スピン液体とトポロジー

局所拘束条件と局所保存量の観点から

求 幸年(東京大学 大学院工学系研究科 物理工学専攻)

Department of Applied Physics, Graduate School of Engineering/Faculty of Engineering, The University of Tokyo

共同研究者

赤城 裕 (東大工→OIST), 石塚 大晃 (東大工→KITP), 速水 賢 (東大工), 那須 譲治 (東大工→東工大理工), 宇田川 将文 (東大工)

Objective of this talk

quantum spin liquids = new state of matter in magnets (Mott insulators) no long-range order down to T=0 due to quantum fluctuations

What is their intrinsic and unique nature?
Where are they realized? In which compounds/models?
How to characterize them? How to distinguish them from paramagnets?

- to review the present status from the author's biased view
 - to present our recent findings on spin liquids
 - to show some future directions

Message of this talk

local constraint

emergent loop/flux

- topological nature
- exotic electronic and transport properties
- unconventional phase transitions

Plan of this talk

9

What is spin liquid?

- classical and quantum theoretical examples
- experimental candidates: spin ice, κ-ET salts, Pr₂Ir₂O₇, ...

Classical spin liquids

- spin ice and close-packed dimers
- local constraint, Coulomb phase, unconventional phase transitions

Intermediate (hybrid)

- spin-charge coupling: transfer of peculiar spin textures to mobile electrons
- loop liquid and scalar chiral liquid

Ş (

Quantum spin liquids

- 3D Kitaev model: phase transition from paramagnet to spin liquid
- topological aspect of the transition: proliferation of loops

Discussion and prospects

What is spin liquid?

Classical example

PHYSICAL REVIEW

VOLUME 102, NUMBER 4

MAY 15, 1956

Ordering and Antiferromagnetism in Ferrites

P. W. Anderson
Bell Telephone Laboratories, Murray Hill, New Jersey
(Received January 9, 1956)

- Verwey transition in magnetite Fe₃O₄
 - Fe³⁺/Fe²⁺ on a pyrochlore lattice
 - \bullet Fe³⁺=1spin, Fe²⁺=1spin
- pyrochlore Ising antiferromagnet
 - strong geometrical frustration
 - 2up-2down configuration is favored in each tetrahedron.
 - no long-range order down to T=0: macroscopic degeneracy (for nearest-neighbor interactions only)

Classical (but modern) example

- spin ice model (nearest-neighbor interactions only)
 - ◆ ↑spin="in", ↓spin="out"
 - noncoplanar Ising spins on the pyrochlore lattice
 - strong geometrical frustration for ferromagnetic interactions
 - 2in-2out configuration is favored in each tetrahedron.
 - no long-range order down to T=0: macroscopic degeneracy
- magnetic analog of water ice
 - proton configurations = Ising spinswith 2-in 2-out configurations

S. T. Bramwell and M. J. P Gingras, 2001

Experiment on spin ice

- orare-earth pyrochlore oxides: Ho₂Ti₂O₇, Dy₂Ti₂O₇, Ho₂Sn₂O₇, ...
- no long-range order down to ~mK: only diffusive features in neutron scattering (T. Fennell *et al.*, 2009)

residual entropy related to the macroscopic degeneracy (A. P. Ramirez *et al.*, 1999)

Quantum example (1)

resonating valence bond (RVB) (P. W. Anderson, 1973)

figure is taken and modified from L. Balents, 2010

 It is still controversial where such a state is realized.

ex.) $S=1/2 J_1-J_2$ AF on a square lattice

Experimental candidate?

organic conductor κ -(ET)₂Cu₂(CN)₃: S=1/2 spins on a triangular layers

Quantum example (2)

- Kitaev spin liquids: quantum spin liquids in the exact ground states
 - original 2D honeycomb Kitaev model (A. Kitaev, 2006)
 - exactly soluble
 - both gapped and gapless spin liquids
 - nonzero correlations only for nearestneighbors (G. Baskaran *et al.*, 2007)
 - extension to 3D hyperhoneycomb lattice
 (S. Mandal and N. Surendran, 2009)
 - also exactly soluble: the same groundstate phase diagram
 - extensions to other lattice structures star lattices, hyperoctagon, etc.

Experimental relevance?

An effective interaction for partially-filled t_{2g} levels under strong spin-orbit coupling may become Kitaev type (G. Jackeli and G. Khaliullin, 2009).

→ experimental exploration of Kitaev spin liquids quasi-2D honeycomb compounds, Na₂IrO₃, Li₂IrO₃, ... pyrochlore Ir₂O₄, hyperkagome Na₄Ir₃O₈, hyperhoneycomb and harmonic honeycomb Li₂IrO₃, ...

no strong candidate yet (Most of them do show long-range ordering, presumably because of other interactions.)

Hybrid example

- \square Pr₂Ir₂O₇: spin ice (Pr 4f moments) + itinerant electrons (Ir 5d electrons)
 - Peculiar spin texture strongly affects the electronic and transport properties.

Classical spin liquids

spin ice and close-packed dimers

Spin ice

- local constraint = 2-in 2-out configuration in every tetrahedron (ice rule) (equivalent to six-vertex model)
 - macroscopic degeneracy: residual Pauling entropy ~30% of In2
 - ⇒ correlated disordered state dubbed as "Coulomb phase" (D. Huse et al., 2003; S. V. Isakov et al., 2004; C. L. Henley, 2005)
 - ice rule = zero divergence condition
 - → fictitious electromagnetic field, algebraic dipolar spin-spin correlations
- mapping from local spin configurations to self-avoiding closed loops

Spin ice model

- Any single spin flip makes 3-in 1-out/1-in 3-out pairs (monopoles), whose energy cost is O(J): strongly suppressed at low T << J
- Global spin flips along the closed loops do not cost energy (zero modes), leaving the system within the 2-in 2-out manifold.

 efficient Monte Carlo simulation by using the global loop flips (R. G. Melko and M. J. P. Gingras, 2004)

no phase transition, just a crossover for the model with n.n. interactions only

Close-packed dimers

- local constraint = every site belongs to a single dimer
 - correlated disordered state dubbed as "Coulomb phase": algebraic dimer-dimer correlations (D. Huse et al., 2003)

mapping from dimers to fictitious field (D. Huse et al., 2003)

→ Coulomb phase = zero flux state of fictitious field (divergence free)

Close-packed dimer model

$$\mathcal{H} = -\sum_{\square} (n_{\parallel} + n_{=} + n_{/\!\!/})$$
 $n_{\parallel} = 1 \text{ for } \square \text{ otherwise } 0, \text{ etc.}$

- low-T: columnar ordered phase translational and cubic symmetries are broken
- high-T limit: Coulomb phase with algebraic dimer-dimer correlations (D. Huse et al., 2003)
- unconventional phase transition compatible with tricritical universality class (F. Alet et al., 2006;
 D. Charrier and F. Alet. 2010)

Close-packed dimer model

Coulomb phase = zero flux state of fictitious field (D. Huse et al., 2003)

characterization by flux fluctuations

$$K^{-1} = \frac{\langle \phi^2 \rangle}{L} = \frac{1}{3L} \sum_{\mu=x,y,z} \langle \phi_{\mu}^2 \rangle$$
$$\phi = \int (-1)^{\mathbf{r}} \mathbf{n}(\mathbf{r}) \cdot d\mathbf{S}$$

F. Alet et al., 2006

phase transition is signaled by

- columnar order parameter below T_c
- flux fluctuations for Coulomb phase above T_c

Close-packed dimer model: variants

$$\mathcal{H} = -\sum_{\square} n_{\parallel}^{\mathrm{even}}$$
 Translational and cubic symmetries are both already broken.

- low-T: columnar "order"
 no further breaking of the symmetry of the system
- high-T: Coulomb phase with algebraic dimer-dimer correlations
 non-zero flux fluctuations
- phase transition compatible with 3D XY universality class (G. Chen et al., 2009)

Intermediate (hybrid)

localized moments + itinerant electrons

loop liquid and scalar chiral liquid

Spin-charge coupling

internal field from peculiar magnetic texture

exotic electronic and transport properties

effective magnetic interactions

reconstruction of magnetic structure

Loop liquid in kagome ice

- classical spin liquid state with 2up-1down local configuration (ferrimagnetic state)
 - → ↑spin loops + isolated ↓spin sites

- Itinerant electrons come into the 1spin loops to gain kinetic energy.
 - → free electrons in closed 1D loops (J. Jaubert *et al.*, 2012)
 - → resonating peaks in DOS and optical conductivity (H. Ishizuka and Y. Motome, 2013)

Loop liquid and crystals

Monte Carlo simulation for a Kondo lattice model with Ising spins (H. Ishizuka and Y. Motome, 2013)

Insulating kagome ice: scalar chiral liquid

- kagome ice with spin-ice type noncoplanar spin configuration: magnetically disordered but scalar chirality ordered $\sum_{\Delta} \langle \mathbf{S}_i \cdot (\mathbf{S}_j \times \mathbf{S}_k) \rangle \neq 0$
 - \rightarrow Charge gap opens at n=1/3 and 2/3 (H. Ishizuka and Y. Motome, 2013; 2014)
 - → quantum anomalous Hall effect (H. Ishizuka and Y. Motome, 2013)

Insulating kagome ice: scalar chiral liquid

- Monte Carlo simulation for a Kondo lattice model with spin-ice type noncoplanar Ising spins ([111] plane of the pyrochlore spin ice) (H. Ishizuka and Y. Motome, 2013)
 - \bullet 0 \leq $h\leq$ 0.3: kagome ice insulator
 - \rightarrow anomalous Hall effect with $\sigma_{xy} \sim +1$
 - $h \ge 0.3$: 3out insulator
 - \rightarrow anomalous Hall effect with $\sigma_{xy}\sim -1$
 - critical point at $h \sim 0.3?$

Scalar chiral liquid on a triangular lattice

- scalar chiral order with 4-sublattice noncoplanar spin texture (I. Martin and C. D. Batista, 2008; Y. Akagi and Y. Motome, 2010)
 - \rightarrow Chern insulator at n=1/4 and 3/4
 - quantum Hall effect
- thermal fluctuations
 - ⇒ scalar chiral liquid at nonzero T (Y. Kato et al., 2010)
- quantum fluctuations
 - ⇒ scalar chiral liquid at *T*=0?
 (Y. Akagi and Y. Motome, 2013;
 S. Jiang *et al.*, 2014)

I. Martin and C. D. Batista, 2008

Quantum spin liquids

3D Kitaev model

- local conserved quantity
- local constraint from 3D lattice structure
- emergent loops: finite-T spin-liquid transition

Kitaev model

S=1/2 quantum spin model on a 2D honeycomb lattice (A. Kitaev, 2006)

$$\mathcal{H} = -J_x \sum_{\langle ij \rangle_x} S_i^x S_j^x - J_y \sum_{\langle ij \rangle_y} S_i^y S_j^y - J_z \sum_{\langle ij \rangle_z} S_i^z S_j^z$$

local conserved quantity

$$W_p = \sigma_1^z \sigma_2^x \sigma_3^y \sigma_4^z \sigma_5^x \sigma_6^y$$

$$\checkmark [\mathcal{H}, W_p] = 0$$

$$\checkmark [W_p, W_p'] = 0 \text{ for } p \neq p'$$

$$\Psi_p^2 = 1$$

Eigenstates are labelled by Z_2 variables $\{W_p = \pm 1\}$

bond dependent interactions → frustration

Kitaev model: T=0 phase diagram

QSL ground states in the entire parameter region: gapless and gapped QSLs depending on the anisotropy

topological order, extremely short-range spin correlation, non-abelian anyons, quantum computation, ...

3D extension of the Kitaev model

3D hyperhoneycomb lattice (S. Mandal and N. Surendran, 2009)

$$\mathcal{H} = -J_x \sum_{\langle ij \rangle_x} S_i^x S_j^x - J_y \sum_{\langle ij \rangle_y} S_i^y S_j^y - J_z \sum_{\langle ij \rangle_z} S_i^z S_j^z$$

The model inherits the solvability.

exactly the same T=0 phase diagram

QSL ground states in 3D

experiment: new Iridates β-Li₂IrO₃ and γ-Li₂IrO₃ (T. Takayama *et al.*, 2014; K. A. Modic *et al.*, 2014)

Method

- The conventional quantum Monte Carlo (QMC) methods on the basis of the world-line technique do not work because of the negative-sign problem:
 - Lattices are bipartite, but the interactions are frustrated.
- Our solution (J. Nasu, M. Udagawa, and Y. Motome, 2014):

interacting S=1/2 spin models

non-interacting Majorana fermions coupled to thermally-fluctuating Z_2 variables

QMC free from negative-sign problem

Specific heat in the isotropic case

strong sign of phase transition at $T_c \sim 0.0052$ (and crossover at $T^* \sim 0.5$)

Separation of two energy scales

y bonds

Anomaly at T_c

entropy release in localized Majorana fermions

coherent growth of local conserved quantity W_p

$$\tilde{W} = \frac{1}{N_p} \sum_{p} \langle W_p \rangle$$

$$W_p = \prod_{r \in p} \eta_r$$

NB. \tilde{W} is not an order parameter, as it does not become zero above $T_{\rm c}$.

topological change in flipped W_p (discussed later)

Finite-T phase diagram

- All low-*T* SL states are separated from high-*T* para by the phase transition.
 - Both gapped and gapless spin liquids remains as stable phases at finite T.
 - no adiabatic connection to para
- \square T_c is maximized for the isotropic case.
 - Frustration stabilized spin liquids.
- perturbation from the limit of $J_z >> J_x, J_y$ (3D toric code limit)

$$T_c = 1.925(1) imes rac{7}{256} rac{J^6}{J_z^5}$$
 Monte Carlo estimate (later)

perturbation from the limit of $J_z << J_x, J_y$ (weakly coupled 1D chains)

$$T_c \propto rac{J_z^4}{J^3}$$

What is this phase transition?

- \bigcirc no anomalies in the local quantities, such as the conserved Z_2 variables W_p and nearest-neighbor spin-spin correlations
- topological transition?
 - controversy on the existence of quantum topological transition at a finite *T* (C. Castelnovo and C. Chamon, 2007; Z. Nussinov and G. Ortiz, 2008)
 - discussed in the anisotropic limit (= toric code)
- → What about our case?: close look into the anisotropic limit

Anisotropic limit of $J_z >> J_x, J_y$ in 2D (toric code)

$$|\uparrow \rangle = |\uparrow \uparrow \rangle$$

$$|\downarrow\downarrow\rangle = |\downarrow\downarrow\rangle$$

pseudo-spin_

$$|\tau^z| \Downarrow \rangle = -| \Downarrow \rangle$$

perturbation in terms of J_x, J_y

ring exchange-type interaction

- effective Ising-type model
 - \bullet eigenstates are labeled by $B_p = \pm 1$
 - QSL ground state with topological order
 - extremely short-range correlation
 - no phase transition at finite temperature

$$\mathcal{H}_{\text{eff}} = -J \sum_{p} B_{p} \quad J \propto \frac{J_{x}^{2} J_{y}^{2}}{J_{z}^{3}}$$
$$B_{p} = \tau_{p_{t}}^{z} \tau_{p_{b}}^{z} \tau_{p_{l}}^{y} \tau_{p_{r}}^{y}$$

$$[\mathcal{H}_{\text{eff}}, B_p] = [B_p, B_{p'}] = 0 \quad B_p^2 = 1$$

Anisotropic limit in 3D

hyperhoneycomb lattice

tetrahedron of B_p pyrochlore lattice of B_p

perturbation in terms of J_x, J_y

> ring exchange -type interaction

effective Ising-type model on a pyrochlore lattice with constraints

$$\mathcal{H}_{ ext{eff}} = -J_{ ext{eff}} \sum_p B_p \quad ; B_p = \pm 1, \ J_{ ext{eff}} = rac{7}{256} rac{J^6}{J_z^5} \ (J = J_x = J_y)$$
 S. Mandal and N. Surendran, 2009; arXiv:1101.3718

local constraints: $B_p B_p B_p B_p = 1$ for all tetrahedra + global constraints

(equivalent to 8-vertex model)

ground state: all $B_p = +1$

excited states: flipped B_p =-1 form closed loops to satisfy the local constraints

Results: Finite-T phase transition

continuous phase transition at T_c =1.921(1) x J_{eff}

Topological point of view

- The transition is hard to characterize in terms local variables, as it apparently accompanies no symmetry breaking.
 - \rightarrow characterization by loop degree of freedom (loops of flipped B_p)

Finite-T phase transition

Results: characterization by flux density

cf. flux density for close-packed classical dimer model (F. Alet et al., 2006)

finite-size scaling: $\langle \bar{\phi}^2 \rangle / L = L^{-z} f(L^{1/\nu} (T - T_c))$

 $T_c = 1.925(1), \ \nu = 0.60(5) \ [z = 1]$

consistent with the continuous transition at T_c 3D Ising universality class

NB. one-to-one correspondence to the 3D Ising model when omitting the global constraints

Topological viewpoint: back to the generic case

Loop operator (Wilson loop): $\mathcal{W}_C = \prod_{i \in C} \sigma_i^{l_i}$

$$\mathcal{W}_C = -\prod_{p \in S_C} W_p = -\prod_{r \in C} \eta_r \equiv -\mathcal{W}_C'$$

Extended loops : $\mathcal{W}_C = +1$ or -1

$$\longrightarrow \tilde{\mathcal{W}}_C = \langle \mathcal{W}'_C \rangle = 0$$

Short loops : $\mathcal{W}_C = +1 \implies \tilde{\mathcal{W}}_C = 1$

The loop operator behaves like an order parameter.

Discussion

- spin ice (frustrated classical-spin antiferromagnets): local constraint by competing interactions
 - \bullet exact local constraint only at T=0
 - \odot smearing out at finite $T \rightarrow$ no finite-T phase transition, just a crossover
- $\frac{1}{2}$ close-packed dimers: exact local constraint for all T (by hand)
 - unconventional phase transitions
 - zero flux state = columnar order of dimers
 - non-zero flux state = Coulomb phase
- $\stackrel{\checkmark}{\triangleright}$ 3D hyperhoneycomb Kitaev model: exact local constraint on local conserved quantities W_p for all T
 - phase transition between quantum spin liquid and paramagnet = proliferation of loops consisting of flipped conserved quantities W_p
 - \bullet The exact local constraint comes from S=1/2 algebra.

Prospects

- further characterization of the phase transition in the quantum case
 - hidden order? topological order? weak 1st order?
 - any difference between gapped and gapless regions?
 - how universal? specific to Kitaev models?
 - cf. U(1) case (quantum spin ice): just a crossover? (Y. Kato and S. Onoda, preprint)
- any classical correspondence?
 - transition between Coulomb liquid and paramagnet
 - quantumness is necessary?
- further interesting physics by transcription to mobile electrons
 - quantum spin liquids + mobile electrons = ?