

D

E

F

G

H

δcr

a

b

C1

C2

0

Z3 U(1)*Z3*Z2

hc1

Z3*Z2

U(1)*Z3

U(1)*U(1) U(1)*U(1)*Z2

U(1)*Z2

U(1)*Z3

U(1)*U(1)

U(1)*U(1)*Z2 U(1)*Z2

� =
40

3
S
⇣J � J 0

J

⌘2

OAS, Reports on Progress in Physics 78, 052502 (2015), 
OAS, Wen Jin, Chubukov, Phys. Rev. Lett. 113, 087204 (2014)

1/3 plateau
Cone



UUD-to-cone phase transition 

H =
X

hi,ji

Jij ~Si · ~Sj

O

hc2

hsat

δ1 3 4
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Z3 ! U(1)⇥ Z2 or Z3 ! smth else ! U(1)⇥ Z2?



-k2d2

Low-energy  excitation spectra

� =
40 S

3
(1� J 0/J)2

✏d2 = hc2 � h+
9Jk2

4

✏d1 = h� hc1 +
3Jk2

4

for δ < 1

for δ < 3

hc2 � hc1 =
0.6

2S
hsat =

0.6

2S
(9JS)

d1

Bose-Einstein condensation 
of d1 (d2) mode at k =0 leads to  
lower (upper) co-planar phase

Magnetization plateau is  
collinear phase: preserves 

O(2) rotations about magnetic field --  
no gapless spin waves. 
Breaks only discrete Z3. 
Hence, very stable.

vacuum of d1,2

Alicea, Chubukov, OS PRL  2009



S>>1
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d1

δ=4
k1 = k2 = k0

Low-energy  excitation spectra 
near the plateau’s end-point

k0 =

r
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10S

Alicea, Chubukov, OS PRL  2009

� =
40 S

3
(1� J 0/J)2

extended symmetry: 
4 gapless modes at the 

plateau’s end-point

vacuum of d1,2

Magnetization plateau is  
collinear phase: preserves 

O(2) rotations about magnetic field --  
no gapless spin waves. 
Breaks only discrete Z3.

� =
40 S

3
(1� J 0/J)2 parameterizes anisotropy J’/J
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†
2,q †

1,p 2,q

H(4)
d1d2

=
3

N

X

p,q

�(p, q)
⇣
d†1,k0+pd

†
2,�k0�pd1,�k0+qd2,k0�q � d†1,k0+pd

†
2,�k0�pd

†
1,�k0+qd

†
2,k0�q

⌘
+ h.c.

magnon pair 
operators

Chubukov, OS PRL 2013
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 2,p = d1,�k0+pd2,k0�p
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2

�(p, q) ⇠ (�3J)k20
|p||q|

}
} }

Interaction between low-energy magnons

singular magnon interaction

[ 1,p, 2,q] = �1,2�p,q
⇣
1 + d†1,k0+pd1,k0+p + d†2,k0+pd2,k0+p

⌘
! �1,2�p,q

Obey canonical Bose commutation relations in the UUD ground state

hd†1d1iuud = hd†2d2iuud = 0In the UUD ground state

★ Interacting magnon Hamiltonian in terms of d1,2 bosons = 
non-interacting Hamiltonian in terms of Ψ1,2 magnon pairs
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Two-magnon instability

Magnon pairs Ψ1,2 condense before single magnons d1,2

`Superconducting’ solution with 
imaginary order parameter
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Spin-current nematic state near the end-point of the 1/3 
magnetization plateau (large-S analysis)

Chubukov, OS PRL 2013
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J’

J’

� > 0 � < 0

hẑ · SA ⇥ SCi = hẑ · SC ⇥ SBi = hẑ · SB ⇥ SAi / ⌥

hSr · Sr0i is not affectedno transverse magnetic order hSx,y

r

i = 0

Spontaneously broken Z2  -- spatial inversion [in addition to broken Z3 
inherited from the UUD state] 

uud

distorted 
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4 δδcr
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current

domain wall

Finite vector chirality

Z3*Z2



Spin current visualization
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3
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3
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3
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3

],MC)

Precessing spins on sub lattices A, B, C are 
phase shifted by 2π/3:

hSx,y

r i = 0

hSA ⇥ SCi = hSC ⇥ SBi = hSB ⇥ SAi = ± sin[
2⇡

3
]

Then no dipolar transverse order:

But finite chirality, determined by the sign of 2π/3 shift between the sublattices: 

hSA · SCi = hSC · SBi = hSB · SAi = cos[

2⇡

3

]and

ACB



End-point of the plateau on kagome lattice

Kagome geometry

1/3 plateau

Spin-current pattern

PRB 2017
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✴ 1/3 magnetization plateau and its instabilities:
• spin-current phase

✴ Minimal s=1 XXZ model of spin-current phase

✴ Conclusions

Outline



The minimal 2d quantum spin model
• Spin-1 model with featureless Mott ground state at large D > 0 [           ] 
• Triangular lattice: two-fold degenerate spectrum, at +Q and -Q 
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The minimal 2d quantum spin model

• Spin-1 model with featureless Mott ground state at large D > 0 [           ] 
• Triangular lattice: two-fold degenerate spectrum, at +Q and -Q 

1. Toy problem of two-spin exciton. Derive Schrodinger eqn for the pair wave function ψ

Solution which is odd under inversion  
is the first instability when approaching from large-D limit. 

Indicates chiral Mott phase. 
[Single-particle condensation occurs at D=3J.]

H =
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X

r
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r = 0

+ charge, — charge



Schwinger boson representation of S=1

hbr0i = sLarge-D limit: b0   is condensed, are excitations about the vacuum., br",#

⇣ = Jz/J

Magnon interaction comes from Ising part of the exchange 

This accounts for quantum fluctuations



Interaction between magnons

Number conserving
2 -> 2

Non-conserving
3 -> 1, 1 -> 3
4 -> 0, 0 -> 4



Chiral order parameter

Vector chirality

q-space

Low-energy approximation

Total spin Sz=0,
Odd under Q -> - Q ,

Odd under                

Boson pair operators

Convenient parameterization



Integral equation for pair vertices

=

Q̄+k

Q−k

Q̄+k

Q̄+p

Q−p

Q−k

+

Q−p

Q̄+p
Q̄+k

Q−k

+

Q̄+k

Q−k
Q̄+p

Q−p
Q̄+k

Q−k

Q̄+p

Q−p

+

φL(k)

=

Q̄+k

Q−k

Q̄+k
Q̄+p

Q−p
Q−k

+

Q−p

Q̄+p

Q̄+k

Q−k

+

Q̄+k

Q−k

Q̄+p

Q−p

Q̄+k

Q−k
Q̄+p

Q−p

+

φR(k)Shaded rectangles denote 
fully dressed 

Irreducible interactions between
Low-energy magnons



First order in Jz = ⇣J

Interaction is given by bare vertices

Obtain for the 2-magnon instability

No weak-coupling instability !
Interaction vertices are of order 1 (in units of Jz ) and are not singular :-(

k1,2 near ±Q

Need to renormalize it!

LW = Long wavelength, SW = short wavelength



To find the dressed interaction, we have to go

to the 2nd order in Jz …

Q̄+p

Q−p

Q̄+k

Q−k

Q̄+p

Q−p

Q̄+k

Q−k

(a) (b)
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Q̄+k (f) Q̄+p Q̄+k
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Kohn-Luttinger like mechanism but for bosons

F 22 F 04



The result

Pair vertex is real, renormalized interaction is singular

Two magnon condensation takes place before the single magnon one:

↵ = 2.49

F 22o
k,p = �4F 04

k,p =
�↵⇣2J3

!Q�p!Q�k

⇣ =
Jz
J

= �



More checks: Bethe-Salpeter equation

(low-density approximation)

k1 ↑

k2 ↓ k2 − q ↓

k1 + q ↑

=q q + q − q′q′

k1 ↑ k1 + q ↑

k2 ↓ k2 − q ↓

k1 ↑

k2 ↓

k1 + q ↑

k2 − q ↓

k1 + q′ ↑

k2 − q′ ↓

+

k1 ↑

k2 ↓ −k2 + q′ ↓

−k1 − q′ ↑ k1 + q ↑

k2 − q ↓

q − q′q′
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Full problemOnly normal 
(2 -> 2) vertices



DMRG on 6x6 triangular lattice
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Single magnon gap
⌫Ising = 0.63, ⌫XY = 0.67

Gap crossing:
VC order via Ising transition

before
U(1) order via XY transition 



Summary
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Chiral spin liquid 
appears naturally 

in the vicinity of magnetic 
quantum critical point!

Broken inversion, 
Spontaneous vector chirality, 

Gapped single particle excitations.

Magneto-electric effect!



Conclusions

Thank you!

Mott -> superfluid transition on a frustrated lattice 
requires U(1) x Z2 breaking. 

This proceeds via intermediate spin-current 
(chiral Mott) phase (breaking Z2 only). 

Spontaneously breaks spatial inversion. 

But preserves time-reversal 

All single particle excitations are gapped.

�(k) = ��(�k)

u 2 R

Paramagnet XY ordered



Summary
⟨Sr⟩ = 0
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Chiral liquid can be detected via inverse Dzyaloshinskii-Moriya effect:
Leads to charge density wave of O2- anions
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