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Objective of this talk

quantum spin liquids = new state of matter in magnets (Mott insulators)
no long-range order down to 7=0 due to quantum fluctuations

Q@ fundamental questions:

What is their intrinsic and unique nature?

Where are they realized? In which

compounds/models?

How to characterize them? How to distinguish them from paramagnets?

@ toward the answers 1o

- to review the present status from t

hese questions:

ne author’s biased view

- to present our recent findings on spin liquids

- to show some future

directions



Message of this talk

local constraint emergent loop/flux

A =>

» topological nature
» exotic electronic and transport properties
» unconventional phase transitions




Plan of this talk

& What is spin liquid?
® classical and quantum theoretical examples
® experimental candidates: spin ice, k-ET salts, Pr2lr207, ...

& Classical spin liquids

® spin ice and close-packed dimers
® local constraint, Coulomb phase, unconventional phase transitions

& Intermediate (hybrid)

® spin-charge coupling: transfer of peculiar spin textures to mobile electrons
® loop liquid and scalar chiral liquid

€ Quantum spin liquids

® 3D Kitaev model: phase transition from paramagnet to spin liquid
® topological aspect of the transition: proliferation of loops

& Discussion and prospects



What is spin liquid?



Classical example

PHYSICAL REVIEW VOLUME 102, NUMBER 4 MAY 15, 1956

Ordering and Antiferromagnetism in Ferrites

P. W. ANDERSON
Bell Telephone Laboratories, Murray Hill, New Jersey

(Received January 9, 1956)

Verwey transition in magnetite FezO4

® Fe3*/Fe®* on a pyrochlore lattice
® Fe3*=1Tspin, Fe?*=]spin

= pyrochlore Ising antiferromagnet

@ strong geometrical frustration

® 2up-2down configuration is favored
in each tetrahedron.

® no long-range order down to 7=0:
macroscopic degeneracy (for
nearest-neighbor interactions only)




Classical (but modern) example

spin ice model (nearest-neighbor
interactions only)

® Tspin=“in", lspin=“out”
= noncoplanar Ising spins on the
pyrochlore lattice

® strong geometrical frustration for
ferromagnetic interactions

® 2in-2out configuration is favored in
each tetrahedron.

® no long-range order down to T=0:
macroscopic degeneracy

O magnetic analog of water ice

® proton configurations = Ising spins
with 2-in 2-out configurations

S. T. Bramwell and M. J. P Gingras, 2001



Experiment on spin ice

O rare-earth pyrochlore oxides: residual entropy related to the
Ho2Ti2O7, Dy2Ti2O7, HO2SNn207, ... macroscopic degeneracy (A. P.
Ramirez et al., 1999)

no long-range order down to ~mK:
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Quantum example (1)

resonating valence bond (RVB) (P. W. Anderson, 1973)

WRryB) = Z singlet covering of the lattice)
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Experimental candidate?

organic conductor k-(ET)2Cu2(CN)s: S=1/2 spins on a triangular layers
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Quantum example (2)

Kitaev spin liquids: quantum spin liquids
In the exact ground states

@ original 2D honeycomb Kitaev model
(A. Kitaev, 2006)

- exactly soluble

- both gapped and gapless spin liquids

- honzero correlations only for nearest-
neighbors (G. Baskaran et al., 2007)

® extension to 3D hyperhoneycomb lattice
(S. Mandal and N. Surendran, 2009)

- also exactly soluble: the same ground-
state phase diagram

@ extensions to other lattice structures
star lattices, hyperoctagon, etc.




Experimental relevance?

An effective interaction for partially-filled tog levels under strong spin-orbit
coupling may become Kitaev type (G. Jackeli and G. Khaliullin, 2009).

» Jer = 1/2
ns e Ry . " :

isospin up spin up, |,=0 spin down, | =1
It

Jert=1/2 isospin
jeff — 3/2

= experimental exploration of Kitaev spin liquids

quasi-2D honeycomb compounds, NazxlrOs, Li2lrOs, ...
pyrochlore Ir2O4, hyperkagome NaulrsOs,
hyperhoneycomb and harmonic honeycomb Li2lrQOs, ...

no strong candidate yet (Most of them do show long-range ordering,
presumably because of other interactions.)



Hybrid example

PralroO7: spin ice (Pr 4f moments) + itinerant electrons (Ir 5d electrons)
® Peculiar spin texture strongly affects the electronic and transport properties.

anomalous Hall effect dependent on

30

the magnetic field direction

1.2

anisotropy

S. Nakatsuii et al., 2006

spontaneous anomalous Hall effect
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Classical spin liquids

spin ice and close-packed dimers



Spin ice

local constraint = 2-in 2-out configuration in every tetrahedron (ice rule)

(equivalent to six-vertex model)
® macroscopic degeneracy: residual Pauling entropy ~30% of In2

= correlated disordered state dubbed as “Coulomb phase” (D. Huse et al.,
2003; S. V. Isakov et al., 2004; C. L. Henley, 2005)

@ ice rule = zero divergence condition
= fictitious electromagnetic field, algebraic dipolar spin-spin correlations

mapping from local spin configurations to self-avoiding closed loops




Spin ice model

Any single spin flip makes 3-in 1-out/1-in 3-out pairs (monopoles), whose
energy cost is O(J): strongly suppressed at low T<<J

Global spin flips along the closed loops do not cost energy (zero modes),
leaving the system within the 2-in 2-out manifold.

@ efficient Monte Carlo simulation by using the
global loop flips (R. G. Melko and M. J. P. Gingras, 2004)

no phase transition, just a crossover

for the model with n.n. interactions only




Close-packed dimers

local constraint = every site belongs to a single dimer —

= correlated disordered state dubbed as “Coulomb phase”:

algebraic dimer-dimer correlations (D. Huse et al., 2003)

C
mapping from dimers to fictitious field (D. Huse et al., 2003) -
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= Coulomb phase = zero flux state of fictitious field (divergence free)




Close-packed dimer model

H==>_gln+n=+ny)

n = 1 for L1 otherwise 0, etc.

e

® low-T: columnar ordered phase
translational and cubic symmetries
are broken

@ high-T limit: Coulomb phase with
algebraic dimer-dimer correlations
(D. Huse et al., 2003)

@® unconventional phase transition
compatible with tricritical

4 1.05

4 0.85

4 0.65

.........

universality class (F. Alet et al., 2006;
D. Charrier and F. Alet. 2010)




Close-packed dimer model
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Close-packed dimer model: variants

H = — Z neven Translational and cubic
- | symmetries are both
L] already broken.

® low-T: columnar “order”

no further breaking of the symmetry of
the system

@ high-T: Coulomb phase with algebraic
dimer-dimer correlations

non-zero flux fluctuations

® phase transition compatible with 3D XY
universality class (G. Chen et al., 2009)

specific heat C,(T)/N
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Intermediate (hybrid)

localized moments + itinerant electrons

loop liquid and scalar chiral liquid



Spin-charge coupling

internal field from peculiar magnetic texture
= cxotic electronic and transport properties

effective magnetic interactions
= reconstruction of magnetic structure



Loop liquid in kagome ice

classical spin liquid state with

2up-1down local configuration
(ferrimagnetic state)

= Tspin loops + isolated |spin sites

Itinerant electrons come into the

Tspin loops to gain kinetic energy.

= free electrons in closed 1D loops
(J. Jaubert et al., 2012)

= resonating peaks in DOS and
optical conductivity (H. Ishizuka
and Y. Motome, 2013)

£
S

1

0.9

0.0 0

! ! ! ! !
i 02 G UK UFS (N6

I

—d ek

DO = ONCOO OO

4.0



Loop liquid and crystals

Monte Carlo simulation for a Kondo lattice model with Ising spins
(H. Ishizuka and Y. Motome, 2013)
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Insulating kagome ice: scalar chiral liquid

kagome ice with spin-ice type noncoplanar spin configuration:

magnetically disordered but scalar chirality ordered ) (S - (S; x Sg)) # 0
= Charge gap opens at n=1/3 and 2/3 (H. Ishizuka and Y. Motome, 2013; 2014)
= quantum anomalous Hall effect (H. Ishizuka and Y. Motome, 2013)




Insulating kagome ice: scalar chiral liquid

Monte Carlo simulation for a Kondo

lattice model with spin-ice type
noncoplanar Ising spins ([111] plane

of the pyrochlore spin ice)
(H. Ishizuka and Y. Motome, 2013)

® 0<h<0.3: kagome ice insulator
= anomalous Hall effect with 6,,~+1

® 7>0.3: 3out insulator
= anomalous Hall effect with c,~-1

@ critical point at #~0.37?
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Scalar chiral liquid on a triangular lattice

scalar chiral order with 4-sublattice 2Rl p
noncoplanar spin texture (. Martin - ‘“V ,\“*Q
and C. D. Batista, 2008; Y. Akagi < q\k Vk‘o
and Y. Motome, 2010) — \“o "\ A

= Chern insulator at n=1/4 and 3/4 g

figure is taken from \ 4
- quantum Hall effect G-W. Chern and C. D. Batista, 2012 \

thermal fluctuations

= scalar chiral liquid at nonzero T
(Y. Kato et al., 2010)
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(Y. Akagi and Y. Motome, 2013;
S. Jiang et al., 2014)
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Quantum spin liquids
3D Kitaev model

* local conserved quantity
* local constraint from 3D lattice structure
* emergent loops: finite-T spin-liquid transition



Kitaev model

S=1/2 quantum spin model on a 2D honeycomb lattice (A. Kitaev, 2006)

H=—J, > 8857 —J, 3 SYsY 0. Y 575

<ij>q <ij >y <ij>

—J,S7S?

local conserved quantity

— 010903040504 |

v [H,W,]| =0
v Wy, W] =0 for p#p
v WZ=1

—J, 5V

Eigenstates are labelled

by Z> variables { W, = +1}

bond dependent interactions = frustration




Kitaev model: T=0 phase diagram

A A,
= AN/ "

QSL ground states in the entire parameter region:
gapless and gapped QSLs depending on the anisotropy

topological order, extremely short-range spin correlation, non-abelian anyons, quantum computation, ...

A. Kitaev, 2006; G. Baskaran, S. Mandal, and R. Shanker, 2007; C. Castelnovo and C. Chamon, 2007; Z. Nussinov and G. Ortiz, 2008, ...



3D extension of the Kitaev model

3D hyperhoneycomb lattice (S. Mandal and N. Surendran, 2009)
H=—J; Z ngs;j —Jy Z S;J?JS;J —J> Z S@'ZS;

<ij>q P>y <ij>

The model inherits the solvability.

J=1, J=J=0

gapless

\/ A4, \ gapped
L \\
/
B
2,

A, A,
= AN/ 7

J=J =0 J=J,=0

exactly the same T=0 phase diagram

: experiment: new Iridates 3-Li2lrOs and y-Li2lrOs
QSL ground states in 3D (T. Takayama et al., 2014: K. A. Modic et al., 2014)



Method

The conventional quantum Monte Carlo (QMC) methods on the basis of the

world-line technique do not work because of the negative-sign problem:
® Lattices are bipartite, but the interactions are frustrated.

Our solution (J. Nasu, M. Udagawa, and Y. Motome, 2014):

interacting S=1/2 spin models

Jordan-Wigner transformation
Majorana fermion representation

QMC free from negative-sign problem



Specific heat in the isotropic case
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Separation of two energy scales

S/In2

0.0

10°

104 10° 102 10"  10° 10°
T

S=1/2 spin = two Majorana fermions

S < C; : free Majorana fermions
)

C; . Z2 variables nr

H=iJ, Z CwCh —1J,, Z CbCuw

x bonds y bonds

+Jz 5b E’w CpCuw
2 : e
z bonds '1777°

itinerant Majorana fermions C;

independent of system sizes and anisotropy
= crossover at T*

localized Majorana fermions C;

dependent of system sizes and anisotropy
= phase transition at T¢



Anomaly at 7.

entropy release in
localized Majorana fermions

S/In2

coherent growth of
local conserved quantity W,

NB. W is not an order
parameter, as it does not
become zero above T..

0.0

105 10* 108 102 10" 10° 10° topological change in flipped Wp
T (discussed later)




Finite-T phase diagram
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All low-T SL states are separated from

high-T para by the phase transition.

@ Both gapped and gapless spin liquids
remains as stable phases at finite T.

@ no adiabatic connection to para

Tc is maximized for the isotropic case.
® Frustration stabilized spin liquids.

® perturbation from the limit of J,>> J;, J,
(3D toric code limit)

6
T, = 1.925(1) x L

256 J5

Monte Carlo
estimate (later)

® perturbation from the limit of J, << J., J,
(weakly coupled 1D chains)



What is this phase transition?

O no anomalies in the local quantities, such as the conserved Z> variables W,
and nearest-neighbor spin-spin correlations

topological transition?

 controversy on the existence of quantum topological transition at a finite T
(C. Castelnovo and C. Chamon, 2007; Z. Nussinov and G. Ortiz, 2008)

= discussed in the anisotropic limit (= toric code)

= What about our case?: close look into the anisotropic limit




Anisotropic limit of J,>> J,, J, in 2D (toric code)

J. pseudo-spin
dimer M =+
=) ) =1 W)

perturbation
in terms of J,, J,

ring exchange-type

Interaction
. . _ J2J2
eﬁgctlve Ising-type model Hog = _JZ B, J xjgy
® eigenstates are labeled by Bp=+1 > :
® QSL ground state with topological order By =1,7,TpTp

® extremely short-range correlation
® NO phase transition at finite temperature Hest, Bp) = [Bp, By] =0 B2 =1

A. Kitaev, 2006



Anisotropic limit in 3D

hyperhoneycomb lattice tetrahedron of By pyrochlore lattice of By

s [y /- dimer pseudo-spin

perturbation
in terms of J, J,

ring exchange
-type interaction

effective Ising-type model on a pyrochlore lattice with constraints
7 J6 S. Mandal and N. Surendran, 2009; arXiv:1101.3718

Het = —Jett 3 Bp ; By==%1, Jeg = o= (J = Jo = J)
p

local constraints: B, B, B, B, = 1 for all tetrahedra + global constraints

(equivalent to 8-vertex model)

ground state: all B,=+1

excited states: flipped B,=-1 form closed loops to satisfy the local constraints



Results: Finite-T phase transition
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Topological point of view

accompanies no symmetry breaking.

The transition is hard to characterize in terms local variables, as it apparently

=» characterization by loop degree of freedom (loops of flipped By)

Zero temperature

Low temperature

Short loops

Spin liquid

High temperature

Extended
loops

Short

Paramagnet

Finite-T phase transition



Results: characterization by flux density

(¢%)/L

((¢%)/L)/L~"

path integral primitive vector

non-zero flux along a loop of pyrochlore

paramagnet

cf. flux density for close-packed classical
dimer model (F. Alet et al., 2000)
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030 | ézi *i;;ii . m [ = 1.925(1), V= 0.60(5) [Z = 1]
025 | oL .
0.20 | _ﬂ_,,i“ﬁ
15 F o - . . e
ol e consistent with the continuous transition at T
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when omitting the global constraints



Topological viewpoint: back to the generic case

Loop operator (Wilson loop): We = [ [ o /[T

. ieC i TR - Sy
/1, T / 05+ % e me a=0.75 ]
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. / Q ) i;:
: Wp — —1] 0.3 g g Q;i
. N D
1

=W, . : Thermal average
O Tt Y A L / |
zg :: <I>§ WC T <WC>
0.4 e o -
Extended loops: Ws = +1 or — 1 :
We = (We) =0 :
Short loops : W¢e = +1 We =1

The loop operator behaves like an order parameter.



Discussion

@ spin ice (frustrated classical-spin antiferromagnets): local constraint
by competing interactions
@ exact local constraint only at 7=0
® smearing out at finite T — no finite-T phase transition, just a crossover

& close-packed dimers: exact local constraint for all T (by hand)

@® unconventional phase transitions
- zero flux state = columnar order of dimers
- non-zero flux state = Coulomb phase

€ 3D hyperhoneycomb Kitaev model: exact local constraint on local
conserved quantities Wy for all T

® phase transition between quantum spin liquid and paramagnet =
proliferation of loops consisting of flipped conserved quantities W,

® The exact local constraint comes from S=1/2 algebra.



Prospects

O further characterization of the phase transition in the quantum case
- hidden order? topological order? weak 1st order?
- any difference between gapped and gapless regions?
- how universal? specific to Kitaev models?
cf. U(1) case (Quantum spin ice): just a crossover? (Y. Kato and S. Onoda, preprint)

O any classical correspondence?
- transition between Coulomb liquid and paramagnet
* quantumness is necessary?

O further interesting physics by transcription to mobile electrons
- quantum spin liquids + mobile electrons = ?



