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Objective of this talk

quantum spin liquids = new state of matter in magnets (Mott insulators)

no long-range order down to T=0 due to quantum fluctuations


fundamental questions: 
What is their intrinsic and unique nature?


Where are they realized? In which compounds/models?

How to characterize them? How to distinguish them from paramagnets?


toward the answers to these questions: 
- to review the present status from the author’s biased view


- to present our recent findings on spin liquids

- to show some future directions



Message of this talk

local constraint emergent loop/flux

‣ topological nature 
‣ exotic electronic and transport properties 
‣ unconventional phase transitions



Plan of this talk

What is spin liquid? 
๏ classical and quantum theoretical examples

๏ experimental candidates: spin ice, κ-ET salts, Pr2Ir2O7, ...

Classical spin liquids 
๏ spin ice and close-packed dimers

๏ local constraint, Coulomb phase, unconventional phase transitions

Intermediate (hybrid) 
๏ spin-charge coupling: transfer of peculiar spin textures to mobile electrons

๏ loop liquid and scalar chiral liquid

Quantum spin liquids 
๏ 3D Kitaev model: phase transition from paramagnet to spin liquid

๏ topological aspect of the transition: proliferation of loops

Discussion and prospects



What is spin liquid?



Classical example

Verwey transition in magnetite Fe3O4


๏ Fe3+/Fe2+ on a pyrochlore lattice

๏ Fe3+=↑spin, Fe2+=↓spin


➡ pyrochlore Ising antiferromagnet

๏ strong geometrical frustration

๏ 2up-2down configuration is favored 

in each tetrahedron.

๏ no long-range order down to T=0: 

macroscopic degeneracy (for 
nearest-neighbor interactions only)



Classical (but modern) example

spin ice model (nearest-neighbor 
interactions only)


๏ ↑spin=“in”, ↓spin=“out”

➡ noncoplanar Ising spins on the 

pyrochlore lattice


๏ strong geometrical frustration for 
ferromagnetic interactions


๏ 2in-2out configuration is favored in 
each tetrahedron.


๏ no long-range order down to T=0: 
macroscopic degeneracy


magnetic analog of water ice

๏ proton configurations = Ising spins 

with 2-in 2-out configurations

Topical Review R1279

Figure 1. The ⟨111⟩ Ising pyrochlore lattice. The lower left ‘downward’ tetrahedron of the
pyrochlore lattice shows Ising spins as arrows. Each spin axis is along the local ⟨111⟩ quantization
axis, which goes from one site to the middle of the opposing triangular face (as shown by the
discs) and meets with the three other ⟨111⟩ axes in the middle of the tetrahedron. For clarity, black
and white circles on the lattice points denote other spins. White represents a spin pointing into
a downward tetrahedron while black has the opposite meaning. The entire lattice is shown in an
ice rule state (two black and two white sites for every tetrahedron). The hexagon (thick grey line)
shows a minimal size loop move, which corresponds to reversing all colours (spins) on the loop to
produce a new ice rule state.

very closely analogous to an entirely different, yet very common frustrated condensed matter
system—namely water ice [10, 12]. In the low temperature–low pressure phase of water ice
(the so-called ‘hexagonal ice’, phase Ih), the oxygen atoms are arranged on a hexagonal lattice,
each oxygen having four nearest neighbours. Bernal and Fowler [25] and Pauling [26] were
the first to propose that the hydrogen atoms (protons) within the H2O lattice are not arranged
periodically, but are disordered. These hydrogen atoms on the O–O bonds are not positioned
at the mid-point between the two oxygen atoms, but rather each proton is (covalently) bonded
‘near’ one oxygen and (hydrogen bonded) ‘far’ from the other such that the water solid consists
of hydrogen bonded H2O molecules (see figure 2). In the Pauling model, ice Ih is established
when the whole system is arranged according to the two ice rules:

(i) Precisely one hydrogen atom is on each proton bond that links two nearest neighbour
oxygen atoms.

(ii) Precisely two hydrogen atoms are near each oxygen atom (spin in) and two are far from
them (spin out; see figure 2).

A consequence of this structure, and the subsequent ice rules, is that there is no single unique
lowest energy state. Indeed, there exist an infinitely large number of degenerate low energy
states that fulfil the ice rules and, if the degeneracy was truly exact, would manifest themselves
as a residual entropy at zero temperature (called the zero-point entropy). This set of all
configurations that obey the ice rules and contribute to the degeneracy is called the ‘ice rules
manifold’. Pauling [26, 27] estimated theoretically the residual entropy per hydrogen atom as
S ≈ kB/2 ln(3/2), where kB is Boltzmann’s constant. To make connection with experimental

S. T. Bramwell and M. J. P Gingras, 2001

confirmed by neutron diffraction experiments
(7, 8).

Magnetic systems offer themselves as the
ideal benchmark for generic concepts pertain-
ing to collective phenomena in nature. This is
due in part to the availability of a large variety
of diverse magnetic materials that can be cho-
sen to approximate simple theoretical “toy
models” of collective behavior and, in part, to
their ease of study by a battery of experimental
techniques. Over the last 50 years, experimen-
talists have characterized new classes of frus-
trated magnetic behavior, and theoreticians
have been motivated by the broad conceptual
applicability of magnetic models to investigate
simple frustrated spin systems (9–11). These
include “energetic” generalizations of the ice
model that display a wealth of interesting ther-
modynamic phenomena in close resemblance
with those observed in real ice (12, 13). How-
ever, although theoretical studies of ice-like
phenomena in frustrated ice models have long
flourished, very few, if any, real magnets could
be found to display a close thermodynamic
resemblance to common ice. This remained for
some time a disappointing situation where close
contact between theoretical studies on magnetic
ice models and real systems was lacking, a
somewhat untenable predicament in science
where one is generally aiming at testing theo-
retical concepts against experiments and vice
versa.

Anderson had noticed in 1956 the formal
analogy that exists between the statistical me-
chanics of cation ordering on the cubic B-site
lattice in “inverse” spinel materials and the
statistical mechanics of antiferromagnetically
coupled two-state Ising magnetic moments on
the same lattice (referred to here as the pyro-

chlore lattice, Fig. 1C) (14). Both systems were
shown to map exactly onto Pauling’s model of
proton disorder in ice. The realization of Ander-
son’s model in an antiferromagnetic material
would require spins to point along or antiparal-
lel to a global z-axis direction. However, there
is no reason to prefer the z over the x or the y
direction in a lattice with global cubic symme-
try, and this renders the global antiferromag-
netic Ising model unrealistic with no direct
relation to any real magnetic material. The ex-
perimental situation changed in 1997, when it
was noticed by Harris et al. (15) that a model of
ferromagnetism on the pyrochlore lattice would
exactly map onto the ice model so long as each
Ising-like magnetic moment was constrained to
point along the axis joining the centers of the
two tetrahedra to which it belongs (Fig. 1C).
This was a surprising observation, because na-
ı̈vely one would not expect frustration in a
ferromagnet. However, the ferromagnetic mod-
el is compatible with cubic symmetry and was
observed to be approximated by the apparently
ferromagnetic pyrochlore material Ho2Ti2O7

(15). This constituted the first simple physical
realization of a real three-dimensional magnetic
analog of common ice, and the name “spin ice”
was coined to emphasize this analogy.

Experiments on spin ice have mirrored,
using modern sophistication, those originally
conducted on water ice. However, the spin
ice materials lend themselves more readily to
experiment than does water ice and more
closely approximate tractable theoretical
models. This has led to much recent interest
devoted to the problem of zero-point entropy
and to the study of the broad consequences of
geometric frustration. We review the recent
experimental and theoretical developments in

the study of spin ice materials, and discuss
what are possible new and exciting avenues
of research in this problem.

Discovery of Spin Ice
In a flux-grown crystal of Ho2Ti2O7 (16) (Fig.
2) the octahedral habit reflects the cubic sym-
metry of the pyrochlore structure; the amber
color and strong reflectivity are indicative of a
band gap near the visible/ultraviolet boundary
(3.2 eV). In Ho2Ti2O7, the Ho3! ions occupy a
pyrochlore lattice of corner-linked tetrahedra
(illustrated in Fig. 1C). Magnetism arises from
the Ho3! ions, as Ti4! is nonmagnetic. Ho3!

has a particularly large magnetic moment of
approximately 10"B that persists to the lowest
temperatures and makes the crystals sufficiently
paramagnetic to stick to a permanent magnet
even at room temperature (Fig. 2). The large,
temperature-independent moment is ensured by
the local crystallographic environment of Ho3!

in the pyrochlore structure (17–21). Each tetra-
hedron of Ho3! ions has an oxide ion at its
center, so two of these oxide ions lie close to
each Ho3! along the #111$ crystallographic axis
that connects the center of the tetrahedron to its
vertex. The anisotropic crystallographic envi-
ronment changes the quantum ground state of
Ho3! such that its magnetic moment vector has
its maximum possible magnitude and lies par-
allel to the local #111$ axis. In the language of
quantum mechanics the 5I8 free ion state is split
by the local trigonal crystal field such that the
ground state is an almost pure J, MJ$ % 8,
&8$ doublet with #111$ quantization axis. The
first excited state lies several hundreds of
Kelvin above the ground state as revealed by
inelastic neutron-scattering measurements (21).
At temperatures on the order of 10 K or below,

Fig. 1. (A) Local proton arrangement in water
ice, showing oxide ions (large white circles) and
protons (hydrogen ions, small black circles).
Each oxide is tetrahedrally coordinated with
four other oxides, with two near covalently
bonded protons, and two are further hydrogen-
bonded protons. The low-energy configurations
obey the so-called “ice rules” (5), where each
oxide has two “near” and two “far” protons. (B)
Same as in (A), but where now the position of
the protons are represented by displacement
vectors (arrows) located at the midpoints of
the oxide-oxide lines of contact. The ice rules in
(A) translates into a two-in, two-out configu-
ration of the displacement vectors. (C) Pyro-
chlore lattice of corner-sharing tetrahedra, as occupied by the magnetic
rare-earth ions in the spin ice materials Ho2Ti2O7 and Dy2Ti2O7. The
magnetic Ising moments occupy the corners of the tetrahedra, as shown
on the lower left “downward” tetrahedron of the lattice (arrows). The
spins here are the equivalents of the proton displacement vectors in (B).
Each spin axis is along the local #111$ quantization axis, which goes from
one site to the middle of the opposing triangular face (as shown by the
disks) and meets with the three other #111$ axes in the middle of the
tetrahedron. In the spin ice materials the two-in, two-out condition
arises from the combined effect of magnetic coupling and anisotropy. For
clarity, other spins on the lattice are denoted by black and white circles,
where white represents a spin pointing into a downward tetrahedron;
black is the opposite. The entire lattice is shown in an ice-rules state (two

black and two white sites for every tetrahedron). The hexagon (thick gray
line) relates to the discussion in the section on open issues and avenues
for future advances. It shows the smallest possible loop move involving
multiple spins, and corresponds to reversing all colors (spins) on the loop
to produce a new ice-rules state. These extended type of excitations or
processes are the ones that allow the system to explore the quasi-
degenerate ice rule manifold at low temperature. Common water ice at
atmospheric pressure, ice Ih, has a hexagonal structure, whereas here, the
magnetic lattice has cubic symmetry. Strictly speaking, the Ising pyro-
chlore problem is equivalent to cubic ice, and not the hexagonal phase. Yet,
this does not modify the ice-rule analogy (or mapping) or the connection
between the statistical mechanics of the local proton coordination in water
ice and the low-temperature spin structure of the spin ice materials.
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Experiment on spin ice

rare-earth pyrochlore oxides: 
Ho2Ti2O7, Dy2Ti2O7, Ho2Sn2O7, ...

no long-range order down to ~mK: 
only diffusive features in neutron 
scattering (T. Fennell et al., 2009)

!

!

!

!

!

!

residual entropy related to the 
macroscopic degeneracy (A. P. 
Ramirez et al., 1999)

© 1999 Macmillan Magazines Ltd
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In Fig. 2a inset we show xdc(T ) from 2 to 20 K, illustrating
the small ferromagnetic, FM, intercept, corresponding to a Weiss
constant vw < 0:5 K, where 1=x ¼ const:=ðT 2 vwÞ. The C(T)/T data,
which extend down to lower temperatures (Fig. 2a), show a much
broader peak than usually seen for an antiferromagnetic, AF,
transition. The lack of a clear ordering feature in C(T) is consistent
with a picture where the spins ‘freeze’ in a random configuration as
a result of geometrical frustration. The absence of magnetic order in
a system with no structural disorder is by itself unusual. The first
reported example of such a system is another pyrochlore com-
pound, Y2Mo2O7, where despite the absence of any measured
structural disorder, long-range magnetic order is not observed10—
instead, spin glass freezing among Heisenberg-like Mo4+ ions sets in
at T < 0:3vw < 15 K. But existing susceptibility measurements11 on
Dy2Ti2O7 do not show the sharp cusp expected for a spin glass, but
rather a broad feature peaked at T < 0:7 K, indicating a different
type of frozen spin state for this Ising-type spin system.

The most surprising aspect of our data, however, is found when
integrating C(T)/T from 0.2 to 12 K to obtain the total spin entropy
(Fig. 2b). This temperature range incorporates all appreciable
observed contributions to C(T)/T. We obtain DSð0:2; 12Þ ¼
ð0:67 6 0:04ÞRln2, that is, a shortfall of ,1/3 of the total spin
entropy. It has been previously noted, based on measurements of
C(T) only up to 1.5 K and a numerical extrapolation to higher
temperatures, that the peak height is consistent with reduced
entropy11: but it was suggested that the extrapolation was too
simple, and that the missing entropy would be found for
T . 1:5 K. We see no evidence for missing entropy for T . 1:5 K

and, although it is possible that additional entropy is developed
below 0.2 K, we think it unlikely for the following reasons. First,
C(T)/T drops by almost two orders of magnitude from 1 to 0.5 K
indicating near-complete spin freezing, and second, there is no
structural reason to assume a bimodal distribution of entropy-loss
processes, for example, due to two different exchange interactions.
In addition, our Monte Carlo simulation reproduces the observed
C(T)/T peak height and shape (Fig. 2a). (The Monte Carlo simu-
lation was performed on a sample of size 8 3 8 3 8 tetrahedra
(2,048 spins) and ,104 Monte Carlo steps per spin. The spin–spin
interaction was assumed to be purely dipole–dipole but with a
g-factor reduced by 25% from the J ¼ 15=2 Lande value. This is
most likely the result of the compensating effect of a small
admixture of superexchange interaction. Justification for this,
and further details, will be given elsewhere (A.P.R. et al., manu-
script in preparation).

The comparison of the measured entropy with the prediction of
Pauling for ice Ih, Rðln2 2 ð1=2Þlnð3=2ÞÞ, is shown in Fig. 2b. To test
the idea that there exists a contribution to ground-state entropy
from a different energetically unfavoured state, we applied a small
magnetic field, H, to reduce the energy barriers for spin reorienta-
tion. As shown in Fig 2a and b, an applied field of 0.5 T results not
only in a shift of C(T)/T to higher temperatures, but also in an
increase of the integrated entropy, DS(0.2, 12), from 0.67Rln2 to
0.85Rln2. The increase of temperature where C(T)/T is appreciable
is expected, because Zeeman splitting increases with field. The
increase of total DS, however, underscores the existence of addi-
tional entropy beyond that contained in the H ¼ 0 peak. The
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Figure 2 Specific heat and entropy of the spin-ice compound Dy2Ti2O7

showing agreement with Pauling’s prediction for the entropy of water ice Ih,

Rðln2 2 ð1=2Þlnð3=2ÞÞ. a, Specific heat divided by temperature of Dy2Ti2O7 in H ¼ 0

and 0.5T. The dashed line is a Monte Carlo simulation of the zero-field C(T)/T, as

discussed in the text. b, Entropy of Dy2Ti2O7 found by integrating C/T from 0.2 to

14K. The value of Rðln2 2 ð1=2Þlnð3=2ÞÞ is that found for ice Ih and Rln2 is the full spin

entropy. Inset, susceptibility (M/H) of Dy2Ti2O7 in a field of 0.02T.
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transition temperatures with field; the right inset shows the results of finite-field

Monte Carlo (MC) simulations of C/T.
incident neutron polarization, the SF and NSF
cross sections yield information on Syy(Q) and
Szz(Q), respectively. We used a single crystal of
Ho2Ti2O7 to map diffuse scattering in the h, h, l
plane. Previous unpolarized experiments (20, 22)
have measured the sum of the SF and NSF
scattering, but in this orientation only the SF
scattering would be expected to contain pinch
points (26).

Our results (Fig. 2A) show that at temperature
(T) = 1.7 K there are pinch points in the SF cross
section at the Brillouin zone centres (0, 0, 2),
(1, 1, 1), and (2, 2, 2) (Fig. 2A) but not in the
NSF channel (Fig. 2B). The total scattering (SF +
NSF) reveals the pinch points only very weakly
(Fig. 2C) because the NSF component dominates
near the zone center. This is explicitly illustrated
with cuts across the zone center showing that the
strong peak at the pinch point in the SF channel is
only weakly visible in the total (Fig. 3B). The
total scattering (Figs. 2C and 3B) can be com-
pared with the previous observations and calcu-
lations (20, 22), in which no pinch points were
detected. The use of polarized neutrons extracts
the pinch-point scattering from the total scattering,
and the previous difficulty in resolving the pinch
point is clearly explained.

The projective equivalence of the dipolar and
near-neighbor spin ice models (10) suggests that
above a temperature scale set by the r−5 cor-
rections, the scattering from Ho2Ti2O7 should

become equivalent to that of the near-neighbor
model. T = 1.7 K should be sufficient to test
this prediction because it is close to the temper-
ature of the peak in the electronic heat capacity
that arises from the spin ice correlations [1.9 K
(20)]. In our simulations of the near-neighbor
spin ice model (Fig. 2, D to F), the experimen-
tal SF scattering (Fig. 2A) appears to be very
well described by the near-neighbor model,
whereas the NSF scattering is not reproduced by
the theory. However, we have discovered that
S(Q)experiment/S(Q)theory is approximately the same
function f (Q) for both channels. Thus, because
the theoretical NSF scattering function is approx-
imately constant, we find f ðQÞ ≈ SðQÞexperiment

NSF .
This function may be described as reaching a
maximum at the zone boundary and a finite
minimum in the zone center. Using the above
estimate of f (Q), the comparison of the quan-
tity SðQÞexperiment

SF =f ðQÞ with SðQÞtheorySF is con-
siderably more successful. Differences are less
than 5% throughout most of the scattering
map (26).

Cuts through the pinch point at (0, 0, 2)
at 1.7 K (Fig. 3, A and B) show that it has the
form of a low sharp saddle in the intensity. In
order to better resolve the line shape of the pinch
point, we performed an analogous polarized
neutron experiment on a higher-resolution spec-
trometer. To compare with theory, we used an
approximation to an analytic expression (13, 27).

In the vicinity of the (0, 0, 2) pinch point, this
becomes

Syyðqh, qk,qlÞº
q2l−2 þ x−2ice

q2l−2 þ q2h þ q2k þ x−2ice
ð1Þ

Here, xice is a correlation length for the ice rules
that removes the singularity at the pinch point
(27). The high-resolution data of Fig. 3C can be
described by this form, with a correlation length
xice ≈ 182 T 65 Å, representing a correlation vol-
ume of about 14,000 spin tetrahedra. The corre-
lation length has a temperature variation that is
consistent with an essential singularity ~exp(B/T),
with B = 1.7 T 0.1 K (Fig. 4C).

The scattering in the NSF channel is con-
centrated around Brillouin zone boundaries, as

Fig. 2. Diffuse scattering maps from spin ice, Ho2Ti2O7. Experiment [(A) to (C)] versus theory [(D) to
(F)]. (A) Experimental SF scattering at T = 1.7 K with pinch points at (0, 0, 2), (1, 1, 1), (2, 2, 2), and so
on. (B) The NSF scattering. (C) The sum, as would be observed in an unpolarized experiment (20, 22).
(D) The SF scattering obtained from Monte Carlo simulations of the near-neighbor model, scaled to
match the experimental data. (E) The calculated NSF scattering. (F) The total scattering of the near-
neighbor spin ice model.

0 1 2 3 4
0

2

4

6

σ′
0,0,l

1.7 K

NSF
SF

0

2

4

6

σ′

1.7 K

Total
NSF
SF

0

2

4

6

In
te

ns
ity

 (a
.u

.)

1.7 K

NSF
SF

−0.6 −0.3 0 0.3 0.6
0

2

h,h,2

σ′

50 K
20 K
10 K
5 K
3.75 K
2.5 K
1.7 K

A

B

C

D

Fig. 3. Line shape of the pinch point. (A) Radial
scan on D7 through the pinch point at (0, 0, 2)
[s′ is the neutron scattering cross section; see (26)
for its precise definition]. (B) The corresponding
transverse scan. The lines are Lorentzian fits. (C)
Higher-resolution data, in which the line is a
resolution-corrected fit to the pinch point form Eq.
1 (the resolution width of the spectrometer is indi-
cated as the central Gaussian). (D) SF scattering at
increasing temperatures (the lines are Lorentzians
on a background proportional to the Ho3+ form
factor).
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Quantum example (1)

resonating valence bond (RVB) (P. W. Anderson, 1973)

figure is taken and modified from L. Balents, 2010

a

b

+ + …

+ …

c

1
2

(                       +                       )

order and/or freezing is observed, by using NMR spectroscopy, at T < 1 K 
(ref. 56). More over, recent experiments show that this compound has a 
complex series of low-temperature phases in an applied magnetic field56. 
Given the exceptionally high purity of Cu3V2O7(OH)2•2H2O, an expla-
nation of its phase diagram should be a clear theoretical goal. 

Theoretical interpretations
I now turn to the theoretical evidence for QSLs in these systems and 
how the experiments can be reconciled with theory. Theorists have 
attempted to construct microscopic models for these materials (Box 2) 
and to determine whether they support QSL ground states. In the case 
of the organic compounds, these are Hubbard models, which account 
for significant charge fluctuations. For the kagomé materials, a Heisen-
berg model description is probably ap propriate. There is general theo-
retical agreement that the Hubbard model for a triangular lattice has 
a QSL ground state for intermediate-strength Hubbard repulsion near 
the Mott transition57–59. On the kagomé lattice, the Heisenberg model 
is expected to have a non-magnetic ground state as a result of frus-
tration60. Recently, there has been growing theoretical support for the 
conjecture that the ground state is, however, not a QSL but a VBS with 
a large, 36-site, unit cell61,62. However, all approaches indicate that many 
competing states exist, and these states have extremely small energy dif-
ferences from this VBS state. Thus, the ‘real’ ground state in the kagomé 
materials is proba bly strongly perturbed by spin–orbit coupling, dis-
order, further-neighbour interactions and so on63. A similar situation 
applies to the hyperkagomé lattice of Na4Ir3O8 (ref. 64).

These models are difficult to connect directly, and in detail, to 
experi ments, which mainly measure low-energy properties at low tem-
peratures. Instead, attempts to reconcile theory and experiment in detail 
have re lied on more phenomenological low-energy effective theories 
of QSLs. Such effective theories are similar in spirit to the Fermi liquid 
theory of interacting metals: they propose that the ground state has a 
certain structure and a set of elementary excitations that are consistent 
with this structure. In contrast to the Fermi liquid case, however, the 
elementary excitations consist of spinons and other exotic par ticles, 
which are coupled by gauge fields. A theory of this type — that is, pro-
posing a ‘spinon Fermi surface’ coupled to a U(1) gauge field — has 
had some success in explaining data from experiments on κ-(BEDT-
TTF)2Cu2(CN)3 (refs 65, 66). Related theories have been proposed for 
ZnCu3(OH)6Cl2 (ref. 67) and Na4Ir3O8 (ref. 68). However, comparisons 

for these materials are much more limited. In all cases, the comparison 
of theory with experiment has, so far, been indirect. I return to this 
problem in the subsection ‘The smoking gun for QSLs’.

Unexpected findings
In the course of a search as difficult as the one for QSLs, it is natural for 
there to be false starts. In several cases, researchers uncovered other 
interesting physical phenomena in quantum magnetism.

Dimensional reduction in Cs2CuCl4
Cs2CuCl4 is a spin-½ antiferromagnet on a moderately anisotropic 
trian gular lattice69,70. It shows only intermediate frustration, with f ≈ 8, 
ordering into a spiral Néel state at TN = 0.6 K. However, neutron-scat-
tering results for this compound reported by Coldea and colleagues 
suggested that exotic physical phenomena were occurring69,70. These 
experiments measure the type of excitation that is created when a neu-
tron interacts with a solid and flips an electron spin. In normal mag-
nets, this creates a magnon and, correspondingly, a sharp resonance is 
observed when the energy and momentum transfer of the neutron equal 
that of the magnon. In Cs2CuCl4, this resonance is extremely small. 
Instead, a broad scattering feature is mostly observed. The interpreta-
tion of this result is that the neutron’s spin flip creates a pair of spinons, 
which divide the neutron’s en ergy and momentum between them. The 
spinons were suggested to arise from an underlying 2D QSL state.

A nagging doubt with respect to this picture was the striking similar-
ity between some of the spectra in the experiment and those of a 1D 
spin chain, in which 1D spinons indeed exist71. In fact, in Cs2CuCl4 the 
exchange energy along one ‘chain’ direction is three times greater than 
along the diagonal bonds between chains (that is, Jʹ ≈ J/3 in Fig. 1a). 
Experimentally, however, the presence of substantial transverse disper-
sion (that is, dependence of the neutron peak on momentum perpendic-
ular to the chain axis in Cs2CuCl4), and the strong influence of interchain 
coupling on the magnetization curve, M(H), seemed to rule out a 1D 
origin, despite an early theoretical suggestion72.

In the past few years, it has become clear that discarding the idea of 
1D physics was premature73,74. It turns out that although the interchain 
coupling is substantial, and thus affects the M(H) curve significantly, 
the frustration markedly reduces interchain correlations in the ground 
state. As a result, the elementary excitations of the system are simi-
lar to those of 1D chains, with one important exception. Because the 

Figure 3 | Valence-bond states of frustrated antiferromagnets. In a VBS 
state (a), a specific pattern of entangled pairs of spins — the valence bonds 
— is formed. Entangled pairs are indicated by ovals that cover two points 
on the triangular lattice. By contrast, in a RVB state, the wavefunction is a 

superposition of many different pairings of spins. The valence bonds may 
be short range (b) or long range (c). Spins in longer-range valence bonds 
(the longer, the lighter the colour) are less tightly bound and are therefore 
more easily excited into a state with non-zero spin. 
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complex series of low-temperature phases in an applied magnetic field56. 
Given the exceptionally high purity of Cu3V2O7(OH)2•2H2O, an expla-
nation of its phase diagram should be a clear theoretical goal. 
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tion of this result is that the neutron’s spin flip creates a pair of spinons, 
which divide the neutron’s en ergy and momentum between them. The 
spinons were suggested to arise from an underlying 2D QSL state.

A nagging doubt with respect to this picture was the striking similar-
ity between some of the spectra in the experiment and those of a 1D 
spin chain, in which 1D spinons indeed exist71. In fact, in Cs2CuCl4 the 
exchange energy along one ‘chain’ direction is three times greater than 
along the diagonal bonds between chains (that is, Jʹ ≈ J/3 in Fig. 1a). 
Experimentally, however, the presence of substantial transverse disper-
sion (that is, dependence of the neutron peak on momentum perpendic-
ular to the chain axis in Cs2CuCl4), and the strong influence of interchain 
coupling on the magnetization curve, M(H), seemed to rule out a 1D 
origin, despite an early theoretical suggestion72.

In the past few years, it has become clear that discarding the idea of 
1D physics was premature73,74. It turns out that although the interchain 
coupling is substantial, and thus affects the M(H) curve significantly, 
the frustration markedly reduces interchain correlations in the ground 
state. As a result, the elementary excitations of the system are simi-
lar to those of 1D chains, with one important exception. Because the 
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We study the spin- 1
2

Heisenberg model on the square lattice with first- and second-neighbor antiferromag-
netic interactions J

1

and J

2

, which possesses a nonmagnetic region that has been debated for many years and
might realize the interesting Z

2

spin liquid. We use the density matrix renormalization group approach with ex-
plicit implementation of SU(2) spin rotation symmetry and study the model accurately on open cylinders with
different boundary conditions. With increasing J

2

, we find a Néel phase and a plaquette valence-bond (PVB)
phase with a finite spin gap. From the finite-size scaling of the magnetic order parameter, we estimate that the
Néel order vanishes at J

2

/J

1

' 0.44. For 0.5 < J

2

/J

1

< 0.61, we find dimer correlations and PVB textures
whose decay lengths grow strongly with increasing system width, consistent with a long-range PVB order in
the two-dimensional limit. The dimer-dimer correlations reveal the s-wave character of the PVB order. For
0.44 < J

2

/J

1

< 0.5, spin order, dimer order, and spin gap are small on finite-size systems, which is consistent
with a near-critical behavior. The critical exponents obtained from the finite-size spin and dimer correlations
could be compatible with the deconfined criticality in this small region. We compare and contrast our results
with earlier numerical studies.

PACS numbers: 73.43.Nq, 75.10.Jm, 75.10.Kt

Introduction.—Quantum spin liquid (SL) is an exotic state
of matter where a spin system does not form magneti-
cally ordered state or break lattice symmetries even at zero
temperature[1]. Understanding spin liquids is important in
frustrated magnetic systems and may also hold clues to un-
derstanding the non-Fermi liquid of doped Mott materials and
high-T

c

superconductivity[2]. While the exciting properties
of SL such as deconfined quasiparticles and fractional statis-
tics have been revealed in many artificially constructed sys-
tems [3–12], the possibility of finding spin liquids in realis-
tic Heisenberg models has attracted much attention over the
past 20 years due to its close relation to experimental materi-
als. The prominent example is the kagome antiferromagnet,
where recent density matrix renormalization group (DMRG)
studies point to a gapped Z

2

SL[10, 13–16] characterized by
a Z

2

topological order and fractionalized spinon and vison
excitations[17–21].

One of the candidate models for SL is the spin- 1
2

J
1

-J
2

square Heisenberg model (SHM) with the Hamiltonian

H = J
1

X

hi,ji

S
i

· S
j

+ J
2

X

hhi,jii

S
i

· S
j

, (1)

where the sums hi, ji and hhi, jii run over all the nearest-
neighbor (NN) and the next-nearest-neighbor bonds, respec-
tively. We set J

1

= 1. The frustrating J
2

couplings suppress
the Néel order and induce a nonmagnetic region around the
strongest frustration point J

2

= 0.5[22–47]. Different candi-
date states have been proposed based on approximate methods
or small-size exact diagonalization calculations, such as pla-
quette valence-bond (PVB) state[26, 29, 32, 33, 35, 38, 46],
the columnar valence-bond (CVB) state[24, 25, 28], or a gap-
less SL[30, 31, 44, 45]. However, the true nature of the non-
magnetic phase remains unresolved.
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FIG. 1: (color online) Phase diagram of spin- 1
2

J

1

-J
2

SHM obtained
by our SU(2) DMRG studies. With growing J

2

, the model has a
Néel phase for J

2

< 0.44 and a PVB phase for 0.5 < J

2

< 0.61.
Between these two phases, the finite-size magnetization and spin gap
appear small in our calculations, consistent with a near-critical be-
havior. The main panel shows Néel order parameter m

s

and spin gap
�

T

in the thermodynamic limit. The inset is a sketch of a RC4-6
cylinder; J

pin

shows the modified odd vertical bonds providing the
boundary pinning for dimer orders.

Recent DMRG study of the J
1

-J
2

SHM [40] proposed a
gapped Z

2

SL for 0.41  J
2

 0.62 by establishing the ab-
sence of the magnetic and dimer orders, and by measuring a
positive topological entanglement entropy term close to the
value ln 2 expected for a Z

2

SL[48, 49]. Very recent varia-
tional Monte Carlo (VMC) work[45] proposed a gapless Z

2

SL for 0.45 . J
2

. 0.6. On the other hand, recent DMRG
studies[50–52] of another bipartite frustrated system—the J

1

-
J
2

spin-1/2 honeycomb Heisenberg model—found a PVB

ar
X

iv
:1

31
1.

59
62

v3
  [

co
nd

-m
at

.s
tr-

el
]  

24
 N

ov
 2

01
4

2

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3 m
s
(k

0
)

 m
s
(k

x
)

 

 

m
s

J
2
/J

1

∆
T , ∆

S

 ∆T

 ∆S

Neel AFM Stripe AFM
QSL

FIG. 1: (Color online) The ground state phase diagram for the spin-
1
2 AFM Heisenberg J1-J2 model on the square lattice, as deter-
mined by accurate DMRG calculations on long cylinders with L

y

up to 14. Changing the coupling parameter J2/J1, three different
phases are found: Néel antiferromagnet (AFM), topological quan-
tum spin liquid (QSL), and stripe AFM phase. m

s

(k0 = (⇡,⇡))
[m

s

(k
x

= (⇡, 0))] denotes the staggered magnetization in the Néel
AFM phase [stripe AFM phase], whose saturation value is 1/2. �

S

and �
T

denote the spin singlet gap and spin triplet gap, respectively.

convincing demonstration of vanishing VBS order does, indi-
rectly, imply interesting QSL physics. It is, however, less im-
portant to characterizing and proving the existence of a QSL
than positive, direct evidence of long-range entanglement.

Most of the literature on the intermediate phase of the J1-
J2 model has focused on the possibility of symmetry breaking
VBS order. Many of these prior studied have suggested that
the intermediate state has VBS order. We note, however, that
all numerical results for the J1-J2 model are based either on
biased techniques (such as series expansion or coupled clus-
ter methods, or fixed node or related versions of Monte Carlo
adapted to avoid the sign problem which is present for unbi-
ased Monte Carlo in this system), or on exact diagonalization
of very small systems. Some theoretical motivation for the
possibility of VBS order comes from the theory of deconfined
quantum criticality28, which predicts that a continuous quan-
tum phase transition – a deconfined quantum critical point
(DQCP) – should occur between an ordered Neél state and
a plaquette or columnar VBS state, in some models. How-
ever, the existence of such a transition does not in any way
imply that it occurs for the J1-J2 model in question, or that
this particular model even harbors a VBS phase. Other theo-
retical motiviation for VBS order comes from its presence in
some large-N generalizations of the nearest-neighbor Heisen-
berg antiferromagnet. However, these large N studies are not
controllably close to the SU(2) case and moreover do not con-
sider second neighbor interactions. In short, we believe there
is very little compelling evidence for the existence of VBS
order in the isotropic S = 1/2 J1-J2 model to be found in
the prior literature. We will return to discuss VBS states in
Sec. VI A.

The only unbiased technique capable of treating generic
frustrated two dimensional spin systems of moderately large
size is the Density Matrix Renormalization Group (DMRG)

method.7,29–31 While the sizes that can be studied using the
DMRG are not as large as those accessibly by quantum Monte
Carlo (QMC) for unfrustrated models, they are still very large
and they are not limited by the sign problem, which prevents
application of QMC to most realistic physical models. More-
over, the DMRG has some advantages over QMC: it is intrin-
sically a zero temperature technique, and obtains a convenient
representation of the ground state wavefunction. Most impor-
tantly for our purposes, the DMRG is very efficient and conve-
nient for calculating the entanglement entropy, which we re-
turn to in some detail below. In this paper, we report the results
of extensive simulations (with truncation error ⇠ 10

�7) on nu-
merous cylinders of circumference L

y

= 3� 14, and lengths
L
x

� 2L
y

. In our simulations, we measure spin-spin corre-
lation functions, correlation functions and expectation values
of VBS order parameters, bulk singlet and triplet energy gaps,
and entanglement entropy. All results confirm the existence
of magnetic order for small and large J2, and that (see Fig. 1)
the ground state for 0.41  J2/J1  0.62 is non-magnetic, in
very good agreement with the most accurate prior results from
series expansion and coupled cluster24 methods. Furthermore,
we find that the intermediate phase has a gap to both singlet
and triplet excitations and, within our uncertainty, no VBS or-
der in the 2D limit as extrapolated from the VBS correlation
functions. We carry out further checks for possible finite-size
effects due to the boundaries, to see if this might artificially
suppress VBS order, and see no indication that this is the case.

The latter results suggests a QSL state, based on negative
evidence: the apparent absence of VBS order. We find two
positive evidences that this suggestion is correct, and that the
state is a Z2 QSL. First, we find a non-zero TEE, �, which
is a constant and universal reduction of the von Neumann en-
tanglement entropy, known to vanish in any gapped state with
short-range entanglement. Notably, we point out in Sec. IV
that discrete spontaneous symmetry breaking phases such as
valence bond solids have absolute ground states which are
Schrödinger cat states with a constant enhancement of the en-
tanglement entropy – i.e. an effect of opposite sign to the
TEE. Phases with non-zero � and a gap to all excitations are
topological phases. Like conformal field theories in two di-
mensions, only discrete types of topological phases exist, with
discrete allowed values of � (which plays a role somewhat
similar to the central charge in a conformal field theory). For
all points we have studied within the non-magnetic phase, the
value of � is equal, within numerical uncertainty of 2%, to
ln(2), which is the minimal value possible for � in a topolog-
ical phase with time-reversal symmetry. A topological entan-
glement entropy of � = ln(2) implies either a Z2 QSL or a
“doubled semion” phase37. As there is, to our knowledge, no
theory suggesting the appearance of the semion phase in an
SU(2) invariant spin-1/2 model, we take this as strong evi-
dence for a Z2 QSL state. The second positive evidence for a
Z2 QSL is a remarkable odd/even effect, in which static VBS
order is entirely absent for even L

y

but is observed directly in
the VBS expectation values for odd L

y

. This is expected on
general theoretical grounds for a Z2 QSL, as we show in Ap-
pendix A 1. We compare the behavior of the numerically ob-
served static VBS order for odd circumference cylinders with

S.-S. Gong et al., 2014H.-C. Jiang et al., 2012



Experimental candidate?

organic conductor κ-(ET)2Cu2(CN)3: S=1/2 spins on a triangular layers

The single crystals of !-!ET"2Cu2!CN"3 were prepared
by the standard electrochemical method [4,5]. The mag-
netic susceptibility was measured for a polycrystalline
sample in a temperature range from 1.9 to 298 K at 0.32 T.
The 1H NMR experiments were performed for a poly-
crystalline sample in a temperature range of 1.4–200 K at
a field of 3.9 T and for a single crystal weighing 76 "g in
a range of 32 mK–36 K at 2.2 T applied normal to the
conducting plane. The latter measurements were per-
formed using the dilution refrigerator of the top-loading
type with the crystal soaked to the 3He-4He mixture. The
absence of Cu2# impurity (< 0:01%) was confirmed by
EPR before the 1H NMR measurement. The NMR spectra
were obtained by the fast Fourier transformation of the
quadrature-detected echo signals. The relaxation curves
of nuclear magnetization were obtained from the recov-
ery of the echo intensity following saturation comb pulses
and the solid-echo pulse sequence, !#=2"x $ !#=2"y.

Temperature dependence of the static susceptibility, $,
of !-!ET"2Cu2!CN"3 is shown in Fig. 2, where the core
diamagnetic contribution of $4:37% 10$4 emu=mol is
already subtracted. With decreasing temperature, $ in-
creases slightly and shows a very broad maximum around

70 K (5:4% 10$4 emu=mol). Below 50 K, $ starts to
decrease rapidly, but remains to be paramagnetic even
at 1.9 K (2:9% 10$4 emu=mol). The behavior is quite
different from that of !-!ET"2Cu&N!CN"2'Cl which shows
a monotonous decrease with temperature and the weak
ferromagnetism below 27 K due to canting of the AF
ordered spins [9]. The temperature dependence of $ for
!-!ET"2Cu2!CN"3 is fitted to the high-temperature series
expansion of spin S ( 1=2 triangular-lattice Heisenberg
model [11] as shown in Fig. 2, where the &6=6' and &7=7'
Padé approximants are adopted with J ( 250 K. This
model was successful in explaining $ of another or-
ganic triangular-lattice system [12]. The peak tempera-
ture is much lower than the J value, suggesting that the
strong spin frustration suppresses the development of
the short-range spin correlations. The difference between
the experimental result and the Heisenberg model may
be partially attributed to the weak spin localization in
the present system situated in the vicinity of the Mott
transition.

Figure 3 shows the temperature dependence of the 1H
NMR spectra of a single crystal of !-!ET"2Cu2!CN"3
along with the previous result of !-!ET"2Cu&N!CN"2'Cl
for comparison [9]. The width and the shape of the spectra
of both salts above 30 K represent typical nuclear dipole
interactions between the protons in the ethylene groups of
ET molecules. Since the shape of the spectra is sensitive
to the direction of the external static magnetic field, the
difference of the spectra between the two salts at high
temperatures is explained by the difference in the orien-
tation of ET molecules against the applied field and does
not matter. A remarkable difference in the shape of the

FIG. 2. Temperature dependence of the magnetic susceptibil-
ity of the randomly orientated polycrystalline samples of
!-!ET"2Cu2!CN"3 and !-!ET"2Cu&N!CN"2'Cl [9]. The core dia-
magnetic susceptibility is already subtracted. The solid and
dotted lines represent the result of the series expansion of the
triangular-lattice Heisenberg model using &6=6' and &7=7'
Padé approximants, respectively, with J ( 250 K. The low-
temperature data of !-!ET"2Cu2!CN"3 below 30 K are ex-
panded in the inset.

FIG. 3. (a) 1H NMR absorption spectra for single crystals of
!-!ET"2Cu2!CN"3 and !-!ET"2Cu&N!CN"2'Cl [9] under the
magnetic field perpendicular to the conducting planes.
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The single crystals of !-!ET"2Cu2!CN"3 were prepared
by the standard electrochemical method [4,5]. The mag-
netic susceptibility was measured for a polycrystalline
sample in a temperature range from 1.9 to 298 K at 0.32 T.
The 1H NMR experiments were performed for a poly-
crystalline sample in a temperature range of 1.4–200 K at
a field of 3.9 T and for a single crystal weighing 76 "g in
a range of 32 mK–36 K at 2.2 T applied normal to the
conducting plane. The latter measurements were per-
formed using the dilution refrigerator of the top-loading
type with the crystal soaked to the 3He-4He mixture. The
absence of Cu2# impurity (< 0:01%) was confirmed by
EPR before the 1H NMR measurement. The NMR spectra
were obtained by the fast Fourier transformation of the
quadrature-detected echo signals. The relaxation curves
of nuclear magnetization were obtained from the recov-
ery of the echo intensity following saturation comb pulses
and the solid-echo pulse sequence, !#=2"x $ !#=2"y.

Temperature dependence of the static susceptibility, $,
of !-!ET"2Cu2!CN"3 is shown in Fig. 2, where the core
diamagnetic contribution of $4:37% 10$4 emu=mol is
already subtracted. With decreasing temperature, $ in-
creases slightly and shows a very broad maximum around

70 K (5:4% 10$4 emu=mol). Below 50 K, $ starts to
decrease rapidly, but remains to be paramagnetic even
at 1.9 K (2:9% 10$4 emu=mol). The behavior is quite
different from that of !-!ET"2Cu&N!CN"2'Cl which shows
a monotonous decrease with temperature and the weak
ferromagnetism below 27 K due to canting of the AF
ordered spins [9]. The temperature dependence of $ for
!-!ET"2Cu2!CN"3 is fitted to the high-temperature series
expansion of spin S ( 1=2 triangular-lattice Heisenberg
model [11] as shown in Fig. 2, where the &6=6' and &7=7'
Padé approximants are adopted with J ( 250 K. This
model was successful in explaining $ of another or-
ganic triangular-lattice system [12]. The peak tempera-
ture is much lower than the J value, suggesting that the
strong spin frustration suppresses the development of
the short-range spin correlations. The difference between
the experimental result and the Heisenberg model may
be partially attributed to the weak spin localization in
the present system situated in the vicinity of the Mott
transition.

Figure 3 shows the temperature dependence of the 1H
NMR spectra of a single crystal of !-!ET"2Cu2!CN"3
along with the previous result of !-!ET"2Cu&N!CN"2'Cl
for comparison [9]. The width and the shape of the spectra
of both salts above 30 K represent typical nuclear dipole
interactions between the protons in the ethylene groups of
ET molecules. Since the shape of the spectra is sensitive
to the direction of the external static magnetic field, the
difference of the spectra between the two salts at high
temperatures is explained by the difference in the orien-
tation of ET molecules against the applied field and does
not matter. A remarkable difference in the shape of the

FIG. 2. Temperature dependence of the magnetic susceptibil-
ity of the randomly orientated polycrystalline samples of
!-!ET"2Cu2!CN"3 and !-!ET"2Cu&N!CN"2'Cl [9]. The core dia-
magnetic susceptibility is already subtracted. The solid and
dotted lines represent the result of the series expansion of the
triangular-lattice Heisenberg model using &6=6' and &7=7'
Padé approximants, respectively, with J ( 250 K. The low-
temperature data of !-!ET"2Cu2!CN"3 below 30 K are ex-
panded in the inset.

FIG. 3. (a) 1H NMR absorption spectra for single crystals of
!-!ET"2Cu2!CN"3 and !-!ET"2Cu&N!CN"2'Cl [9] under the
magnetic field perpendicular to the conducting planes.
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Quantum example (2)

Kitaev spin liquids: quantum spin liquids 
in the exact ground states


๏ original 2D honeycomb Kitaev model   
(A. Kitaev, 2006)


- exactly soluble

- both gapped and gapless spin liquids

- nonzero correlations only for nearest-

neighbors (G. Baskaran et al., 2007)


๏ extension to 3D hyperhoneycomb lattice 
(S. Mandal and N. Surendran, 2009)


- also exactly soluble: the same ground-
state phase diagram


๏ extensions to other lattice structures

star lattices, hyperoctagon, etc.

H = − Jx !
"i, j#x

!i
x! j

x − Jy !
"i, j#y

!i
y! j

y − Jz !
"i, j#z

!i
z! j

z, $1%

where !a’s are the Pauli matrices, and "i , j#a indicate that i
and j belong to a link of a type.

For our purposes, the key points to note about the Hamil-
tonian in Eq. $1% are that, for any spin, only one of the com-
ponents couples to a particular neighboring spin, and the
component with nonzero coupling strength is different for
each of the three neighbors. As we will see later, this leads to
the existence of a set of mutually commuting conserved
plaquette operators, which in turn makes the problem exactly
solvable.

We note two features of the honeycomb lattice that are
pertinent to the construction of the 3D lattice: $1% The coor-
dination number of the lattice is three. $2% The three types of
links x, y, and z are distributed in such a way that two links
of the same type do not touch each other.

A. Lattice

To facilitate visualization, we will first describe how to
obtain the 3D lattice starting from the familiar cubic lattice.
Let i , j ,k!Z be the x, y, and z coordinates of the latter. The
new lattice is obtained by removing those sites that satisfy
one of the following conditions: $1% k=0 mod 4 and i
=0 mod 2, $2% k=1 mod 4 and j=0 mod 2, $3% k=2 mod 4
and i=1 mod 2, and $4% k=3 mod 4 and j=1 mod 2.

This amounts to depleting the cubic lattice by half, and
the resultant lattice has coordination number 3 $see Fig. 2%.
We note that: $i% the x-y planes alternately consist of discon-
nected rows or disconnected columns. $ii% As one goes along
a particular row $column%, at each site there is a link whose
direction alternates between positive and negative z axes.
That is, there is a crisscrossing structure between adjacent
planes which ensures that the lattice is truly three
dimensional—despite a coordination number of 3—and not a
set of mutually disconnected two-dimensional surfaces.

To parametrize the lattice sites, we first note that the unit
cell contains four sites. The position vector of a unit cell is
given by

R = ma1 + na2 + pa3, m,n,p ! Z , $2%

a1 = 2x̂, a2 = 2ŷ, a3 = x̂ + ŷ + 2ẑ , $3%

where x̂, ŷ, and ẑ are unit vectors along x, y, and z directions,
respectively. The four sites within a unit cell are at

r1 = R −
ŷ
2

− ẑ, r2 = R −
ŷ
2

,

r3 = R +
ŷ
2

, r4 = R +
ŷ
2

+ ẑ . $4%

To define a Kitaev-type Hamiltonian, we need one more in-
gredient, viz., the labeling of links. To this end, we alter-
nately assign x and y labels to the links in each of the rows
and columns that lie on the x-y plane; the remaining links,
the ones along the z axis, are labeled z. &The ambiguity in the
assignment of x and y labels within each row $column% is
resolved by demanding periodicity.' This way of labeling
ensures that the three links emanating from each site have
different labels. Now the definition of the Hamiltonian in Eq.
$1% can be applied to the three-dimensional lattice we have
constructed. Explicitly,

H = !
R

&− Jx!1
x$R%!4

x$R − a3% − Jy!1
y$R%!4

y$R + a1 − a3%

− Jx!2
x$R%!3

x$R% − Jy!3
y$R%!2

y$R + a2%

− Jz!1
z$R%!2

z$R% − Jz!3
z$R%!4

z$R%' . $5%

For simplicity of notation, we will continue to use the formal
expression for H in Eq. $1%, where sites are referred to by a
single lower-case index, and revert to the explicit form in Eq.
$5% only when the calculation demands it.
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FIG. 1. The honeycomb lattice: the three types of links are la-
beled x, y, and z.
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FIG. 2. The 3D lattice: the four sites inside the loop $marked
1–4% constitute a unit cell; a1, a2, and a3 are the basis vectors.
Plaquette p consists of sites marked 1–10.
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the ones along the z axis, are labeled z. &The ambiguity in the
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Experimental relevance?

An effective interaction for partially-filled t2g levels under strong spin-orbit 
coupling may become Kitaev type (G. Jackeli and G. Khaliullin, 2009).


➡ experimental exploration of Kitaev spin liquids

quasi-2D honeycomb compounds, Na2IrO3, Li2IrO3, ...

pyrochlore Ir2O4, hyperkagome Na4Ir3O8,

hyperhoneycomb and harmonic honeycomb Li2IrO3, ...


no strong candidate yet (Most of them do show long-range ordering,     
presumably because of other interactions.)

for the symmetry of the intersite interactions. Namely, the
very form of the exchange Hamiltonian depends on bond
geometry through a density profile of Kramers states, as we
demonstrate below.

Exchange couplings of neighboring Kramers states.—
We consider the limit of the strong spin-orbit coupling, i.e.,
when ! is larger than exchange interaction between the
isospins. The exchange Hamiltonians for isospins are then
obtained by projecting the corresponding superexchange
spin-orbital models onto the isospin states Eq. (1). First, we
present the results for the case of cubic symmetry (! ¼ 0,
sin" ¼ 1=

ffiffiffi
3

p
), and discuss later the effects of a tetragonal

distortion. We consider two common cases of TM-O-TM
bond geometries: (A) a 180"-bond formed by corner-
shared octahedra as in Fig. 2(a), and (B) a 90"-bond
formed by edge-shared ones, Fig. 2(b).

(A) A 180" bond: For this geometry, the nearest-
neighbor t2g hopping matrix is diagonal in the orbital space
and, on a given bond, only two orbitals are active, e.g., jxyi
and jxzi orbitals along a bond in x-direction [Fig. 2(a)].
The spin-orbital exchange Hamiltonian for such a system
has already been reported: see Eq. (3.11) in Ref. [12]. After
projecting it onto the ground state doublet, we find an
exchange Hamiltonian for isospins in a form of

Heisenberg plus a pseudodipolar interaction,

H ij ¼ J1 ~Si # ~Sj þ J2ð ~Si # ~rijÞð~rij # ~SjÞ; (2)

where ~Si is the S ¼ 1=2 operator for isospins (referred to as
simply spins from now on), ~rij is the unit vector along the
ij bond, and J1ð2Þ ¼ 4

9#1ð2Þ. Hereafter, we use the energy
scale 4t2=U where t is a dd-transfer integral through an
intermediate oxygen, and U stands for the Coulomb re-
pulsion on the same orbitals. The parameters #1ð2Þ control-
ling isotropic (anisotropic) couplings are given by
#1 ¼ ð3r1 þ r2 þ 2r3Þ=6 and #2 ¼ ðr1 ' r2Þ=4, where
the set of rn characterizing the multiplet structure of the
excited states depends solely on the ratio $ ¼ JH=U of
Hund’s coupling and U [24]. At small $, one has #1 ’ 1
and #2 ’ $=2. Thus, we find a predominantly isotropic
Hamiltonian, with a weak dipolarlike anisotropy term.
While the overall form of Eq. (2) could be anticipated
from symmetry arguments, the explicit derivation led us
to an unexpected result: In the limit of strong SO coupling,
the magnetic degrees are governed by a nearly Heisenberg
model just like in the case of small !, and, surprisingly
enough, its anisotropy is entirely due to the Hund’s cou-
pling. This is opposite to a conventional situation: typi-
cally, the anisotropy corrections are obtained in powers of
! while the Hund’s coupling is not essential.
(B) A 90" bond: There are again only two orbitals active

on a given bond, e.g., jxzi and jyzi orbitals along a bond in
the xy-plane. However, the hopping matrix has now only
nondiagonal elements, and there are two possible paths for
a charge transfer [via upper or lower oxygen, see Fig. 2(b)].
This peculiarity of a 90" bond leads to an exchange
Hamiltonian drastically different from that of a 180" ge-
ometry. Two transfer amplitudes via upper and lower oxy-
gen interfere in a destructive manner and the isotropic part
of the Hamiltonian exactly vanishes. The finite, anisotropic
interaction appears, however, due to the JH-multiplet struc-
ture of the excited levels. Most importantly, the very form
of the exchange interaction depends on the spatial orienta-
tion of a given bond. We label a bond ij laying in the %&
plane perpendicular to the 'ð¼ x; y; zÞ axis by a (')-bond.
With this in mind, the Hamiltonian can be written as

H ð'Þ
ij ¼ 'JS'i S

'
j ; (3)

with J ¼ 4
3#2. Remarkably, this Hamiltonian is precisely a

quantum analog of the so-called compass model. The latter,
introduced originally for the orbital degrees of freedom in
Jahn-Teller systems [5], has been the subject of numerous
studies as a prototype model with protected ground state
degeneracy of topological origin (see, e.g., Ref. [25]).
However, to our knowledge, no magnetic realization of
the compass model has been proposed so far.
Implementing the Kitaev model in Mott insulators.—The

Kitaev model is equivalent to a quantum compass model on
a honeycomb lattice [26]. It shows a number of fascinating
properties such as anyonic excitations with exotic frac-

isospin up spin up, lz=0 spin down, lz=1

+=

FIG. 1 (color online). Density profile of a hole in the isospin
up state (without tetragonal distortion). It is a superposition of a
spin up hole density in jxyi-orbital, lz ¼ 0 (middle), and spin
down one in ðjyziþ ijxziÞ state, lz ¼ 1 (right).
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pzxz xz
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xz yz
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FIG. 2 (color online). Two possible geometries of a TM-O-TM
bond with corresponding orbitals active along these bonds. The
large (small) dots stand for the transition metal (oxygen) ions.
(a) A 180"-bond formed by corner-shared octahedra, and (b) a
90"-bond formed by edge-shared octahedra.
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tional statistics, topological degeneracy, and, in particular,
it is relevant for quantum computation [18]. This generated
an enormous interest in a possible realization of this model
in real systems, with current proposals based on optical
lattices [27]. Here, we outline how to ‘‘engineer’’ the
Kitaev model in Mott insulators.

Shown in Fig. 3(a) is a triangular unit formed by 90!

bonds together with ‘‘compass’’ interactions that follow
from Eq. (3). Such a structure is common for a number of
oxides, e.g., layered compounds ABO2 (where A and B are
alkali and TM ions, respectively). The triangular lattice of
magnetic ions in an ABO2 structure can be depleted down
to a honeycomb lattice (by periodic replacements of TM
ions with nonmagnetic ones). One then obtains an A2BO3

compound, which has a hexagonal unit shown in Fig. 3(b).
There are three nonequivalent bonds, each being perpen-
dicular to one of the cubic axes x, y, z. Then, according to
Eq. (3), the spin coupling, e.g., on a (x)-bond, is of Sxi S

x
j

type, precisely as in the Kitaev model. The honeycomb
lattice provides a particularly striking example of new
physics introduced by strong SO coupling: the
Heisenberg model is converted into the Kitaev model
with a spin-liquid ground state.

The compound Li2RuO3 [28] represents a physical ex-
ample of the A2BO3 structure. By replacement of spin-one
Ru4þ with spin-one-half Ir4þ ions, one may realize a
strongly spin-orbit-coupledMott insulator with low-energy
physics described by the Kitaev model.

‘‘Weak’’ ferromagnetism of Sr2IrO4.—As an example of
a spin-orbit-coupled Mott insulator, we discuss the layered
compound Sr2IrO4, a t2g analog of the undoped high-Tc

cuprate La2CuO4. In Sr2IrO4, a square lattice of Ir
4þ ions is

formed by corner-shared IrO6 octahedra, elongated along
the c-axis and rotated about it by ! ’ 11! [19] (see Fig. 4).
Sr2IrO4 undergoes a magnetic transition at #240 K dis-

playing a weak FM, which can be ascribed to a
Dzyaloshinsky-Moriya (DM) interaction. The puzzling
fact is that ‘‘weak’’ FM moment is unusually large,
’ 0:14"B [20] which is 2 orders of magnitude larger
than that in La2CuO4 [29]. A corresponding spin canting
angle # ’ 8! is close to !, i.e., the ordered spins seem to
rigidly follow the staggered rotations of octahedra. Here,
we show that the strong SO coupling scenario gives a
natural explanation of this observation.
We first show the dominant part of the Hamiltonian for

Sr2IrO4 neglecting the Hund’s coupling for a moment.
Accounting for the rotations of IrO6 octahedra, we find

H ¼ J ~Si % ~Sj þ JzS
z
iS

z
j þ ~D % ½ ~Si ' ~Sj(: (4)

Here, the isotropic coupling J ¼ $1ðt2s * t2aÞ, where ts ¼
sin2%þ 1

2 cos
2% cos2!, and ta ¼ 1

2 cos
2% sin2!. The second

and third terms describe the symmetric and DM anisotro-
pies, with Jz ¼ 2$1t

2
a, ~D ¼ ð0; 0;*DÞ, and D ¼ 2$1tsta.

[For ! ¼ 0, these terms vanish and we recover J1-term of
the 180! result (2).] As it follows from Eq. (4), the spin
canting angle is given by a ratio D=J ’ 2ta=ts # 2!which
is independent of &, and is solely determined by lattice
distortions. This explains the large spin canting angle ##
! in Sr2IrO4.
As in the case of weak SO coupling [30], the

Hamiltonian (4) can in fact be mapped to the Heisenberg

model ~~Si % ~~Sj where operators ~~S are obtained by a stag-

gered rotation of ~S around the z-axis by an angle,#, with
tanð2#Þ ¼ D=J. Thus, at JH ¼ 0, there is no true magnetic
anisotropy. Once JH-corrections are included, the
Hamiltonian receives also the anisotropic terms,

Syy
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FIG. 3 (color online). Examples of the structural units formed
by 90! TM-O-TM bonds and corresponding spin-coupling pat-
terns. Gray circles stand for magnetic ions, and small open
circles denote oxygen sites. (a) Triangular unit cell of
ABO2-type layered compounds, periodic sequence of this unit
forms a triangular lattice of magnetic ions. The model (3) on this
structure is a realization of a quantum compass model on a
triangular lattice: e.g., on a bond 1-2, laying perpendicular to
x-axis, the interaction is Sx1S

x
2. (b) Hexagonal unit cell of

A2BO3-type layered compound, in which magnetic ions
(B-sites) form a honeycomb lattice. (Black dot: nonmagnetic
A-site). On an xx-bond, the interaction is Sxi S

x
j , etc. For this

structure, the model (3) is identical to the Kitaev model.
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FIG. 4. The spin canting angle # (in units of !) as a function
of the tetragonal distortion parameter %. Inset shows a sketch of
an IrO2-plane. The oxygen octahedra are rotated by an angle,!
about z-axis forming a two sublattice structure. In the cubic case,
% ’ '=5, one has # ¼ ! exactly. The spin-flop transition from
the in-plane canted spin state to a collinear Néel ordering along
z-axis occurs at % ¼ '=4.

PRL 102, 017205 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

9 JANUARY 2009

017205-3



Hybrid example

Pr2Ir2O7: spin ice (Pr 4f moments) + itinerant electrons (Ir 5d electrons)

๏ Peculiar spin texture strongly affects the electronic and transport properties.

dences of the Hall conductivity !xy!B" (#"xy!B"="2
xx!B")

and M!B" along the principal axes [100], [110], and [111]
measured at T $ 0:5 K (%#w $ 1:7 K). Remarkably,
!xy!B" reaches a large value &25 !'1 cm'1 under a rela-
tively small field of about 1 T, and eventually more than
30 !'1 cm'1 at 7 T. These are comparable with or larger
than the values for metallic or semiconducting ferromag-
nets such as (Ga,Mn)As (14 !'1 cm'1) [5], Fe1'xCoxSi
(40 !'1 cm'1) [6] and Nd2Mo2O7 (20 !'1 cm'1) [14].
Up to Bc & 0:7 T, both!xy!B" andM!B" is nearly isotropic
and shows rapid and linear increase with field. This sug-
gests that the spin-liquid-like state is stable below Bc be-
cause the energy scale of Bc & 0:7 T corresponds to that of
#w $ 1:7 K, the formation temperature of the spin-liquid-
like state. However, beyond Bc, the field dependence be-
comes strongly anisotropic and is no longer proportional to
M. For the [100] direction, for instance, !xy becomes
nearly saturated around 3 T, while the corresponding M
is smoothly increasing with field. Furthermore, the [111]
component of !xy peaks around Bc, at which field no
anomaly of M was found. These anisotropic behavior
and nonmonotonic M dependence can be also clearly
seen in the inset of Fig. 2.

In terms of the conventional mechanism due to the spin-
orbit coupling, it is highly difficult to understand the above
nontrivial temperature and field dependences of the large
Hall effect observed below #w $ 1:7 K. Instead, it is natu-
ral to expect the spin-chirality contribution to the Hall
effect because the Pr h111i Ising-like spins under fields
may well have a sizeable spin chirality due to their non-
coplanar spin texture and produce a fictitious magnetic
field on the Ir sites through the Kondo coupling. This

possibility has been discussed in Nd2Mo2O7, which also
shows nonmonotonic M dependence of !xy [14].

In order to estimate the spin-chirality contribution to the
Hall conductivity, we have to first clarify the spin structure
under fields. While the spin configuration under zero field
has not been clarified yet, those under the high field limit
can be uniquely determined by the Zeeman energy scale,
such as ‘‘2-in, 2-out’’ configuration for the [100] field
direction, and ‘‘1-in, 3-out’’ (or ‘‘3-in, 1-out’’) configura-
tion for the [111] field direction. For [110], however, half
of the spins are perpendicular to the field, whose directions
must be determined by the internal interactions. Thus, the
‘‘2-in, 2-out’’ state is most likely to be stabilized owing to
the ferromagnetic nearest neighbor interactions [23].

The fictitious magnetic field bIr that penetrates a single
Ir tetrahedron is defined as a vector sum:

 b Ir $
X

hi;j;ki
fIi ( !Ij ) Ik"gnijk; (2)

where I is an internal field at an Ir site generated by Pr
spins via the Kondo coupling, and nijk is a normal vector
(with unit length) of a triangle formed by site i, j and k
[11,15]. Figure 4 shows the configuration of the Pr spins
(green arrows) for the ‘‘2-in, 2-out’’ and ‘‘1-in, 3-out’’
states and corresponding internal fields at the Ir sites
(blue arrows). The Pauli paramagnetic Ir spins are polar-
ized parallel to I at low T if the Kondo effect due to the
antiferromagnetic f-d exchange interaction Jfd is domi-
nant over the Zeeman energy effect. This is valid below
about BK & 14 T, which corresponds to the energy scale of

 

FIG. 4 (color online). Configurations of the Pr spins (green
arrows) for the ‘‘2-in, 2-out’’ and ‘‘1-in, 3-out’’ states and the
corresponding internal fields at the Ir sites (blue arrows) under
the high field limit along the (a) [100] and (b) [111] directions.
Open black and closed red arrows denote the directions of
external and fictitious magnetic fields, respectively.
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Usually, the AHE arises in ferromagnets because the spontaneous
magnetization breaks the TRS macroscopically even in the absence of
applied magnetic field. The dominant part of the AHE in moderately
dirty ferromagnetic metals can be captured by the band-intrinsic mech-
anism4,16. The adiabatic motion of electrons under an electric field E
(ref. 17) acquires the Berry phase18 because of the relativistic spin-orbit
interaction and the net spin polarization. This phase acts as a mac-
roscopic fictitious magnetic field b that bends the orbital motion of
electrons like the Lorentz force does due to a real magnetic field B. Thus,
it causes the AHE characterized by a finite Hall conductivity sH at B 5 0.

In general, however, the source of the fictitious magnetic field b,
namely, the condition for observing the AHE at B 5 0, is not
restricted to the magnetization, but to the macroscopically broken
TRS19, which means that the time-reversal operation cannot be com-
pensated by any other symmetry operations of the crystal (Sup-
plementary Information). In particular, the scalar spin chirality in
non-coplanar ferromagnets or canonical spin glasses can also pro-
duce the fictitious field and thus the AHE4,5,12,13,20, as indeed has been
observed in Nd2Mo2O7 (ref. 5), AuMn (refs 6, 7), and MnSi (refs 9,
10). In these pioneering works, however, the spin chirality is not the
primary order parameter, but only accompanies a chiral spin texture
of a magnetic dipole LRO or is induced by the applied magnetic field.
Thus, it has remained an important open issue to find a possible
chiral spin-liquid phase3 by probing the macroscopically broken
TRS through the AHE at zero magnetic field.

Here, we report the discovery of a TRS-broken phase in the absence
of both magnetic dipole order and spin freezing in the thermodynamic
measurements, suggesting a chiral spin-liquid state. In particular, we
observed a spontaneous Hall effect in the absence of uniform mag-
netization within experimental accuracy in the metallic cooperative
paramagnet Pr2Ir2O7 above its spin freezing temperature, as indicated
by the bifurcation of the susceptibility. Both the experiment and the
theory suggest that a chiral spin-liquid phase is induced by melting of a
spin ice, because the quantum fluctuations of the Pr 4f magnetic
moments21 were stronger than in dipolar spin-ice systems14,15.

The pyrochlore iridate Pr2Ir2O7 has an antiferromagnetic Curie–
Weiss temperature HW < 220 K, mainly due to the correlations
among ,111 . 4f Ising magnetic moments of Pr31 ions, which point
either inwards to or outwards from the centre of the Pr tetrahedron
(Fig. 1b and c)22,23. Ir 5d conduction electrons are weakly correlated
and remain in a Pauli paramagnetic state22. They mediate the RKKY
interaction between Pr 4f moments via the Kondo coupling. The
absence of any sharp anomalies indicating conventional magnetic
LRO in the measurements of specific heat, magnetic susceptibility,
and muon spin relaxation (mSR)22,24 signals strong geometrical frus-
tration15. Only a spin freezing is observed in the magnetic suscepti-
bility below Tf < 0.3 K, which is two orders of magnitude lower than
jHWj< 20 K (ref. 22) (Fig. 2a). Therefore, below jHWj, the 4f
moments probably remain in a cooperative paramagnetic state down
to at least Tf < 0.3 K (refs 22, 24).

First, we show our main experimental evidence for the broken TRS
found in the states where neither magnetic dipole LRO nor spin freez-
ing is observed in thermodynamic measurements. Figure 2a presents
the temperature dependence of the Hall conductivity sH(T) (defined
in the figure caption) measured at a low field of 0.05 T applied along the
[111] direction. The zero-field-cooled and the field-cooled data of
sH(T) and thus the Hall resistivity rH(T) (Supplementary Fig. 1)
bifurcate at TH < 1.5 K, a temperature which is nearly an order of
magnitude higher than Tf < 0.3 K, although the longitudinal conduc-
tivity s(T) (Fig. 2b, inset) and resistivity r(T) (Supplementary Fig. 1)
does not exhibit any detectable bifurcation. The bifurcation in sH(T)
suggests the emergence of a spontaneous component. To avoid a
(partial) cancellation of sH due to a domain formation, we have per-
formed field sweep measurements up to 7 T at various temperatures.
Corresponding to the above bifurcation found in sH(T), the field
dependence of sH(B) for Bjj[111] at T , TH < 1.5 K shows a hysteresis
between field up and down sweeps, which is accompanied by a finite

remnant Hall conductivity at B 5 0 (Fig. 3a, inset). In sharp contrast,
the field dependence of the magnetization M(B) shows no hysteresis
within our experimental accuracy (,1023mB) at T , TH, and only a
small hysteresis at T , Tf (Fig. 3b, inset). Our observations on
sH(B 5 0, T) and M(B 5 0, T) at various temperatures are summarized
in Fig. 2b. This is evidence of a remarkable separation between the two
temperature scales TH and Tf. Upon cooling, the TRS is broken spon-
taneously and macroscopically at TH without any apparent LRO of
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Figure 2 | Temperature dependence of the magnetic and transport
properties of Pr2Ir2O2. a, Temperature dependence of the Hall conductivity
sH (left axis) and the direct-current susceptibility x 5 M/H (right axis)
under a magnetic field of B 5 0.05 T along the [111] direction. e.m.u.,
electromagnetic unit. Here, Hall conductivity is given by sH 5 2rH/
(rH

2 1 r2), where rH is the Hall resistivity and r is the longitudinal
resistivity. Both the zero-field-cooled (ZFC) and field-cooled (FC) results are
plotted. Vertical dashed lines denote TH < 1.5 K and Tf < 0.3 K, respectively.
b, Temperature dependence of the remnant Hall conductivity sH(B 5 0)
(left axis) and remnant magnetization M(B 5 0) (right axis) at zero field,
obtained after a field sweep down from 7 T in the hysteresis loop
measurements (Supplementary Information). The inset shows the
temperature dependence of the longitudinal conductivity s 5 1/r under
B 5 0.05 T along the [111] direction. No hysteresis is found between the
results obtained in the ZFC and FC sequences. c, Temperature dependence of
the nonlinear susceptibility x3 (Supplementary Information) (left axis), and
magnetic specific heat Cm (right axis) under zero field, adapted from ref. 22.
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Usually, the AHE arises in ferromagnets because the spontaneous
magnetization breaks the TRS macroscopically even in the absence of
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observed in Nd2Mo2O7 (ref. 5), AuMn (refs 6, 7), and MnSi (refs 9,
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primary order parameter, but only accompanies a chiral spin texture
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Here, we report the discovery of a TRS-broken phase in the absence
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theory suggest that a chiral spin-liquid phase is induced by melting of a
spin ice, because the quantum fluctuations of the Pr 4f magnetic
moments21 were stronger than in dipolar spin-ice systems14,15.

The pyrochlore iridate Pr2Ir2O7 has an antiferromagnetic Curie–
Weiss temperature HW < 220 K, mainly due to the correlations
among ,111 . 4f Ising magnetic moments of Pr31 ions, which point
either inwards to or outwards from the centre of the Pr tetrahedron
(Fig. 1b and c)22,23. Ir 5d conduction electrons are weakly correlated
and remain in a Pauli paramagnetic state22. They mediate the RKKY
interaction between Pr 4f moments via the Kondo coupling. The
absence of any sharp anomalies indicating conventional magnetic
LRO in the measurements of specific heat, magnetic susceptibility,
and muon spin relaxation (mSR)22,24 signals strong geometrical frus-
tration15. Only a spin freezing is observed in the magnetic suscepti-
bility below Tf < 0.3 K, which is two orders of magnitude lower than
jHWj< 20 K (ref. 22) (Fig. 2a). Therefore, below jHWj, the 4f
moments probably remain in a cooperative paramagnetic state down
to at least Tf < 0.3 K (refs 22, 24).

First, we show our main experimental evidence for the broken TRS
found in the states where neither magnetic dipole LRO nor spin freez-
ing is observed in thermodynamic measurements. Figure 2a presents
the temperature dependence of the Hall conductivity sH(T) (defined
in the figure caption) measured at a low field of 0.05 T applied along the
[111] direction. The zero-field-cooled and the field-cooled data of
sH(T) and thus the Hall resistivity rH(T) (Supplementary Fig. 1)
bifurcate at TH < 1.5 K, a temperature which is nearly an order of
magnitude higher than Tf < 0.3 K, although the longitudinal conduc-
tivity s(T) (Fig. 2b, inset) and resistivity r(T) (Supplementary Fig. 1)
does not exhibit any detectable bifurcation. The bifurcation in sH(T)
suggests the emergence of a spontaneous component. To avoid a
(partial) cancellation of sH due to a domain formation, we have per-
formed field sweep measurements up to 7 T at various temperatures.
Corresponding to the above bifurcation found in sH(T), the field
dependence of sH(B) for Bjj[111] at T , TH < 1.5 K shows a hysteresis
between field up and down sweeps, which is accompanied by a finite

remnant Hall conductivity at B 5 0 (Fig. 3a, inset). In sharp contrast,
the field dependence of the magnetization M(B) shows no hysteresis
within our experimental accuracy (,1023mB) at T , TH, and only a
small hysteresis at T , Tf (Fig. 3b, inset). Our observations on
sH(B 5 0, T) and M(B 5 0, T) at various temperatures are summarized
in Fig. 2b. This is evidence of a remarkable separation between the two
temperature scales TH and Tf. Upon cooling, the TRS is broken spon-
taneously and macroscopically at TH without any apparent LRO of
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Figure 2 | Temperature dependence of the magnetic and transport
properties of Pr2Ir2O2. a, Temperature dependence of the Hall conductivity
sH (left axis) and the direct-current susceptibility x 5 M/H (right axis)
under a magnetic field of B 5 0.05 T along the [111] direction. e.m.u.,
electromagnetic unit. Here, Hall conductivity is given by sH 5 2rH/
(rH

2 1 r2), where rH is the Hall resistivity and r is the longitudinal
resistivity. Both the zero-field-cooled (ZFC) and field-cooled (FC) results are
plotted. Vertical dashed lines denote TH < 1.5 K and Tf < 0.3 K, respectively.
b, Temperature dependence of the remnant Hall conductivity sH(B 5 0)
(left axis) and remnant magnetization M(B 5 0) (right axis) at zero field,
obtained after a field sweep down from 7 T in the hysteresis loop
measurements (Supplementary Information). The inset shows the
temperature dependence of the longitudinal conductivity s 5 1/r under
B 5 0.05 T along the [111] direction. No hysteresis is found between the
results obtained in the ZFC and FC sequences. c, Temperature dependence of
the nonlinear susceptibility x3 (Supplementary Information) (left axis), and
magnetic specific heat Cm (right axis) under zero field, adapted from ref. 22.
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anomalous Hall effect dependent on 
the magnetic field direction

S. Nakatsuji et al., 2006

spontaneous anomalous Hall effect

Y. Machida et al., 2010



Classical spin liquids 
spin ice and close-packed dimers



Spin ice

local constraint = 2-in 2-out configuration in every tetrahedron (ice rule) 
(equivalent to six-vertex model)


๏ macroscopic degeneracy: residual Pauling entropy ~30% of ln2

➡ correlated disordered state dubbed as “Coulomb phase” (D. Huse et al., 

2003; S. V. Isakov et al., 2004; C. L. Henley, 2005)

๏ ice rule = zero divergence condition 

➡ fictitious electromagnetic field, algebraic dipolar spin-spin correlations


mapping from local spin configurations to self-avoiding closed loops



Spin ice model

Any single spin flip makes 3-in 1-out/1-in 3-out pairs (monopoles), whose 
energy cost is O(J): strongly suppressed at low T<<J


Global spin flips along the closed loops do not cost energy (zero modes), 
leaving the system within the 2-in 2-out manifold.

Topical Review R1281

Figure 3. (a) Specific heat and (b) entropy data for Dy2Ti2O7 from [30], compared with Monte
Carlo simulation results for the dipolar spin ice model, with Jnn = −1.24 K and Dnn = 2.35 K.

1.2. Dipolar spin ice

Experimentally, it is known that the single ion ground states of the rare earth ions Dy3+ and
Ho3+ in the pyrochlore structure are described by an effective classical Ising doublet [21, 29].
Specific heat measurements by Ramirez [30] on the compound Dy2Ti2O7 have shown that the
‘missing’ magnetic entropy not recovered upon warming the system from T ≈ 0.4 to 10 K
agrees reasonably well with Pauling’s entropy calculation above, S ≈ S(T → 0), thereby
providing compelling thermodynamic evidence that Dy2Ti2O7 is a spin ice material [31] (see
figure 3). While early neutron scattering and magnetization measurements first suggested
that Ho2Ti2O7 was a spin ice material [21], some subsequent specific heat measurements
and numerical simulations by Siddharthan and co-workers were interpreted as evidence for
a freezing transition to a partially ordered state as opposed to spin ice behaviour in that
material [12, 32, 33]. However, more recent specific heat [34, 35], magnetization [35, 36] and
neutron scattering experiments [34], supported by Monte Carlo (MC) simulations [34],confirm
the initial proposal [21] that Ho2Ti2O7 is indeed a spin ice material akin to Dy2Ti2O7. Other
magnetization measurements have recently been reported that also argue for spin ice behaviour
in the closely related Ho2Sn2O7 [37, 38] and Dy2Sn2O7 [39] materials. The dynamical
properties of these materials at the spin ice freezing point appear somewhat puzzling and
are the subject of an increasing number of studies [41–44].

no phase transition, just a crossover 
for the model with n.n. interactions only

๏ efficient Monte Carlo simulation by using the 
global loop flips (R. G. Melko and M. J. P. Gingras, 2004)



Close-packed dimers

local constraint = every site belongs to a single dimer

➡ correlated disordered state dubbed as “Coulomb phase”: 


algebraic dimer-dimer correlations (D. Huse et al., 2003)


mapping from dimers to fictitious field (D. Huse et al., 2003)


➡ Coulomb phase = zero flux state of fictitious field (divergence free)

magnetic field without monopoles. A monomer is a mono-
pole with charge !1 depending on the sublattice.

We define the lattice flux !! through a surface !which
does not contain any sites as the sum of the magnetic
fields on the links piercing it !! " #

RR

B $ dS%lattice. For a
cube with periodic boundary conditions, the flux through
any surface that wraps around the system is invariant
under local rearrangements of the dimers and under lat-
tice translations of the surface. In particular, if we let !i
be planes perpendicular to the cubic unit vectors ei, the
fluxes "i through them are the maximal invariants that
characterize a given topological sector of the dimer
model. For an L3 cube the maximal possible flux is L2=2.

A dimer configuration may be represented by a lattice
magnetic field in any dimension. In 2D, one solves the
constraint r $ B " 0 through B " r& h [16], where h,
the height function mentioned earlier, is a scalar field on
the dual lattice. In 3D, B is computed from a vector
potential A on the links of the dual lattice. Given an
arbitrary A we recover B as its (lattice) curl, B " r&
A which is computed as

Bi#x% "
X

y"@p
Aj#y%; (2)

the oriented sum of the link variables on the boundary @p
of the dual plaquette pi#x% pierced by the link #x;x' ei%.
While in 2D, h is defined up to a global constant, in
3D, we have local gauge transformations, Aj#y% !
Aj#y% '##y ' ej% (##y%, where # is an arbitrary func-
tion on the sites of the dual lattice. Consequently, it is
necessary to pick a gauge to work out properties of the A.
The fluxes "i can be computed from the lattice line
integrals of the vector potential along the boundaries of
!i. Hence the sector with all "i " 0 is obtained from
gauge fields A that obey periodic boundary conditions
themselves.

In analogy to 2D we now conjecture that the long-
wavelength fluctuations of A and therefore B are gov-
erned by a probability distribution for the coarse-grained
fields:

P)A* / e(#K=2%
R

V
#r&A%2 + e(#K=2%

R

V
B2

(3)

in the vicinity of the zero flux "i " 0 state. In the
exponent of Eq. (3) the energy B2=2 of a magnetic field
appears naturally. Configurations that locally minimize
the (coarse-grained) field strength (cf. the lower quad-
rants of Fig. 1) maximize the number of flippable pla-
quettes with two parallel dimers and have high entropy, as
described by Eq. (3).

Two comments are in order:
(i) The assertion Eq. (3) implies that the gauge field is

in a Coulomb phase, in the language of lattice gauge
theories. The existence of this phase in our lattice system
is not in conflict with Polyakov’s proof of confinement
[17] for the standard U(1) lattice gauge theory in 3D
because in our case the microscopics explicitly forbid
the monopoles that were crucial to his analysis.

(ii) Gauge invariance explictly forbids any relevant
operators at the fixed point defined by Eq. (3); this is
the standard explanation of the masslessness of the pho-
ton. Consequently, the prediction of a Coulomb phase is
self-consistent and weak perturbations cannot give rise to
anything new. This should be contrasted with the situ-
ation in 2D, where vertex operators can become relevant
even at weak coupling and, depending on the height
stiffness and the radius of the height field, lead to a flat
phase instead of the rough phase described by a purely
Gaussian action.

Returning to the ansatz (3) it is straightforward to
deduce the long distance correlator,

hBi#x%Bj#0%i "
1

4#K
3xixj ( r2$ij

r5
; (4)

which is of the standard 3D dipole form. Reinserting
the sublattice sign factors gives the connected dimer
correlators.

To test the dipole form, we have carried out Monte
Carlo simulations using the pocket algorithm [7,18] on
large cubic lattices of size L3 with L up to 128, with
periodic boundary conditions. We have computed the
connected correlation function for dimers at site x and
at x' r, both pointing in the same direction e1 " )100*.
The vector r was taken as a multiple of lattice vectors
[111], [010], [100], [110]. The correlations nicely fall off as
1=r% in the regime a , r , L, with % close to 3.
Furthermore, the ratios of the correlations also agree
very well with the predicted dipole form Eq. (4), as
shown in Fig. 2.

Going beyond this regime, we can even compute the
scaling form of the correlations for r- L through a
proper treatment of the periodic boundary conditions
used by our algorithm, which explores all topological
sectors. In the long-wavelength description, we can write
the fields in a given flux (topological) sector as B#x% "
P

i#"i=L2%ei 'B0#x% so that the field B0 now carries zero
flux.When ! " P

i"iei is nonzero, the stiffnesses Kk and
K? for fluctuations parallel and perpendicular to it will

FIG. 1. Dimer configuration on the bipartite square lattice
(left) and corresponding configuration of the divergence-free
magnetic field (right —a dark arrow carries 3 times the flux of a
light one). The two lower quadrants represent plaquettes which
can be flipped (dimers rotated by #=2). These plaquettes have
zero average B field.
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cube with periodic boundary conditions, the flux through
any surface that wraps around the system is invariant
under local rearrangements of the dimers and under lat-
tice translations of the surface. In particular, if we let !i
be planes perpendicular to the cubic unit vectors ei, the
fluxes "i through them are the maximal invariants that
characterize a given topological sector of the dimer
model. For an L3 cube the maximal possible flux is L2=2.

A dimer configuration may be represented by a lattice
magnetic field in any dimension. In 2D, one solves the
constraint r $ B " 0 through B " r& h [16], where h,
the height function mentioned earlier, is a scalar field on
the dual lattice. In 3D, B is computed from a vector
potential A on the links of the dual lattice. Given an
arbitrary A we recover B as its (lattice) curl, B " r&
A which is computed as

Bi#x% "
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the oriented sum of the link variables on the boundary @p
of the dual plaquette pi#x% pierced by the link #x;x' ei%.
While in 2D, h is defined up to a global constant, in
3D, we have local gauge transformations, Aj#y% !
Aj#y% '##y ' ej% (##y%, where # is an arbitrary func-
tion on the sites of the dual lattice. Consequently, it is
necessary to pick a gauge to work out properties of the A.
The fluxes "i can be computed from the lattice line
integrals of the vector potential along the boundaries of
!i. Hence the sector with all "i " 0 is obtained from
gauge fields A that obey periodic boundary conditions
themselves.

In analogy to 2D we now conjecture that the long-
wavelength fluctuations of A and therefore B are gov-
erned by a probability distribution for the coarse-grained
fields:
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exponent of Eq. (3) the energy B2=2 of a magnetic field
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rants of Fig. 1) maximize the number of flippable pla-
quettes with two parallel dimers and have high entropy, as
described by Eq. (3).

Two comments are in order:
(i) The assertion Eq. (3) implies that the gauge field is

in a Coulomb phase, in the language of lattice gauge
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is not in conflict with Polyakov’s proof of confinement
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because in our case the microscopics explicitly forbid
the monopoles that were crucial to his analysis.
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self-consistent and weak perturbations cannot give rise to
anything new. This should be contrasted with the situ-
ation in 2D, where vertex operators can become relevant
even at weak coupling and, depending on the height
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deduce the long distance correlator,
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which is of the standard 3D dipole form. Reinserting
the sublattice sign factors gives the connected dimer
correlators.
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Carlo simulations using the pocket algorithm [7,18] on
large cubic lattices of size L3 with L up to 128, with
periodic boundary conditions. We have computed the
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[111], [010], [100], [110]. The correlations nicely fall off as
1=r% in the regime a , r , L, with % close to 3.
Furthermore, the ratios of the correlations also agree
very well with the predicted dipole form Eq. (4), as
shown in Fig. 2.
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scaling form of the correlations for r- L through a
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Close-packed dimer model

๏ low-T: columnar ordered phase 
translational and cubic symmetries 
are broken


๏ high-T limit: Coulomb phase with 
algebraic dimer-dimer correlations 
(D. Huse et al., 2003)


๏ unconventional phase transition 
compatible with tricritical 
universality class (F. Alet et al., 2006; 
D. Charrier and F. Alet, 2010)

and close packed, i.e., every lattice site is part of one and
only one dimer. Interactions favor aligment of nearest
neighbors (n.n.) dimers on plaquettes of the lattice:

 E ! "
X

plaquettes

njj # n! # n==; (1)

with njj; n! and n== denoting the number of plaquettes with
parallel n.n. dimers in the x, y, and z directions. Simu-
lations (up to N ! 963) are performed with a recent MC
directed-loop algorithm [12].

At T ! 0, the dimers order in columns to minimize the
energy, resulting in a sixfold degenerate ground state. The
associated order parameter is a three-component vector
m!$r% ! $"%r!n!$r%, with n!$r% ! 1 for a dimer pointing
in direction ! 2 x, y, z at site r, and 0 otherwise. Naively,
one would expect a high-T phase with h ~mi ! 0 and ex-
ponentially decaying dimer correlations. However, as
shown by Huse et al. [7], at T ! 1 the system is in a
‘‘Coulomb phase’’, with no true long-range order but with
dipolar dimer-dimer correlations. To see this, the appro-
priate variable is the ‘‘electric field’’ [7] E!$r% !
$"%rn!$r%. This field satisfies r &E ! $"%r ! '1, as the
dimers are close packed. The Coulomb phase can be
characterized [7] in the continuum by an effective ‘‘elec-
trostatic’’ action S ! K

2

R
drE2$r% which generates the

dipolar correlations. Dimer fluxes " ! R
! E & dS through

the planes perpendicular to the units vectors are conserved
quantities and vanish on average. One easily shows that
flux fluctuations allow the calculation of K,

 h"2i=L ! 1

3L
$h"2

xi# h"2
yi# h"2

zi% ! 1=K: (2)

A close similarity with a 3D XY model can be seen
through a duality transformation [13] in which r &E !
$"%r is enforced by an angular Lagrange multiplier # at
each site. The discrete sums on E! are then performed by a
Poisson formula, resulting in an XY interaction (Villain
form) between the # variables. In this language, the
Coulomb phase corresponds to an ordered phase with
broken O$2% symmetry for #, and 1=K is the associated
spin stiffness.

We first present thermodynamic results. Figure 1 (left
panel) shows the behavior of the specific heat per site
Cv=N as a function of T. Two close-by peaks are observed
around T ( 1:52 and T ( 1:67. The first peak is much
broader and does not diverge with system size: since it is
already present and almost converged on small lattices L<
16 (not shown), it cannot be associated to any long distance
or critical behavior. The second peak is much more char-
acteristic of a phase transition: it diverges with L, with a
power-law-like envelope typical of second-order phase
transitions (see top right panel). Note that this peak is
extremely hard to detect since it is absent on small systems
(L ) 16) and also very sharp. We interpret this peak as the
signature of the direct transition (see below) between the
Coulomb and columnar phase. Our best estimate for the

temperature of its divergence is TCvc ! 1:676$1%. To deter-
mine the nature of the transition, we also considered en-
ergy histograms and the energy cumulant [14] defined as
1" hE4i=3hE2i2. No sign of a double peak is detected in
histograms and the energy cumulant is found to saturate to
2=3 at the transition point: this indicates that the transition
is not first order.

Let us now consider the high-T phase. The left inset of
Fig. 2 displays typical data forK"1 for a sample L ! 32.K
is finite in the whole high-T range [with a value K$T !
1% ! 5:12$1% in agreement with Ref. [7]] and diverges
below T ’ 1:6 (rough estimate from the plot, and inset of
Fig. 3). We expect for a second-order phase transition a
scaling form of the type

 K"1 ! h"2i=L ! L"zf*L1=$$T " Tc%+; (3)

where z is a scale exponent, $ the correlation length
exponent, f a scaling function and Tc the critical tempera-
ture. Dimensional analysis of the Coulombian action gives
z ! 1 and therefore, at Tc, the curves of LK"1 intersect for
all L and the derivative L dK"1

dT scales as L1=$. Numerically,
an accurate crossing point (see main panel of Fig. 2) is
indeed obtained for z ! 1, which is also a good check of
the second-order nature of the transition. An estimate
TKc ! 1:6745$5% can be obtained from the crossing of the
curves for the largest L. In the Coulomb phase, dimer-
dimer correlations are expected to be dipolar [7], and this is
found to be indeed true all along the high-T phase. The
prefactor in the dipolar form of the correlation functions
varies as 1=K, and we have checked with high precision
that the value ofK obtained from flux fluctuations perfectly
coincides with that from correlations. Monomer-monomer
correlators are also available in the simulations [6,12] and
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FIG. 1 (color online). Left panel: Specific heat per site Cv=N
as function of temperature T for different system sizes L. Top
right panel: Zoom on the second peak. Bottom right panel:
Scaling of the specific heat at TCvc ! 1:676 as a function of
system size L. The dotted line denotes a power-law fit for the 4
largest systems L ! 48, 64, 80, 96 (see text).
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v2=−1 and vary v4. The only exception is the two limits x
→ !" where we consider the system in absence of plaquette
interactions !v2=0−" and take v4= !1.

We simulate the dimer model by means of a worm Monte
Carlo algorithm with a local heat-bath detailed balance
condition.23 Compared to a local Metropolis algorithm, auto-
correlation times are drastically reduced with a worm algo-

rithm due to the use of non-local moves, which allows us to
reach systems of linear size up to L=180. As we will see in
the next section, the ability to simulate very large system
sizes is of crucial importance to distinguish between continu-
ous and weakly first-order transitions. We would indeed like
to emphasize that for systems like dimer models, or others
which contain a priori long-range correlations, one should be
particularly cautious regarding the issue of finite-size scal-
ing. Here, for the largest system sizes, up to 5#106 sweeps
have been carried !we define one sweep by performing
enough worm moves such that on average every site of the
lattice is visited". The convergence of simulations is checked
by looking at autocorrelation times of the various observ-
ables, as obtained from a binning analysis.

B. Observables

The observables in our system are of three kinds: a first
group is made of the thermodynamic quantities such as the
average energy, a second type of observables is related to the
columnar ordering, and the third type is related to the stiff-
ness of the system !fluctuations of dimer fluxes".

1. Thermodynamic quantities

A phase transition can generally be detected by monitor-
ing the probability distribution of the energy of the system.
For a first-order transition, the average energy #E$ is discon-
tinuous and exhibits a latent heat when the temperature is
lowered. For a second order transition, the average energy is
continuous but its first derivative, the specific heat per site
Cv /N, obeys the scaling law,

Cv

N
=

1
N

d#E$
dT

=
#E2$ − #E$2

T2L3 % Cv
reg + AL$/%. !3"

The first term Cv
reg, corresponding to the regular part of the

specific heat at criticality, is often forgotten in fits of numeri-
cal data as the divergence of the second term usually domi-
nates !for $&0". However, at several points of the phase
diagram, we find that this term cannot be neglected as the
divergence of the specific heat can turn quite slow. In this
situation, one can take Cv

reg as either a new fitting parameter
or as given by results obtained on small systems where the
second term is negligible. In these cases, we take a conser-
vative approach for the error bar on $ /% and quote a result
which encloses all possibilities.

In comparison, for a first-order transition, the specific heat
diverges like the volume: Cv /N'L3. Finally, another mean
to distinguish between first and second order transitions is to
consider the whole histogram of energy at the transition tem-
perature, as obtained in the Monte Carlo simulation. We ex-
pect for a first-order phase transition the appearance of
double peaks, centered at the average energy of the two co-
existing phases. These peaks will appear only for samples
with size above !or close to" the correlation length at the
transition, and should keep being separated when increasing
system size. For a second order phase transition, the histo-
gram should contain a unique peak.

FIG. 2. !Color online" The three different possibilities with four
parallel dimers parallel on a unit cube. Each pattern contributes v4
to the energy EC in Eq. !2".

FIG. 3. !Color online" Illustration of occurrences of the v2 !top"
and v4 !bottom" terms of the model defined in Eq. !2": interacting
plaquettes !top" and cube !bottom" are represented with shaded
surfaces.
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Close-packed dimer model

Coulomb phase = zero flux state of fictitious field (D. Huse et al., 2003)

we find that test monomers are deconfined from T ! 1
down to Tc, confirming the Coulombian nature of the
phase.

To probe the nature of the low-T phase, we calculate the
columnar order parameter

 m ! 2

N

!!!!!!!!

!!!!!!!!
X

r
~m"r#

!!!!!!!!

!!!!!!!! (4)

and its Binder cumulant [15] B ! 1$ hm4i=3hm2i2. The
left inset of Fig. 3 shows the expectation value hmi for a

sample L ! 32 (for illustration, K$1 is again shown).
Columnar order is observed to set in at low T. Binder
cumulants in the main panel admit a crossing point for
systems with different L, leading to an estimate Tcol

c !
1:67525"50#. Assuming the standard scaling form B !
f%L1=!"T $ Tc#&, the derivative dB=dT should scale as
L1=! at Tc.

The previous findings and the agreement between the
various estimates of Tc clearly indicate that the model
displays a single second-order phase transition between
Coulomb and columnar phases. A straightforward choice
for a LGW theory would be to usem as an order parameter.
However, this fails as the Coulomb phase is not just a
simple liquid where all correlations decay exponentially.
Rather, it retains algebraic dimer correlations whose dipo-
lar nature, crucially, does not lead to a peak in the structure
factor anywhere in Fourier space (unlike the analogous
situation in two dimensions [6,12]). Indeed, the natural
variable with algebraic correlations is a coarse-grained
‘‘electric’’ field E; however, this variable exhibits no
long-range order in either phase. Instead, it is the fluctua-
tions of E that distinguish the two phases. It is also in-
structive to examine the transition from the Coulomb side
with the dual angles ". It allows the mapping of the dimer
problem onto a model of interacting vortex loops with a
long-range 1=r potential. While these loops are dilute in
the Coulomb phase, they have to ‘‘proliferate’’ to repro-
duce a low-temperature crystal phase with frozen dimer
positions (thus highly fluctuating dual variables ").
Intuitively, the restoration of the O"2# symmetry would
be through an inverted 3D XY transition, which is however
incompatible with the critical exponents found numerically
(see below). The crucial difference with a simpleO"2# spin
model can be traced back to the background electric
charges '1 which couple to the vortex loops and presum-
ably affect their proliferation. We note the similar analysis
of Ref. [8], where an unconventional non-LGW transition
is predicted in a closely related model.

We now come to the universality class of the transition.
The correlation length exponent ! can be extracted from
the scaling with L of stiffness LdK$1=dT or Binder cu-
mulant dB=dT derivatives at the critical temperature Tc,
which can be calculated thermodynamically in the MC
process. Taking into account only the largest L ( 48 (see
insets of Figs. 2 and 3), we obtain compatible estimates
!K ! 0:50"4# and !col ! 0:51"3# (error bars take into ac-
count stability of fits toward inclusion of smaller samples
and uncertainty on Tc). The specific heat critical exponent
# can be extracted from its scaling at the critical point:
Cv"Tc#=N ! c0 ) AL#=!, where A is a constant and c0 the
regular part at the transition (c0 is non-negligible as can be
seen for the L ! 16 sample in Fig. 1). A fit for the largest L
(see inset in Fig. 1) gives #=! ! 1:11"15#, leading to # !
0:56"7#. Hyperscaling # ! 2$ !d is thus satisfied within
error bars. The last independent exponent can be obtained
from the scaling of the columnar order parameter at criti-
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FIG. 3 (color online). Crossing of the columnar Binder cumu-
lant B as a function of T near the transition point for different
system sizes L. The sample L ! 16 is again out of scaling. Left
inset: Columnar order parameter m and stiffness K$1 (multiplied
by 8) in the whole T range for L ! 32. Right inset: Cumulant
derivative jdB=dTj at Tcol

c ! 1:67 525 versus L in log-log scale.
The dotted line is a power-law fit for the 4 largest L.
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FIG. 2 (color online). Stiffness K$1 multiplied by L [obtained
from h$2i, see Eq. (2)] versus T near the transition, for different
system sizes L. Left inset: Stiffness K$1 for the whole high-T
range for L ! 32. Right inset: Scaling of the derivative
LdK$1=dT versus L in log-log scale for the estimated critical
temperature TKc ! 1:6745. The dotted line denotes a power-law
fit for the 4 largest systems.
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➡ characterization by flux fluctuations

magnetic field without monopoles. A monomer is a mono-
pole with charge !1 depending on the sublattice.

We define the lattice flux !! through a surface !which
does not contain any sites as the sum of the magnetic
fields on the links piercing it !! " #

RR

B $ dS%lattice. For a
cube with periodic boundary conditions, the flux through
any surface that wraps around the system is invariant
under local rearrangements of the dimers and under lat-
tice translations of the surface. In particular, if we let !i
be planes perpendicular to the cubic unit vectors ei, the
fluxes "i through them are the maximal invariants that
characterize a given topological sector of the dimer
model. For an L3 cube the maximal possible flux is L2=2.

A dimer configuration may be represented by a lattice
magnetic field in any dimension. In 2D, one solves the
constraint r $ B " 0 through B " r& h [16], where h,
the height function mentioned earlier, is a scalar field on
the dual lattice. In 3D, B is computed from a vector
potential A on the links of the dual lattice. Given an
arbitrary A we recover B as its (lattice) curl, B " r&
A which is computed as

Bi#x% "
X

y"@p
Aj#y%; (2)

the oriented sum of the link variables on the boundary @p
of the dual plaquette pi#x% pierced by the link #x;x' ei%.
While in 2D, h is defined up to a global constant, in
3D, we have local gauge transformations, Aj#y% !
Aj#y% '##y ' ej% (##y%, where # is an arbitrary func-
tion on the sites of the dual lattice. Consequently, it is
necessary to pick a gauge to work out properties of the A.
The fluxes "i can be computed from the lattice line
integrals of the vector potential along the boundaries of
!i. Hence the sector with all "i " 0 is obtained from
gauge fields A that obey periodic boundary conditions
themselves.

In analogy to 2D we now conjecture that the long-
wavelength fluctuations of A and therefore B are gov-
erned by a probability distribution for the coarse-grained
fields:

P)A* / e(#K=2%
R

V
#r&A%2 + e(#K=2%

R

V
B2

(3)

in the vicinity of the zero flux "i " 0 state. In the
exponent of Eq. (3) the energy B2=2 of a magnetic field
appears naturally. Configurations that locally minimize
the (coarse-grained) field strength (cf. the lower quad-
rants of Fig. 1) maximize the number of flippable pla-
quettes with two parallel dimers and have high entropy, as
described by Eq. (3).

Two comments are in order:
(i) The assertion Eq. (3) implies that the gauge field is

in a Coulomb phase, in the language of lattice gauge
theories. The existence of this phase in our lattice system
is not in conflict with Polyakov’s proof of confinement
[17] for the standard U(1) lattice gauge theory in 3D
because in our case the microscopics explicitly forbid
the monopoles that were crucial to his analysis.

(ii) Gauge invariance explictly forbids any relevant
operators at the fixed point defined by Eq. (3); this is
the standard explanation of the masslessness of the pho-
ton. Consequently, the prediction of a Coulomb phase is
self-consistent and weak perturbations cannot give rise to
anything new. This should be contrasted with the situ-
ation in 2D, where vertex operators can become relevant
even at weak coupling and, depending on the height
stiffness and the radius of the height field, lead to a flat
phase instead of the rough phase described by a purely
Gaussian action.

Returning to the ansatz (3) it is straightforward to
deduce the long distance correlator,

hBi#x%Bj#0%i "
1

4#K
3xixj ( r2$ij

r5
; (4)

which is of the standard 3D dipole form. Reinserting
the sublattice sign factors gives the connected dimer
correlators.

To test the dipole form, we have carried out Monte
Carlo simulations using the pocket algorithm [7,18] on
large cubic lattices of size L3 with L up to 128, with
periodic boundary conditions. We have computed the
connected correlation function for dimers at site x and
at x' r, both pointing in the same direction e1 " )100*.
The vector r was taken as a multiple of lattice vectors
[111], [010], [100], [110]. The correlations nicely fall off as
1=r% in the regime a , r , L, with % close to 3.
Furthermore, the ratios of the correlations also agree
very well with the predicted dipole form Eq. (4), as
shown in Fig. 2.

Going beyond this regime, we can even compute the
scaling form of the correlations for r- L through a
proper treatment of the periodic boundary conditions
used by our algorithm, which explores all topological
sectors. In the long-wavelength description, we can write
the fields in a given flux (topological) sector as B#x% "
P

i#"i=L2%ei 'B0#x% so that the field B0 now carries zero
flux.When ! " P

i"iei is nonzero, the stiffnesses Kk and
K? for fluctuations parallel and perpendicular to it will

FIG. 1. Dimer configuration on the bipartite square lattice
(left) and corresponding configuration of the divergence-free
magnetic field (right —a dark arrow carries 3 times the flux of a
light one). The two lower quadrants represent plaquettes which
can be flipped (dimers rotated by #=2). These plaquettes have
zero average B field.
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magnetic field without monopoles. A monomer is a mono-
pole with charge !1 depending on the sublattice.

We define the lattice flux !! through a surface !which
does not contain any sites as the sum of the magnetic
fields on the links piercing it !! " #
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B $ dS%lattice. For a
cube with periodic boundary conditions, the flux through
any surface that wraps around the system is invariant
under local rearrangements of the dimers and under lat-
tice translations of the surface. In particular, if we let !i
be planes perpendicular to the cubic unit vectors ei, the
fluxes "i through them are the maximal invariants that
characterize a given topological sector of the dimer
model. For an L3 cube the maximal possible flux is L2=2.

A dimer configuration may be represented by a lattice
magnetic field in any dimension. In 2D, one solves the
constraint r $ B " 0 through B " r& h [16], where h,
the height function mentioned earlier, is a scalar field on
the dual lattice. In 3D, B is computed from a vector
potential A on the links of the dual lattice. Given an
arbitrary A we recover B as its (lattice) curl, B " r&
A which is computed as

Bi#x% "
X

y"@p
Aj#y%; (2)

the oriented sum of the link variables on the boundary @p
of the dual plaquette pi#x% pierced by the link #x;x' ei%.
While in 2D, h is defined up to a global constant, in
3D, we have local gauge transformations, Aj#y% !
Aj#y% '##y ' ej% (##y%, where # is an arbitrary func-
tion on the sites of the dual lattice. Consequently, it is
necessary to pick a gauge to work out properties of the A.
The fluxes "i can be computed from the lattice line
integrals of the vector potential along the boundaries of
!i. Hence the sector with all "i " 0 is obtained from
gauge fields A that obey periodic boundary conditions
themselves.

In analogy to 2D we now conjecture that the long-
wavelength fluctuations of A and therefore B are gov-
erned by a probability distribution for the coarse-grained
fields:
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(3)

in the vicinity of the zero flux "i " 0 state. In the
exponent of Eq. (3) the energy B2=2 of a magnetic field
appears naturally. Configurations that locally minimize
the (coarse-grained) field strength (cf. the lower quad-
rants of Fig. 1) maximize the number of flippable pla-
quettes with two parallel dimers and have high entropy, as
described by Eq. (3).

Two comments are in order:
(i) The assertion Eq. (3) implies that the gauge field is

in a Coulomb phase, in the language of lattice gauge
theories. The existence of this phase in our lattice system
is not in conflict with Polyakov’s proof of confinement
[17] for the standard U(1) lattice gauge theory in 3D
because in our case the microscopics explicitly forbid
the monopoles that were crucial to his analysis.

(ii) Gauge invariance explictly forbids any relevant
operators at the fixed point defined by Eq. (3); this is
the standard explanation of the masslessness of the pho-
ton. Consequently, the prediction of a Coulomb phase is
self-consistent and weak perturbations cannot give rise to
anything new. This should be contrasted with the situ-
ation in 2D, where vertex operators can become relevant
even at weak coupling and, depending on the height
stiffness and the radius of the height field, lead to a flat
phase instead of the rough phase described by a purely
Gaussian action.

Returning to the ansatz (3) it is straightforward to
deduce the long distance correlator,

hBi#x%Bj#0%i "
1

4#K
3xixj ( r2$ij

r5
; (4)

which is of the standard 3D dipole form. Reinserting
the sublattice sign factors gives the connected dimer
correlators.

To test the dipole form, we have carried out Monte
Carlo simulations using the pocket algorithm [7,18] on
large cubic lattices of size L3 with L up to 128, with
periodic boundary conditions. We have computed the
connected correlation function for dimers at site x and
at x' r, both pointing in the same direction e1 " )100*.
The vector r was taken as a multiple of lattice vectors
[111], [010], [100], [110]. The correlations nicely fall off as
1=r% in the regime a , r , L, with % close to 3.
Furthermore, the ratios of the correlations also agree
very well with the predicted dipole form Eq. (4), as
shown in Fig. 2.

Going beyond this regime, we can even compute the
scaling form of the correlations for r- L through a
proper treatment of the periodic boundary conditions
used by our algorithm, which explores all topological
sectors. In the long-wavelength description, we can write
the fields in a given flux (topological) sector as B#x% "
P

i#"i=L2%ei 'B0#x% so that the field B0 now carries zero
flux.When ! " P

i"iei is nonzero, the stiffnesses Kk and
K? for fluctuations parallel and perpendicular to it will

FIG. 1. Dimer configuration on the bipartite square lattice
(left) and corresponding configuration of the divergence-free
magnetic field (right —a dark arrow carries 3 times the flux of a
light one). The two lower quadrants represent plaquettes which
can be flipped (dimers rotated by #=2). These plaquettes have
zero average B field.
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Eµ(r) = (�1)rnµ(r)nµ(r) = 0 or 1

we find that test monomers are deconfined from T ! 1
down to Tc, confirming the Coulombian nature of the
phase.

To probe the nature of the low-T phase, we calculate the
columnar order parameter

 m ! 2

N
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r
~m"r#
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!!!!!!!! (4)

and its Binder cumulant [15] B ! 1$ hm4i=3hm2i2. The
left inset of Fig. 3 shows the expectation value hmi for a

sample L ! 32 (for illustration, K$1 is again shown).
Columnar order is observed to set in at low T. Binder
cumulants in the main panel admit a crossing point for
systems with different L, leading to an estimate Tcol

c !
1:67525"50#. Assuming the standard scaling form B !
f%L1=!"T $ Tc#&, the derivative dB=dT should scale as
L1=! at Tc.

The previous findings and the agreement between the
various estimates of Tc clearly indicate that the model
displays a single second-order phase transition between
Coulomb and columnar phases. A straightforward choice
for a LGW theory would be to usem as an order parameter.
However, this fails as the Coulomb phase is not just a
simple liquid where all correlations decay exponentially.
Rather, it retains algebraic dimer correlations whose dipo-
lar nature, crucially, does not lead to a peak in the structure
factor anywhere in Fourier space (unlike the analogous
situation in two dimensions [6,12]). Indeed, the natural
variable with algebraic correlations is a coarse-grained
‘‘electric’’ field E; however, this variable exhibits no
long-range order in either phase. Instead, it is the fluctua-
tions of E that distinguish the two phases. It is also in-
structive to examine the transition from the Coulomb side
with the dual angles ". It allows the mapping of the dimer
problem onto a model of interacting vortex loops with a
long-range 1=r potential. While these loops are dilute in
the Coulomb phase, they have to ‘‘proliferate’’ to repro-
duce a low-temperature crystal phase with frozen dimer
positions (thus highly fluctuating dual variables ").
Intuitively, the restoration of the O"2# symmetry would
be through an inverted 3D XY transition, which is however
incompatible with the critical exponents found numerically
(see below). The crucial difference with a simpleO"2# spin
model can be traced back to the background electric
charges '1 which couple to the vortex loops and presum-
ably affect their proliferation. We note the similar analysis
of Ref. [8], where an unconventional non-LGW transition
is predicted in a closely related model.

We now come to the universality class of the transition.
The correlation length exponent ! can be extracted from
the scaling with L of stiffness LdK$1=dT or Binder cu-
mulant dB=dT derivatives at the critical temperature Tc,
which can be calculated thermodynamically in the MC
process. Taking into account only the largest L ( 48 (see
insets of Figs. 2 and 3), we obtain compatible estimates
!K ! 0:50"4# and !col ! 0:51"3# (error bars take into ac-
count stability of fits toward inclusion of smaller samples
and uncertainty on Tc). The specific heat critical exponent
# can be extracted from its scaling at the critical point:
Cv"Tc#=N ! c0 ) AL#=!, where A is a constant and c0 the
regular part at the transition (c0 is non-negligible as can be
seen for the L ! 16 sample in Fig. 1). A fit for the largest L
(see inset in Fig. 1) gives #=! ! 1:11"15#, leading to # !
0:56"7#. Hyperscaling # ! 2$ !d is thus satisfied within
error bars. The last independent exponent can be obtained
from the scaling of the columnar order parameter at criti-
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FIG. 3 (color online). Crossing of the columnar Binder cumu-
lant B as a function of T near the transition point for different
system sizes L. The sample L ! 16 is again out of scaling. Left
inset: Columnar order parameter m and stiffness K$1 (multiplied
by 8) in the whole T range for L ! 32. Right inset: Cumulant
derivative jdB=dTj at Tcol

c ! 1:67 525 versus L in log-log scale.
The dotted line is a power-law fit for the 4 largest L.
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FIG. 2 (color online). Stiffness K$1 multiplied by L [obtained
from h$2i, see Eq. (2)] versus T near the transition, for different
system sizes L. Left inset: Stiffness K$1 for the whole high-T
range for L ! 32. Right inset: Scaling of the derivative
LdK$1=dT versus L in log-log scale for the estimated critical
temperature TKc ! 1:6745. The dotted line denotes a power-law
fit for the 4 largest systems.
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phase transition is signaled by 
• columnar order parameter below Tc 
• flux fluctuations for Coulomb phase above Tc

F. Alet et al., 2006



Close-packed dimer model: variants

๏ low-T: columnar “order” 

no further breaking of the symmetry of 
the system


๏ high-T: Coulomb phase with algebraic 
dimer-dimer correlations 

non-zero flux fluctuations


๏ phase transition compatible with 3D XY 
universality class (G. Chen et al., 2009)

of these transitions is fully revealed in bimodal energy his-
tograms in the vicinity of the transition temperature, which
we will discuss in detail in Sec. III. The 1-GS and 6-GS
models exhibit smooth features in the energy E!T" and
monomer confinement length !2!T" and a !divergent" peak in

the specific heat Cv!T" which are indicative of a continuous
phase transition. While we will not discuss the 6-GS model
in detail here and refer to previous work in Ref. 4, we un-
ambiguously demonstrate in the following that the 1-GS
model undergoes a continuous transition in the 3D XY uni-
versality class. We will now turn to the individual dimer
models and discuss our numerical results in more detail in
the following.

B. 1-GS model

We will first concentrate on the 1-GS model which ener-
getically favors a single columnar dimer ordering pattern
shown in Fig. 1. Our numerical simulations for systems with
up to 2563 lattice sites clearly suggest that this model under-
goes a continuous thermal transition between the Coulomb
phase and the dimer crystal.

The specific heat plotted in Fig. 3 exhibits a peak around
the transition temperature of Tc#2.276"0.001 that diverges
very slowly with L. Below this peak, there is a shoulder that
does not show any variation with system size !see inset of
Fig. 3" and thus cannot be associated with any long distance
or critical behavior. The latter is reminiscent of the 6-GS
model4 which below the transition temperature exhibits an
even more pronounced shoulder !for a comparison, see also
Fig. 2".

A distinct feature of the Coulomb phase is that !test"
monomers are deconfined. As a consequence, we expect the
monomers to confine at the phase transition out of the Cou-
lomb phase. This confinement transition can be tracked using
the monomer confinement length !2!T" introduced above.
Plotting data for various systems sizes, as shown in Fig. 4,
reveals a distinct crossing point at the transition temperature.
This absence of finite-size effects at the transition tempera-
ture indicates a universal value of the confinement length
!̃!Tc" at this transition, which we estimate to be
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FIG. 2. !Color online" Overview of numerical results for the
dimer models with one !1-GS", two !2-GS", four !4-GS", and six
!6-GS" columnar ground states: !a" the specific heat per site
Cv!T" /N, !b" the energy per site E!T" /N, and !c" the monomer
confinement length !2!T" defined in the text. All four models un-
dergo a direct transition with clear thermodynamic signatures be-
tween the high-temperature Coulomb phase !with deconfined
monomers" to the dimer crystal at low temperature !with confined
monomers". The sharp, kinklike features in the energy E!T" and
monomer confinement length !2!T" are indicative of a first-order
transition for the 2-GS and 4-GS models. The 1-GS and 6-GS mod-
els undergo continuous transitions with smooth features. Data are
shown for system size L=48 for the 1-GS and 6-GS models and
L=32 for the 2-GS and 4-GS models.
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L. Inset shows a specific-heat scan over a wide temperature range
for a sample L=48 system size. Below the peak around Tc
#2.276"0.001, there is a shoulder which shows no variation with
system size.
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!̃!Tc"#0.923"0.001. This crossing point strongly indicates
a continuous transition.

Another indication of a continuous transition is that the
distribution of dimer fluxes # also becomes universal at the
transition temperature. Indeed curves of the stiffness $ !mul-
tiplied by system size L" cross for different L at the transition
out of the Coulomb phase, as shown in Fig. 5. The position
of this crossing point coincides exactly with the transition
temperature Tc=2.276"0.001 estimated from the specific
heat.

Having established the continuous nature of the transition,
we now turn to its universality class. Since this phase tran-
sition occurs without any spontaneous symmetry breaking,
we cannot rely on conventional techniques using an order
parameter to measure critical exponents. However, we can
still consider thermodynamics, such as the behavior of the
specific heat in the vicinity of the transition. As shown in

Fig. 3, Cv!Tc" /N grows very slowly with system size at criti-
cality, which would suggest a critical exponent %&0, but
very small. It is also quite possible that Cv!Tc" /N actually
converges to a finite value, but for system sizes that are
currently out of reach of our numerical simulations. This
would indicate a negative value for %'0, also likely very
small. This latter scenario is not unlikely considering the 3D
XY model, which is known to have a small negative critical
exponent %=−0.0151,16 but for which numerical
simulations17 do not see a convergence of the specific heat.

Thermodynamics being of little help to determine the uni-
versality class, another possibility is to consider crossings
and data collapse of adequate quantities, including the stiff-
ness and the confinement length. Standard finite-size scaling
arguments indicate that close to the transition point, the stiff-
ness should scale as $= 1

L $̃!L1/(t", where $̃ is a universal
function, t= !T−Tc" /Tc the deviation from the critical tem-
perature, and ( the correlation length exponent. Performing
this analysis, we find a nice data collapse for the correlation
length exponent (=0.6717 of the 3D XY universality class16

as shown in the top panel of Fig. 6. The same scaling form
!= !̃!L1/(t" is also expected for the confinement length !2. As
shown in the lower panel of Fig. 6, we again find a data
collapse for the same exponent (=0.6717. Finally, we note
that the system-size independent value !̃!Tc"
#0.923"0.001 is another characteristic of the universality
class of the transition and in this case also points to the 3D
XY universality class.18
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FIG. 4. !Color online" Confinement length !2!T" for the 1-GS
model measuring the !squared" average distance between two
monomers. Data for different system sizes L are renormalized by
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cinity of the transition temperature indicates a continuous transition.
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Intermediate (hybrid) 
localized moments + itinerant electrons 

loop liquid and scalar chiral liquid



Spin-charge coupling

charge spin 
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internal field from peculiar magnetic texture

➡ exotic electronic and transport properties

effective magnetic interactions

➡ reconstruction of magnetic structure



Loop liquid in kagome ice

classical spin liquid state with 
2up-1down local configuration 
(ferrimagnetic state)


➡ ↑spin loops + isolated ↓spin sites


Itinerant electrons come into the 
↑spin loops to gain kinetic energy.


➡ free electrons in closed 1D loops 
(J. Jaubert et al., 2012)


➡ resonating peaks in DOS and 
optical conductivity (H. Ishizuka 
and Y. Motome, 2013)
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are shown in Fig. 3(d). Both show a crossing of the results
for different sizes, indicating the transition is of second order.
The critical temperatures determined from the two independent
Binder analyses show good accordance; Tc = 0.051(4). On the
other hand, a rapid increase of S(k = 0)/Ns to 1 is observed in
Ns = 42 and 62, as shown in Fig. 3(c); the onset T decreases
for larger Ns although the results show strong finite size
effects with different behavior for even and odd Ns. This
suggests a phase transition to the q = 0 ordered state at a
lower T than 0.028; this is consistent with the ground state
obtained by the variational calculation, as shown in Fig. 1(a).
Although the precise estimate of the critical temperature is
difficult within the present calculation, these results indicate
that successive phase transitions from PM to LL and LL
to the q = 0 FR state take place at n = 0.83. The former
corresponds to the formation of loops, and the latter to their
crystallization.

Now we discuss the electronic and transport properties of
the itinerant electrons. Figure 4 shows the result of optical
conductivity σ (ω). First, to extract the effect of characteristic
spin correlations in the LL state, we calculate σ (ω) by taking
a simple average over different spin patterns in the ideal LL
manifold (all the triangles satisfy the two-up one-down local
constraint). The calculations were done by using the Kubo
formula for 24 different spin patterns. Figure 4(a) is the result

FIG. 4. (Color online) Optical conductivity σ (ω) calculated (a) by
simple average over LL configurations while varying J at n = 0.843
for a 22 supercell of N = 3 × 122 sites, and (b) by MC simulation
while varying n at J = 6 for a 42 supercell of N = 3 × 62 sites
at T = 0.04. The scattering rate in the Kubo formula is taken as
τ−1 = 0.01. The typical error bars are shown at ω = 0.5. The inset in
(a) shows the peak position of σ (ω) at ω ∼ 1. The dotted line shows
the fitting by ω = 0.995 + 0.558/J − 0.155/J 2. The inset in (b) is
DOS at n = 0.862. The Fermi level is set at ε = 0.

of σ (ω) calculated at n = 0.843 for various J . All the results
show a sharp peak at ω = ωp ∼ 1.0–1.2, which shifts to lower
ω for larger J .

The characteristic peak comes from the transition process
between two localized states in the six-site loops. In the limit
of J → ∞, the electrons are confined in the loops or at
isolated sites;11 the contribution to σ (ω) comes only from
the transition process between the electronic states in the same
loop. Hence, sharp peaks appear in σ (ω) corresponding to the
discrete energy levels in the finite length loops. In the current
kagome case, the most dominant loops are the shortest ones
with a length of six sites. In the six-site loops, the energy
difference between the unoccupied and occupied levels at this
filling (the highest and second highest levels) is 1. Hence, we
expect a sharp peak at ωp = 1 in the limit of J → ∞. For
large but finite J , the second-order perturbation in terms of
the hopping between up and down spin sites shifts the second
highest eigenenergy to a lower energy. On the other hand, this
perturbation process does not affect the highest eigenenergy.
Hence, it is expected that the peak shifts to a higher ω with
decreasing J ; the asymptotic behavior at J → ∞ is expected
to be ωp = 1 + O(1/J ). This is confirmed by the fitting shown
in the inset of Fig. 4(a).

Interestingly, the peak persists in the weak J region where
the exchange splitting 2J is comparable or smaller than
the bare bandwidth 6t and the above perturbative argument
appears to be no longer valid. In a recent study on a metal-
insulator transition caused by correlated potentials, a LL-type
local correlation induces a metal-insulator transition at a
considerably smaller potential than the bandwidth by confining
the electrons in the loops.10 The persisting resonant peak in
σ (ω) is likely to be the consequence of this confinement.

Emergence of the characteristic peak is also observed in
the thermodynamic average obtained by the MC simulation.
Figure 4(b) shows the MC result of σ (ω) while varying n at
T = 0.04 and J = 6. With increasing n from the FM region,
the peak at ω ∼ 1 develops in the LL state for n ! 0.8. The
inset in Fig. 4(b) shows the density of states (DOS) for itinerant
electrons (lower half of two split bands) at n = 0.862. The
result clearly shows the presence of two sharp peaks below
and above the Fermi level set at ε = 0; the energy difference
is about 1.1, which well corresponds to the peak in σ (ω) in the
main panel of Fig. 4(b).

To summarize, we studied an Ising-spin Kondo lattice
model on a kagome lattice focusing on the emergent magnetic
states and their electronic properties. By using an unbiased
Monte Carlo simulation, we showed that the loop-liquid state
emerges in the finite temperature region, in addition to ferro-
magnetic, q = 0 ferrimagnetic, and

√
3 ×

√
3 ferrimagnetic

states. The loop liquid is a Coulombic ferrimagnetic state,
characterized by the emergent up-spin loops originating from
the two-up one-down local spin configurations. The phase
diagram is understood in terms of the emergent loops as
crystallization and cohesion of the dense liquid of the loops.
We also showed that the loop-liquid formation is observed
in characteristic peaks in the optical conductivity. Recently,
the spin-charge coupling in frustrated magnets has been
revealed to exhibit rich physics, both in magnetic and transport
properties. We hope that our finding of yet another emergent
state will further stimulate the study of these systems.
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FIG. 1. (Color online) (a) Phase diagram of the model in Eq. (1)
at J = 6 obtained by Monte Carlo simulation. The symbols show
the critical temperatures Tc for magnetic states: ferromagnetic (FM),
partially ferromagnetic (PFM), loop liquid (LL), q = 0 ferrimag-
netic (q = 0), and

√
3 ×

√
3 ferrimagnetic (

√
3 ×

√
3) states. Tc

for the
√

3 ×
√

3 state at n = 8/9 is shown by the diamond, while
the upper limit for Tc for the q = 0 state n = 0.83 is shown by the
downward triangle, which is given by the temperature we reached
with Ns = 82 calculations. The squares (circles) show Tc determined
from the Binder analysis of m (P ), and the upward triangles show Tc

determined by the system-size extrapolation of the peak of χm. The
curve connecting the symbols is a guide for the eyes. The strip at the
bottom is the ground state phase diagram obtained by the variational
calculation for three magnetic orders: FM, q = 0, and

√
3 ×

√
3.

PS is the phase separation between the neighboring two phases.
The schematic pictures of the magnetic states are given for (b) LL,
(c) q = 0, and (d)

√
3 ×

√
3. The bold lines denote the loops

connecting up-spin sites and the dots show down-spin sites.

size N = 3 × Ns with Ns = 92 under the periodic boundary
conditions (Ns is the number of three-site unit cells). To deal
with the freezing of MC sampling, some of the low-T data
were calculated starting from a mixed initial spin configuration
of low-T ordered and high-T disordered states.17 The thermal
averages were calculated for typically 15 000–80 000 MC steps
after 5000–18 000 MC steps for thermalization. In addition, the
ground state phase diagram is also obtained by comparing the
energy of the dominant phases found in the MC simulation.18

Figure 1(a) shows the phase diagram obtained by the
MC simulation at J = 6 while varying electron density
n =

∑
iσ ⟨c†iσ ciσ ⟩/N . As T is lowered, the system exhibits

a phase transition developing a net magnetization m =√
⟨(

∑
i Si/N)2⟩. T dependence of m is shown in Fig. 2(a). In

the low density region for n ! 0.56, m approaches its saturated
value 1 in the low-T limit, namely, the system exhibits a fully
polarized FM order. This phase is connected to the FM phase in

the large J region, which is induced by the DE mechanism.4,5

While increasing n, the low-T value of m decreases from
1 and continuously becomes smaller as n becomes larger,
as shown in Figs. 2(a) and 2(b). At the same time, the
probability to find a two-up one-down spin configuration in
each triangle, P =

√
⟨(

∑
ν 3pν/2N )2⟩, increases continuously

from zero [Fig. 2(b)]; here, pν = 1 (−1) for two-up one-down
(one-up two-down) and otherwise pν = 0, and the sum is
over all triangles. The spin structure factor S(k) for the same
sublattice is featureless except for the peak at k = 0, as shown
in Fig. 2(c); here, S(k) = 1

Ns

∑
i,j∈α⟨SiSj ⟩ exp(ik · rij ), where

rij is the vector from ith to j th site, and the sum is taken for
the sites i,j in the same sublattice α. We call this region with
the reduced m the partially ferromagnetic (PFM) phase.19

In the region of 0.8 ! n < 8/9, however, the low-T value
of m becomes almost independent of n, and saturates to a
fractional value m = 1/3, as shown in Fig. 2(a). In this region,
most of the triangles on the kagome lattice are in two-up
one-down spin configurations, namely, P ≃ 1 [Fig. 2(b)].
As shown in Fig. 2(d), S(k) does not show any sharp peak
except for the one at k = 0, indicating that this state has no
superstructure. Hence, this FR state is a peculiar Coulombic
state subject to the two-up one-down local constraint, in a
similar sense to the two-in two-out state in spin ice.20,21

The spin state is composed of the emergent degrees of
freedom, self-avoiding up-spin loops and isolated down-spins,
as schematically shown in Fig. 1(b). Hence, we call this
Coulombic state the loop liquid (LL).

An interesting observation here is that the change between
the FM, PFM, and LL states is smooth and there is no sign of
phase transition. Both m and P change continuously without
showing any singularity, and the magnetic susceptibility χm

shows only a broad hump, as shown in Fig. 2(b). This indicates
that the change from FM to LL is a crossover and not a phase
transition. Such behavior is understood from the symmetry
point of view. In the LL state, though m is nonzero, the system
remains disordered and preserves all the symmetries of the
lattice; the situation is unchanged from the FM and PFM states.
As a consequence, these phases are smoothly connected by the
crossover.

On the other hand, with decreasing T or with further
increasing n, the LL state exhibits phase transitions showing
a magnetic long-range order (LRO). In our MC simulation,
we identify two different transitions: one is the transition
to the state with q = 0 LRO of the two-up one-down spin
configurations [Fig. 1(c)], and the other to the state with√

3 ×
√

3 LRO [Fig. 1(d)]. The former is observed while
decreasing T at n ∼ 0.83, and the latter is found by increasing
n to a commensurate filling n = 8/9. S(k) for the latter state
is shown in Fig. 2(e). In the corresponding density regions,
the two phases are obtained in the variational calculation
for the ground state, as shown in Fig. 1(a). These two LRO
states can be viewed as crystal phases of the emergent loops
in the two extreme cases; the former is a periodic array of
one-dimensional chains, while the latter is the shortest six-site
hexagons. Interestingly, the peculiar LL state extends in the
density region between these two crystal phases.

Let us closely look at the formation of LL and the
crystallization of loops. Figure 3 shows the MC results of T
dependence of magnetic properties at n = 0.83. The result
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Monte Carlo simulation for a Kondo lattice model with Ising spins               
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FIG. 1. (color online). (a) Phase diagram of the model in Eq. (1) at J = 6 obtained by the

Monte Carlo simulation. The symbols shows the critical temperatures Tc for magnetic states:
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triangle, which is given by the temperature we reached with Ns = 82 calculations. The squares

(circles) show Tc determined from the Binder analysis of m (P ), and the upward triangles show Tc

determined by the system-size extrapolation of the peak of χm. The curve connecting the symbols

is a guide for the eyes. The strip at the bottom is the ground state phase diagram obtained by

the variational calculation for three magnetic orders, FM, q = 0, and
√
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√
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FIG. 1. (Color online) (a) Phase diagram of the model in Eq. (1)
at J = 6 obtained by Monte Carlo simulation. The symbols show
the critical temperatures Tc for magnetic states: ferromagnetic (FM),
partially ferromagnetic (PFM), loop liquid (LL), q = 0 ferrimag-
netic (q = 0), and

√
3 ×

√
3 ferrimagnetic (

√
3 ×

√
3) states. Tc

for the
√

3 ×
√

3 state at n = 8/9 is shown by the diamond, while
the upper limit for Tc for the q = 0 state n = 0.83 is shown by the
downward triangle, which is given by the temperature we reached
with Ns = 82 calculations. The squares (circles) show Tc determined
from the Binder analysis of m (P ), and the upward triangles show Tc

determined by the system-size extrapolation of the peak of χm. The
curve connecting the symbols is a guide for the eyes. The strip at the
bottom is the ground state phase diagram obtained by the variational
calculation for three magnetic orders: FM, q = 0, and

√
3 ×

√
3.

PS is the phase separation between the neighboring two phases.
The schematic pictures of the magnetic states are given for (b) LL,
(c) q = 0, and (d)

√
3 ×

√
3. The bold lines denote the loops

connecting up-spin sites and the dots show down-spin sites.

size N = 3 × Ns with Ns = 92 under the periodic boundary
conditions (Ns is the number of three-site unit cells). To deal
with the freezing of MC sampling, some of the low-T data
were calculated starting from a mixed initial spin configuration
of low-T ordered and high-T disordered states.17 The thermal
averages were calculated for typically 15 000–80 000 MC steps
after 5000–18 000 MC steps for thermalization. In addition, the
ground state phase diagram is also obtained by comparing the
energy of the dominant phases found in the MC simulation.18

Figure 1(a) shows the phase diagram obtained by the
MC simulation at J = 6 while varying electron density
n =

∑
iσ ⟨c†iσ ciσ ⟩/N . As T is lowered, the system exhibits

a phase transition developing a net magnetization m =√
⟨(

∑
i Si/N)2⟩. T dependence of m is shown in Fig. 2(a). In

the low density region for n ! 0.56, m approaches its saturated
value 1 in the low-T limit, namely, the system exhibits a fully
polarized FM order. This phase is connected to the FM phase in

the large J region, which is induced by the DE mechanism.4,5

While increasing n, the low-T value of m decreases from
1 and continuously becomes smaller as n becomes larger,
as shown in Figs. 2(a) and 2(b). At the same time, the
probability to find a two-up one-down spin configuration in
each triangle, P =

√
⟨(

∑
ν 3pν/2N )2⟩, increases continuously

from zero [Fig. 2(b)]; here, pν = 1 (−1) for two-up one-down
(one-up two-down) and otherwise pν = 0, and the sum is
over all triangles. The spin structure factor S(k) for the same
sublattice is featureless except for the peak at k = 0, as shown
in Fig. 2(c); here, S(k) = 1

Ns

∑
i,j∈α⟨SiSj ⟩ exp(ik · rij ), where

rij is the vector from ith to j th site, and the sum is taken for
the sites i,j in the same sublattice α. We call this region with
the reduced m the partially ferromagnetic (PFM) phase.19

In the region of 0.8 ! n < 8/9, however, the low-T value
of m becomes almost independent of n, and saturates to a
fractional value m = 1/3, as shown in Fig. 2(a). In this region,
most of the triangles on the kagome lattice are in two-up
one-down spin configurations, namely, P ≃ 1 [Fig. 2(b)].
As shown in Fig. 2(d), S(k) does not show any sharp peak
except for the one at k = 0, indicating that this state has no
superstructure. Hence, this FR state is a peculiar Coulombic
state subject to the two-up one-down local constraint, in a
similar sense to the two-in two-out state in spin ice.20,21

The spin state is composed of the emergent degrees of
freedom, self-avoiding up-spin loops and isolated down-spins,
as schematically shown in Fig. 1(b). Hence, we call this
Coulombic state the loop liquid (LL).

An interesting observation here is that the change between
the FM, PFM, and LL states is smooth and there is no sign of
phase transition. Both m and P change continuously without
showing any singularity, and the magnetic susceptibility χm

shows only a broad hump, as shown in Fig. 2(b). This indicates
that the change from FM to LL is a crossover and not a phase
transition. Such behavior is understood from the symmetry
point of view. In the LL state, though m is nonzero, the system
remains disordered and preserves all the symmetries of the
lattice; the situation is unchanged from the FM and PFM states.
As a consequence, these phases are smoothly connected by the
crossover.

On the other hand, with decreasing T or with further
increasing n, the LL state exhibits phase transitions showing
a magnetic long-range order (LRO). In our MC simulation,
we identify two different transitions: one is the transition
to the state with q = 0 LRO of the two-up one-down spin
configurations [Fig. 1(c)], and the other to the state with√

3 ×
√

3 LRO [Fig. 1(d)]. The former is observed while
decreasing T at n ∼ 0.83, and the latter is found by increasing
n to a commensurate filling n = 8/9. S(k) for the latter state
is shown in Fig. 2(e). In the corresponding density regions,
the two phases are obtained in the variational calculation
for the ground state, as shown in Fig. 1(a). These two LRO
states can be viewed as crystal phases of the emergent loops
in the two extreme cases; the former is a periodic array of
one-dimensional chains, while the latter is the shortest six-site
hexagons. Interestingly, the peculiar LL state extends in the
density region between these two crystal phases.

Let us closely look at the formation of LL and the
crystallization of loops. Figure 3 shows the MC results of T
dependence of magnetic properties at n = 0.83. The result
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Magnetic and electronic states of an Ising-spin Kondo lattice model on a kagome lattice are investi-
gated by a Monte Carlo simulation. In addition to the conventional ferromagnetic and ferrimagnetic
orders, we show that this model exhibits several thermally-induced phases, such as partially disor-
dered, Kosterlitz-Thouless-like, and loop-liquid states. In the partially disordered state, we show
that the magnetic transition is associated with the charge-gap formation. We find that the density
of state shows characteristic peaks reflecting the underlying spin texture. On the other hand, in the
loop-liquid state, the formation of closed loops of the same spin sites manifests itself in the peaks
in the density of states and the optical conductivity. Our results elucidate the peculiar coopera-
tion between thermal fluctuations and the spin-charge interplay in this frustrated itinerant electron
system.

PACS numbers: 75.30.Kz, 71.30.+h, 75.40.Mg, 71.10.Fd

I. INTRODUCTION

The studies on exotic magnetism in geometrically frus-
trated systems is a hot topic in condensed matter physics,
powered by the discovery of many new candidate materi-
als and the development of new theoretical techniques.1,2
A key feature of frustrated magnets is the suppression of
conventional magnetic ordering. In these systems, com-
petition between magnetic interactions due to underly-
ing lattice geometry suppresses the formation of mag-
netic long-range order (LRO), often leaving the system
disordered down to zero temperature. In classical spin
systems, the disordered ground state is associated with
macroscopic degeneracy comprised of spin states that sat-
isfy a local constraint.3–5 Such degenerated ground states
are extremely sensitive to perturbations, such as subdom-
inant interactions and fluctuations, providing a fertile
ground for exotic magnetism.

A fundamental, interesting example is found in Ising
antiferromagnets on geometrically frustrated lattices.
For example, previous studies on the triangular6–8 and
kagome lattice9,10 Ising antiferromagnets have reported
that Kosterlitz-Thouless (KT) phases are induced by
further-neighbor interactions. Another prominent phe-
nomenon caused by subdominant interactions is the par-
tial lifting of the ground-state manifold, such as par-
tially disordered (PD) states.11,12 The PD states are pe-
culiar magnetic orders characterized by coexistence of
magnetically-ordered and paramagnetic (PM) sites form-
ing a periodic structure; an example on the kagome lat-
tice is shown in Fig. 1(a). Due to the presence of the
PM moments, the PD states retain the residual entropy.
Hence, they are interpreted as a partial lifting of the de-
generate ground-state manifold.

Another interesting example is in itinerant magnets on
frustrated lattices.13–16 Some of them are described by
the Kondo lattice model, in which itinerant electrons are
coupled with localized moments via the local exchange
interaction. In this system, the effective interactions be-
tween the localized moments are induced by the kinetic

(a)

3
1

2

A

A

A

B

B

B C
a

C

(b)

(c) (d)

x

y

FIG. 1. (color online). Schematic pictures of (a) partial dis-
order (PD), (b) loop liquid (LL), (c) q = 0 ferrimagnetic (FR)
order, and (d)

√
3×

√
3 FR order. The arrows in (a), (c), and

(d) indicate ordered Ising moments, and the filled circles in
(a) indicate paramagnetic sites. In (a), the shaded hexagon
shows the crystallographic unit cell of the kagome lattice (1,
2, and 3 denote the three sublattices), and the dotted hexagon
is the magnetic unit cell for the PD state (A, B, and C indi-
cates magnetic sublattices); a = 1 is the lattice constant. In
(b)-(d), the thick lines connect sites with up spins; in (b), the
dots denote the sites with down spins and the 6 site loops are
colored in red.

motion of itinerant electrons, known as the Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction.17–19 Such ef-
fective interactions are, in general, long-ranged with os-
cillating sign, potentially leading to competing interac-
tions. Meanwhile, in the itinerant electron systems, mag-
netic LRO may be stabilized by the formation of energy
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A fundamental, interesting example is found in Ising
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generate ground-state manifold.

Another interesting example is in itinerant magnets on
frustrated lattices.13–16 Some of them are described by
the Kondo lattice model, in which itinerant electrons are
coupled with localized moments via the local exchange
interaction. In this system, the effective interactions be-
tween the localized moments are induced by the kinetic

(a)

3
1

2

A

A

A

B

B

B C
a

C

(b)

(c) (d)

x

y

FIG. 1. (color online). Schematic pictures of (a) partial dis-
order (PD), (b) loop liquid (LL), (c) q = 0 ferrimagnetic (FR)
order, and (d)

√
3×

√
3 FR order. The arrows in (a), (c), and

(d) indicate ordered Ising moments, and the filled circles in
(a) indicate paramagnetic sites. In (a), the shaded hexagon
shows the crystallographic unit cell of the kagome lattice (1,
2, and 3 denote the three sublattices), and the dotted hexagon
is the magnetic unit cell for the PD state (A, B, and C indi-
cates magnetic sublattices); a = 1 is the lattice constant. In
(b)-(d), the thick lines connect sites with up spins; in (b), the
dots denote the sites with down spins and the 6 site loops are
colored in red.

motion of itinerant electrons, known as the Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction.17–19 Such ef-
fective interactions are, in general, long-ranged with os-
cillating sign, potentially leading to competing interac-
tions. Meanwhile, in the itinerant electron systems, mag-
netic LRO may be stabilized by the formation of energy
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FIG. 2. (Color online) (a) MC results for T dependence of m at different n. The data at n = 8/9 are calculated for Ns = 92, while the others
are calculated for Ns = 82. (b) n dependence of m, χm, and P at T = 0.03 for Ns = 62, 72, 82, and 92. The MC results of S(k)/Ns are shown
for (c) n = 0.65, (d) n = 0.84, and (e) n = 8/9 at T = 0.03 and Ns = 92.

in Fig. 3(a) shows the increase of m with saturation to
1/3 and a divergent peak of χm at T ∼ 0.05. At the same
time, as shown in Fig. 3(b), P shows saturation to 1 and

its susceptibility χP shows a peak, indicating that most of
the triangles become two-up one-down below T ∼ 0.05. The
Binder parameters22 for m and P (gm and gP , respectively),

FIG. 3. (Color online) MC results for (a) m and χm, (b) P and χP , (c) S(k = 0)/Ns, and (d) gm and gP for Ns = 42, 52, 62, 72, and 82 and
at n = 0.83.
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kagome ice with spin-ice type noncoplanar spin configuration:    
magnetically disordered but scalar chirality ordered


➡Charge gap opens at n=1/3 and 2/3 (H. Ishizuka and Y. Motome, 2013; 2014)

➡ quantum anomalous Hall effect (H. Ishizuka and Y. Motome, 2013)

Insulating kagome ice: scalar chiral liquid
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Fig. 3. (Color online) (a), (b) The averaged DOS for the kagome-ice states while varying the canting angle
θ. The size of the energy gaps for n = 2/3 and 1/3 is shown in (c) and (d), respectively. The insets in (c) and
(d) are the enlarged views of the energy gaps at n = 2/3 and 1/3, respectively.

indicates that the energy gap at n = 1/3 appears in the wide range of θ for 0.05π ! θ ! 0.25π.
At θ = 0, the system consists of the 1D loops of up spins and the isolated sites of down spin, as

the transfer τ ij = 0 between up and down spin sites. Hence, as shown in Fig. 3(b), the DOS consists
of the 1D-like electronic DOS from the up-spin loops and the flat band at ε = 0 from the down-spin
sites; the spikes come from the finite size loops which give discrete energy levels.

Briefly summarizing, the evolution of the electronic DOS with respect to the canting angle θ
shown here indicates that the kagome-ice insulating state at n = 2/3 is stable in a wide range of θ for
0.25π ! θ ! 0.45π. Furthermore, a different charge gap appears at n = 1/3 for 0.05π ! θ ! 0.25π.
These results indicate that the peculiar charge gap formation induced by a correlated spin texture
without magnetic ordering takes place widely in the kagome-ice type models.

4. Summary

To summarize, we studied the stability of the kagome-ice insulator in the double-exchange model
against the three dimensionality and the canting angle of the localized spins. In the fore half, we
studied the effect of the interlayer coupling by considering an anisotropic pyrochlore lattice model.
We showed that the kagome-ice insulator remains stable up to t′/t ∼ 0.3, where t (t′) is the in-
tra(inter)layer hopping. In the later half, we studied the stability of the kagome-ice insulator against
the canting angle of the localized Ising spins. We showed that the kagome-ice insulator at n = 2/3 is
stable in the wide range of the canting angle, 0.25π ! θ ! 0.45π, which includes the spin ice case,
θ = arccos(1/3) ∼ 0.392π. Furthermore, we showed that an energy gap also appears at the Fermi

5
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Insulating kagome ice: scalar chiral liquid

Monte Carlo simulation for a Kondo 
lattice model with spin-ice type 
noncoplanar Ising spins ([111] plane 
of the pyrochlore spin ice)             
(H. Ishizuka and Y. Motome, 2013)


๏ 0≤h≤0.3: kagome ice insulator

➡ anomalous Hall effect with σxy~+1


๏ h≥0.3: 3out insulator

➡ anomalous Hall effect with σxy~-1


๏ critical point at h~0.3? T
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FIG. 4. (color online). Contour plots of the MC results for (a) σxy and (b) σxx in the hz-T plane.

The calculations were done for N = 3 × 62 size systems. The white crosses show the parameters

at which the MC acceptance rate becomes lower than 1%.
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Scalar chiral liquid on a triangular lattice

scalar chiral order with 4-sublattice 
noncoplanar spin texture (I. Martin 
and C. D. Batista, 2008; Y. Akagi 
and Y. Motome, 2010)


➡Chern insulator at n=1/4 and 3/4

➡ quantum Hall effect


thermal fluctuations

➡ scalar chiral liquid at nonzero T     

(Y. Kato et al., 2010)


quantum fluctuations

➡ scalar chiral liquid at T=0?         

(Y. Akagi and Y. Motome, 2013;  
S. Jiang et al., 2014)

figure is taken from  
G-W. Chern and C. D. Batista, 2012

I. Martin and C. D. Batista, 2008



Quantum spin liquids 
3D Kitaev model

• local conserved quantity

• local constraint from 3D lattice structure

• emergent loops: finite-T spin-liquid transition



S=1/2 quantum spin model on a 2D honeycomb lattice (A. Kitaev, 2006)

Kitaev model
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Kitaev model: T=0 phase diagram

QSL ground states in the entire parameter region: 
gapless and gapped QSLs depending on the anisotropy

is impossible, even if we introduce new terms in the Hamiltonian. On the other hand, the
eight copies of each phase (corresponding to different sign combinations of Jx,Jy,Jz) have
the same translational properties. It is unknown whether the eight copies of the gapless
phase are algebraically different.

We now consider the zeros of the spectrum that exist in the gapless phase. The momen-
tum q is defined modulo the reciprocal lattice, i.e., it belongs to a torus. We represent the
momentum space by the parallelogram spanned by (q1,q2)—the basis dual to (n1,n2). In
the symmetric case (Jx = Jy = Jz) the zeros of the spectrum are given by

ð34Þ

If |Jx| and |Jy| decrease while |Jz| remains constant, q* and #q* move toward each other
(within the parallelogram) until they fuse and disappear. This happens when
|Jx| + |Jy| = |Jz|. The points q* and #q* can also effectively fuse at opposite sides of the par-
allelogram. (Note that the equation q* = #q* has three nonzero solutions on the torus.)

At the points ±q* the spectrum has conic singularities (assuming that q* „ #q*)

ð35Þ

7. Properties of the gapped phases

In a gapped phase, spin correlations decay exponentially with distance, therefore spa-
tially separated quasiparticles cannot interact directly. That is, a small displacement or
another local action on one particle does not influence the other. However, the particles

Jx Jz= =0Jy Jz= =0

=1,Jx =1,Jy

=1,Jz Jx Jy= =0

gapless

gappedAz

Ax Ay

B

Fig. 5. Phase diagram of the model. The triangle is the section of the positive octant (Jx, Jy, Jz P 0) by the plane
Jx + Jy + Jz = 1. The diagrams for the other octants are similar.

20 A. Kitaev / Annals of Physics 321 (2006) 2–111

A. Kitaev, 2006; G. Baskaran, S. Mandal, and R. Shanker, 2007; C. Castelnovo and C. Chamon, 2007; Z. Nussinov and G. Ortiz, 2008, ...
topological order, extremely short-range spin correlation, non-abelian anyons, quantum computation, ...



3D hyperhoneycomb lattice (S. Mandal and N. Surendran, 2009)


The model inherits the solvability. (a)

(b) (c)
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3D extension of the Kitaev model
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exactly the same T=0 phase diagram

QSL ground states in 3D experiment: new Iridates β-Li2IrO3 and γ-Li2IrO3  
(T. Takayama et al., 2014; K. A. Modic et al., 2014)
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Method

The conventional quantum Monte Carlo (QMC) methods on the basis of the 
world-line technique do not work because of the negative-sign problem:

๏ Lattices are bipartite, but the interactions are frustrated.


Our solution (J. Nasu, M. Udagawa, and Y. Motome, 2014):

interacting S=1/2 spin models

non-interacting Majorana fermions coupled 
to thermally-fluctuating Z2 variables

Jordan-Wigner transformation

Majorana fermion representation

QMC free from negative-sign problem



Specific heat in the isotropic case

0.0040

0.0042

0.0044

0.0046

0.0048

0.0050

0.0052

0.000 0.002 0.004 0.006 0.008 0.010

L=3

L=4

L=5

L=6C
v

C
v

T

T

A

B

1/N

T
c
’

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 0.001  0.01  0.1  1  10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 0.002  0.003  0.004  0.005  0.006  0.007  0.008  0.009  0.01

Figure 2: Temperature dependence of the specific heat in the isotropic case with Jx = Jy =
Jz = 1/3 (α = 1) in (A) a wide temperature range and (B) an enlarged view in the vicinity of
the low-temperature peak. The inset in (B) shows the peak temperature T ′

c of the specific heat
as a function of the inverse of the system size N . The dotted line represents the linear fit for
three largest N .
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sharp peak:  
growing as 
system size 
increases 

broad peak:  
system size indep.
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Figure 2: Temperature dependence of the specific heat in the isotropic case with Jx = Jy =
Jz = 1/3 (α = 1) in (A) a wide temperature range and (B) an enlarged view in the vicinity
of the low-temperature peak. The upper inset in (B) shows the peak temperature T ′

c of the
specific heat as a function of the inverse of the system size N . The lower inset in (B) shows the
logarithmic plot of the peak value of the specific heat as a function of N The dotted lines in the
insets represent the linear fits for three largest N .
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Figure 3: Finite-temperature phase diagram of the 3D Kitaev model. (A) Cut of the phase
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the line along the phase boundary between the gapped and gapless phases in the ground state,
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represents the ground state phase diagram shown in Fig. 1C.
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Finite-T phase diagram

All low-T SL states are separated from 
high-T para by the phase transition.

๏ Both gapped and gapless spin liquids 

remains as stable phases at finite T.

๏ no adiabatic connection to para


Tc is maximized for the isotropic case.

๏ Frustration stabilized spin liquids.


perturbation from the limit of Jz >> Jx, Jy 
(3D toric code limit)


perturbation from the limit of Jz << Jx, Jy 
(weakly coupled 1D chains)
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Figure 3: Finite-temperature phase diagram of the 3D Kitaev model. a, Cut of the phase

diagram along the α and α′ axes. As shown in the insets, the anisotropic parameters α and α′

are defined as Jz = Jy = α/3 and Jz = 1 − 2α/3, and Jz = (1 − α′)/4, Jy = (1 + α′)/4,

and Jz = 1/2, respectively. b, The log-scale plot of the same data. The critical temperature Tc

takes the maximum value at α ≃ 1 corresponding to the isotropic case, and decreases to zero as

α → 0 and α → 3/2. The solid line shows Tc = 1.925 × 7J6/(256J5
z ) (J = Jx = Jy), which

was obtained for the effective model in the limit of α → 0 (ref. 17). The dashed line represents

the fitting by Tc ∝ J4
z /J

3, which is the asymptotic form in the limit of α → 3/2 obtained by the

perturbation in terms of Jz/J . c, 3D plot of the phase diagram in the whole parameter space with

Jx + Jy + Jz = 1. The base triangle represents the ground state phase diagram shown in Fig. 1c.
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What is this phase transition?

no anomalies in the local quantities, such as the conserved Z2 variables Wp 
and nearest-neighbor spin-spin correlations


topological transition?

• controversy on the existence of quantum topological transition at a finite T 

(C. Castelnovo and C. Chamon, 2007; Z. Nussinov and G. Ortiz, 2008)

➡ discussed in the anisotropic limit (= toric code)


➡ What about our case?: close look into the anisotropic limit
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Figure 3: Finite-temperature phase diagram of the 3D Kitaev model. (A) Cut of the phase
diagram along the line from a vertex (α = 0) through the center of the triangle (α = 1), and
the line along the phase boundary between the gapped and gapless phases in the ground state,
as shown in the insets. Log-scale plot for (A) is shown in (B). The solid (dashed) line is the
α dependence of Tc obtained by the perturbation expansion in terms of J/Jz (Jz/J), where
J = Jx = Jy. (C) 3D plot of the phase diagram in the whole parameter space. Bottom triangle
represents the ground state phase diagram shown in Fig. 1C.
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Anisotropic limit of Jz >> Jx, Jy in 2D (toric code)

effective Ising-type model

๏ eigenstates are labeled by Bp=±1 
๏ QSL ground state with topological order 
๏ extremely short-range correlation 
๏ no phase transition at finite temperature

| *i = | ""i
| +i = | ##i

Jz!
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pt
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B2
p = 1[He↵ , Bp] = [Bp, Bp0 ] = 0

ring exchange-type 
interaction

A. Kitaev, 2006



Anisotropic limit in 3D
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FIG. 1: (Color online) (a) Schematic picture of the hyperhoneycomb
lattice structure and interactions in the 3D Kitaev model in Eq. (1).
The dotted line represents a ten-site loop on which the conserved
quantity Kp in Eq. (2) is defined. (b) Schematic picture of the dia-
mond lattice which is formed by contracting the dimers of z-bonds
on the hyperhoneycomb lattice. The dotted hexagon represents a six-
site loop corresponding to the ten-site loop in (a). The centers of
four six-site loops sharing their edges are represented by small cir-
cles, which constitute a tetrahedral primitive cell of the pyrochlore
lattice (see the main text and Fig. 3). (c) Schematic picture of the
pyrochlore lattice on which the effective Hamiltonian in Eq. (3) is
defined. The corresponding loop model is defined on the diamond
lattice composed of the centers of tetrahedra connected by thick yel-
low lines.

model in Eq. (1) can be described by an effective Ising-type
model,21 as briefly reviewed below. For Jz > 0 and J = 0,
the lattice is decomposed into the dimers of z-bonds, and the
spins form independent doublets on each dimer: |⇑⟩ ≡ |↑↑⟩
and |⇓⟩ ≡ |↓↓⟩, as far as the temperature region T ≪ Jz
is concerned. For each dimer m, it is convenient to intro-
duce the pseudo-spin (PS) operators τm, which are the Pauli
matrix operators satisfying τzm |⇑⟩ = |⇑⟩, τzm |⇓⟩ = − |⇓⟩,
τxm |⇑⟩ = |⇓⟩, and τxm |⇓⟩ = |⇑⟩. The product states of |⇑⟩
or |⇓⟩ give macroscopically degenerate ground states. An in-
finitesimally small J connects these dimers, and lifts this de-
generacy. The perturbation in terms of J/Jz leads to mul-
tiple spin interactions induced by a ring-exchange-type pro-
cesses. Since the dimers compose a diamond lattice shown in
Fig. 1(b), the leading-order contribution comes from the short-
est six-site loops p on the diamond lattice, which correspond
to ten-site loops p on the original hyperhoneycomb lattice (see

FIG. 2: (Color online) Four kinds of inequivalent six-site loops on
which Bp are defined. Each Bp is given by the product of six τ l

m

which are shown in the figure. See also Eq. (4).
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FIG. 3: (Color online) (a) A loop configuration on the diamond lat-
tice shown in Fig. 1(c). Light (dark) circles represent sites with
Bp = +1 (−1). (b) The shortest loop excitation consisting of six
sites.

Fig. 1). This process leads to an effective Hamiltonian;

Heff = −Jeff
∑

p

Bp, (3)

where the effective coupling constant Jeff is given by
7J6/(1024J5

z ).21 Here, the summation is taken over the loops
p, whose centers comprise a pyrochlore lattice [see Figs. 1(b)
and 1(c)]. The multiple spin interaction is compactified into
the form of conserved operator, Bp = PKpP , where P is the
projection to the states spanned by |⇑⟩ and |⇓⟩;
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τ lm, (4)

tetrahedron of Bp

Bp
Bp

Bp Bp

B
p

= ⌧z1 ⌧
y

2 ⌧
x

3 ⌧
z

4 ⌧
y

5 ⌧
x

6

3

(a)

(b) (c)

FIG. 1: (Color online) (a) Schematic picture of the hyperhoneycomb
lattice structure and interactions in the 3D Kitaev model in Eq. (1).
The dotted line represents a ten-site loop on which the conserved
quantity Kp in Eq. (2) is defined. (b) Schematic picture of the dia-
mond lattice which is formed by contracting the dimers of z-bonds
on the hyperhoneycomb lattice. The dotted hexagon represents a six-
site loop corresponding to the ten-site loop in (a). The centers of
four six-site loops sharing their edges are represented by small cir-
cles, which constitute a tetrahedral primitive cell of the pyrochlore
lattice (see the main text and Fig. 3). (c) Schematic picture of the
pyrochlore lattice on which the effective Hamiltonian in Eq. (3) is
defined. The corresponding loop model is defined on the diamond
lattice composed of the centers of tetrahedra connected by thick yel-
low lines.

model in Eq. (1) can be described by an effective Ising-type
model,21 as briefly reviewed below. For Jz > 0 and J = 0,
the lattice is decomposed into the dimers of z-bonds, and the
spins form independent doublets on each dimer: |⇑⟩ ≡ |↑↑⟩
and |⇓⟩ ≡ |↓↓⟩, as far as the temperature region T ≪ Jz
is concerned. For each dimer m, it is convenient to intro-
duce the pseudo-spin (PS) operators τm, which are the Pauli
matrix operators satisfying τzm |⇑⟩ = |⇑⟩, τzm |⇓⟩ = − |⇓⟩,
τxm |⇑⟩ = |⇓⟩, and τxm |⇓⟩ = |⇑⟩. The product states of |⇑⟩
or |⇓⟩ give macroscopically degenerate ground states. An in-
finitesimally small J connects these dimers, and lifts this de-
generacy. The perturbation in terms of J/Jz leads to mul-
tiple spin interactions induced by a ring-exchange-type pro-
cesses. Since the dimers compose a diamond lattice shown in
Fig. 1(b), the leading-order contribution comes from the short-
est six-site loops p on the diamond lattice, which correspond
to ten-site loops p on the original hyperhoneycomb lattice (see

FIG. 2: (Color online) Four kinds of inequivalent six-site loops on
which Bp are defined. Each Bp is given by the product of six τ l

m

which are shown in the figure. See also Eq. (4).

(a) (b)

FIG. 3: (Color online) (a) A loop configuration on the diamond lat-
tice shown in Fig. 1(c). Light (dark) circles represent sites with
Bp = +1 (−1). (b) The shortest loop excitation consisting of six
sites.

Fig. 1). This process leads to an effective Hamiltonian;

Heff = −Jeff
∑

p

Bp, (3)

where the effective coupling constant Jeff is given by
7J6/(1024J5

z ).21 Here, the summation is taken over the loops
p, whose centers comprise a pyrochlore lattice [see Figs. 1(b)
and 1(c)]. The multiple spin interaction is compactified into
the form of conserved operator, Bp = PKpP , where P is the
projection to the states spanned by |⇑⟩ and |⇓⟩;

Bp =
6∏

m=1

τ lm, (4)

pyrochlore lattice of Bp

Bp

Bp

Bp

Bp

3

(a)

(b) (c)

FIG. 1: (Color online) (a) Schematic picture of the hyperhoneycomb
lattice structure and interactions in the 3D Kitaev model in Eq. (1).
The dotted line represents a ten-site loop on which the conserved
quantity Kp in Eq. (2) is defined. (b) Schematic picture of the dia-
mond lattice which is formed by contracting the dimers of z-bonds
on the hyperhoneycomb lattice. The dotted hexagon represents a six-
site loop corresponding to the ten-site loop in (a). The centers of
four six-site loops sharing their edges are represented by small cir-
cles, which constitute a tetrahedral primitive cell of the pyrochlore
lattice (see the main text and Fig. 3). (c) Schematic picture of the
pyrochlore lattice on which the effective Hamiltonian in Eq. (3) is
defined. The corresponding loop model is defined on the diamond
lattice composed of the centers of tetrahedra connected by thick yel-
low lines.

model in Eq. (1) can be described by an effective Ising-type
model,21 as briefly reviewed below. For Jz > 0 and J = 0,
the lattice is decomposed into the dimers of z-bonds, and the
spins form independent doublets on each dimer: |⇑⟩ ≡ |↑↑⟩
and |⇓⟩ ≡ |↓↓⟩, as far as the temperature region T ≪ Jz
is concerned. For each dimer m, it is convenient to intro-
duce the pseudo-spin (PS) operators τm, which are the Pauli
matrix operators satisfying τzm |⇑⟩ = |⇑⟩, τzm |⇓⟩ = − |⇓⟩,
τxm |⇑⟩ = |⇓⟩, and τxm |⇓⟩ = |⇑⟩. The product states of |⇑⟩
or |⇓⟩ give macroscopically degenerate ground states. An in-
finitesimally small J connects these dimers, and lifts this de-
generacy. The perturbation in terms of J/Jz leads to mul-
tiple spin interactions induced by a ring-exchange-type pro-
cesses. Since the dimers compose a diamond lattice shown in
Fig. 1(b), the leading-order contribution comes from the short-
est six-site loops p on the diamond lattice, which correspond
to ten-site loops p on the original hyperhoneycomb lattice (see

FIG. 2: (Color online) Four kinds of inequivalent six-site loops on
which Bp are defined. Each Bp is given by the product of six τ l

m

which are shown in the figure. See also Eq. (4).

(a) (b)

FIG. 3: (Color online) (a) A loop configuration on the diamond lat-
tice shown in Fig. 1(c). Light (dark) circles represent sites with
Bp = +1 (−1). (b) The shortest loop excitation consisting of six
sites.

Fig. 1). This process leads to an effective Hamiltonian;

Heff = −Jeff
∑

p

Bp, (3)

where the effective coupling constant Jeff is given by
7J6/(1024J5
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effective Ising-type model on a pyrochlore lattice with constraints

ground state: all Bp=+1!
excited states: flipped Bp=-1 form closed loops to satisfy the local constraints

BpBp Bp = 1Bplocal constraints: + global constraintsfor all tetrahedra

S. Mandal and N. Surendran, 2009; arXiv:1101.3718
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Results: Finite-T phase transition
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FIG. 4: (Color online) MC results for (a) E, (b) C/T , and (c) S
as functions of T . Insets in (a) and (c) are the plots in a wide T
range. The dotted curve in the inset of (a) shows − tanh(T−1) for
comparison. The inset in (b) shows the peak temperature of C as
a function of 1/L. The dotted curve represents the quadratic fit for
5 largest L. The dotted horizontal line in the inset of (c) shows the
value of 1

2 ln 2.

to L → ∞ gives an estimate of the critical temperature as
Tc = 1.921(1). The results indicate that there is a phase tran-
sition at T = Tc. The transition is not discontinuous; we see
no sign of a double peak in the energy histograms (not shown).

Figure 4(c) shows the result for the entropy per site, which
is calculated by the numerical integration,

S =

∫ T

0

C

T ′ dT
′. (7)

S appears to saturate at a much smaller value than ln 2 at
T → ∞, as shown in the inset. The saturation value is close
to 1

2 ln 2 ∼ 0.347. This is due to the local constraint which
allows Bp to take only a half of 24 configurations on every
tetrahedron. Note that the value of the entropy corresponds

FIG. 5: (Color online) Two kinds of inequivalent eight-site loops of
Bp whose p ∈ Am (thick lines). These loops contribute the magnetic
susceptibility in Eq. (11). See the text for details.

to the degree of freedom in the space of the PS τm on the di-
amond lattice; the number of sites on the diamond lattice in
Fig. 1(b) is a half of that on the pyrochlore lattice in Fig. 1(c)
as well as the original hyperhoneycomb lattice in Fig. 1(a).
Interestingly, most of the entropy is released not at the tran-
sition but in the high-T phase while decreasing T . This sug-
gests a strong short-range correlation between the variables
Bp even well above Tc. This corresponds to the development
of short-range correlations in the variables Bp even well above
Tc. Such correlations are indicated in the dynamical spin cor-
relation function calculated in Sec. IV C. They are also seen
in terms of loops; the high-T phase has a Coulombic nature
due to the local constraints, as discussed in Sec. IV D.

B. Magnetic susceptibility

In this section, we calculate the magnetic susceptibility in
terms of the original spins Si in Eq. (1) in magnetic field ap-
plied parallel to the z direction. According to the Kubo for-
mula, the susceptibility is calculated as

χzz
s =

1

N

∑

ij

∫ β

0
dλ⟨eλHSz

i e
−λHSz

j ⟩. (8)

In the limit of Jz ≫ J , χzz can be expressed by PS operators
τm as

χzz = 2χzz
s =

1

Nd

∑

mn

∫ β

0
dλ⟨eλHeff τzme−λHeff τzn⟩. (9)

Here, we introduce the factor 2 to renormalize χzz by Nd =
N/2 which is the site number of the diamond lattice composed
of the dimers of z-bonds [see Fig. 1(b)].

In order to calculate the susceptibility in Eq. (9), we intro-
duce H̃m

eff so as to satisfy the relation τzmHeff = H̃m
effτ

z
m. For

a given dimer site m, the operator τzm commutes with all Bp

that do not involve the site m in the loop p. On the other
hand, for Bp involving the site m, the commutation relation
between Bp and τzm depends on the location of m on the loop
p as follows. All Bp include two τzm, as shown in Fig. 2. We
term such two sites mp

1 and mp
2. If m is equal to either mp

1
or mp

2, Bp commutes with τzm. Otherwise, Bp anticommutes
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The transition is hard to characterize in terms local variables, as it apparently 
accompanies no symmetry breaking.
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FIG. 9: (Color online) (a) MC results for ⟨φ̄2⟩/L. The inset
in (a) shows ⟨φ̄2⟩/L in a wide T range. (b) T dependence of
(⟨φ̄2⟩/L)/L−z and (c) scaling plot for ⟨φ̄2⟩/L. We assume z = 1
in both (b) and (c). See the text for details. [この図も (a)とかを左
上に出しましょうか？]

L−zf(L1/ν(T − Tc)), where z is a scale exponent, ν is a
critical exponent for correlation length, and f(T ) is a scaling
function. Figure 9(b) shows T dependence of (⟨φ̄2⟩/L)/L−z

with z = 1. The data for different L cross with each other at
the same point. This result indicates that the assumption z = 1
is reasonable also for the present case. In addition, the scaling
plot is shown in Fig. 9(c). Here, assuming z = 1, we optimize
Tc and ν so that all the data collapse onto a single univer-
sal function. The analysis gives the estimates Tc = 1.925(1)

(a) (b)

FIG. 10: (Color online) Schematic pictures of (a) the loop configu-
ration below Tc and (b) that above Tc. The thin red (thick blue) lines
represent the loops with zero (nonzero) flux.

and ν = 0.60(5). The value of Tc is fairly consistent with
T (L→∞)

c in the inset of Fig. 4(b). In addition, the value of
the critical exponent ν is close to consistent with that of the
3D Ising universality class. The values of Tc and ν will be
discussed in the next section IV E.

The loop picture presented in Fig. 10 will be effective for
understanding the nature of phase transition even in the pa-
rameter region apart from the limit of J/Jz → 0 considered
here. A finite J brings about complicated interactions in the
effective Hamiltonian including from [by?] higher-order con-
tributions in terms of J , which lead to the interactions be-
tween loops. Nevertheless, the higher-order terms do not al-
ter the loop-like structure of excited states, since it is a direct
consequence of the local constraint of Kp in Eq. (2) stem-
ming from the basic spin algebra, which is imposed in the
entire range of parameters. Given that the nature of transition
is dominated by the global behavior of loop-like excitations in
the limit of J/Jz → 0 as sketched in Fig. 10, it is reasonable
to expect that a similar transition takes place even at finite J .
Such extension will be discussed elsewhere.

E. Effective model without global constraints

As described in Sec. II, the effective model in Eq. (3) is
subject to both local and global constraints for the variables
Bp. The local constraint restricts the excited states in the form
of closed loops of Bp = −1 sites. It plays a decisive role on
the finite-T phase transition, as demonstrated in the previous
sections. On the other hand, the role of the global constraints
(i) and (ii) is not obvious. In this section, we examine it by
studying the model with omitting the global constraints.

Figure 11(a) shows T dependence of the specific heat di-
vided by T for the model in the absence of the global loops.
In the MC simulation, we allow MC update by flipping a sin-
gle six-site loop as well as the global update along an ex-
tended loop. Similar to the result in Fig. 4(b), the specific
heat exhibits divergent behavior, although the peak values
are slightly smaller than those in Fig. 4(b). The extrapola-
tion of the peak temperature of C to L → ∞ gives an esti-
mate of Tc = 1.920(2), as shown in the inset of Fig. 11(a).
The estimate coincides well with that obtained in the inset of
Fig. 4(b). Furthermore, we confirm that the scaling of the flux

�̄2/L =
1
L
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i
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(�µ
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FIG. 9: (Color online) (a) MC results for ⟨φ̄2⟩/L. The inset
in (a) shows ⟨φ̄2⟩/L in a wide T range. (b) T dependence of
(⟨φ̄2⟩/L)/L−z and (c) scaling plot for ⟨φ̄2⟩/L. We assume z = 1
in both (b) and (c). See the text for details.

is reasonable also for the present case. In addition, the scaling
plot is shown in Fig. 9(c). Here, assuming z = 1, we optimize
Tc and ν so that all the data collapse onto a single univer-
sal function. The analysis gives the estimates Tc = 1.925(1)
and ν = 0.60(5). The value of Tc is fairly consistent with
T (L→∞)
c in the inset of Fig. 4(b). In addition, the value of

the critical exponent ν is consistent with that of the 3D Ising
universality class. The values of Tc and ν will be discussed in
the next section IV E.

The loop picture presented in Fig. 10 will be effective for
understanding the nature of phase transition even in the pa-
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FIG. 10: (Color online) Schematic pictures of (a) the loop configu-
ration below Tc and (b) that above Tc. The thin red (thick blue) lines
represent the loops with zero (nonzero) flux.

rameter region apart from the limit of J/Jz → 0 consid-
ered here. A finite J brings about complicated interactions in
the effective Hamiltonian from higher-order contributions in
terms of J , which lead to interactions between loops. Never-
theless, the higher-order terms do not alter the loop-like struc-
ture of excited states, since it is a direct consequence of the
local constraint of Kp in Eq. (2) stemming from the basic spin
algebra, which is imposed in the entire range of parameters.
Given that the nature of transition is dominated by the global
behavior of loop-like excitations in the limit of J/Jz → 0 as
sketched in Fig. 10, it is reasonable to expect that a similar
transition takes place even at finite J . Such extension will be
discussed elsewhere.

E. Effective model without global constraints

As described in Sec. II, the effective model in Eq. (3) is
subject to both local and global constraints for the variables
Bp. The local constraint restricts the excited states in the form
of closed loops of Bp = −1 sites. It plays a decisive role on
the finite-T phase transition, as demonstrated in the previous
sections. On the other hand, the role of the global constraints
(i) and (ii) is not obvious. In this section, we examine it by
studying the model with omitting the global constraints.

Figure 11(a) shows T dependence of the specific heat di-
vided by T for the model in the absence of the global loops.
In the MC simulation, we allow MC update by flipping a sin-
gle six-site loop as well as the global update along an ex-
tended loop. Similar to the result in Fig. 4(b), the specific
heat exhibits divergent behavior, although the peak values
are slightly smaller than those in Fig. 4(b). The extrapola-
tion of the peak temperature of C to L → ∞ gives an esti-
mate of Tc = 1.920(2), as shown in the inset of Fig. 11(a).
The estimate coincides well with that obtained in the inset of
Fig. 4(b). Furthermore, we confirm that the scaling of the flux
density ⟨φ̄2⟩/L also gives the same critical exponents, as in
Sec. IV D (not shown). These results indicate that the global
constraints (i) and (ii) are not relevant to the thermodynam-
ics in the present effective model; the finite-T phase transition
takes place at the same Tc with the same critical properties.

For further analysis from the viewpoint of the loop topol-
ogy, let us introduce the parity variable η = ηxηyηz for
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in (a) shows ⟨φ̄2⟩/L in a wide T range. (b) T dependence of
(⟨φ̄2⟩/L)/L−z and (c) scaling plot for ⟨φ̄2⟩/L. We assume z = 1
in both (b) and (c). See the text for details.

is reasonable also for the present case. In addition, the scaling
plot is shown in Fig. 9(c). Here, assuming z = 1, we optimize
Tc and ν so that all the data collapse onto a single univer-
sal function. The analysis gives the estimates Tc = 1.925(1)
and ν = 0.60(5). The value of Tc is fairly consistent with
T (L→∞)
c in the inset of Fig. 4(b). In addition, the value of

the critical exponent ν is consistent with that of the 3D Ising
universality class. The values of Tc and ν will be discussed in
the next section IV E.

The loop picture presented in Fig. 10 will be effective for
understanding the nature of phase transition even in the pa-
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FIG. 10: (Color online) Schematic pictures of (a) the loop configu-
ration below Tc and (b) that above Tc. The thin red (thick blue) lines
represent the loops with zero (nonzero) flux.

rameter region apart from the limit of J/Jz → 0 consid-
ered here. A finite J brings about complicated interactions in
the effective Hamiltonian from higher-order contributions in
terms of J , which lead to interactions between loops. Never-
theless, the higher-order terms do not alter the loop-like struc-
ture of excited states, since it is a direct consequence of the
local constraint of Kp in Eq. (2) stemming from the basic spin
algebra, which is imposed in the entire range of parameters.
Given that the nature of transition is dominated by the global
behavior of loop-like excitations in the limit of J/Jz → 0 as
sketched in Fig. 10, it is reasonable to expect that a similar
transition takes place even at finite J . Such extension will be
discussed elsewhere.

E. Effective model without global constraints

As described in Sec. II, the effective model in Eq. (3) is
subject to both local and global constraints for the variables
Bp. The local constraint restricts the excited states in the form
of closed loops of Bp = −1 sites. It plays a decisive role on
the finite-T phase transition, as demonstrated in the previous
sections. On the other hand, the role of the global constraints
(i) and (ii) is not obvious. In this section, we examine it by
studying the model with omitting the global constraints.

Figure 11(a) shows T dependence of the specific heat di-
vided by T for the model in the absence of the global loops.
In the MC simulation, we allow MC update by flipping a sin-
gle six-site loop as well as the global update along an ex-
tended loop. Similar to the result in Fig. 4(b), the specific
heat exhibits divergent behavior, although the peak values
are slightly smaller than those in Fig. 4(b). The extrapola-
tion of the peak temperature of C to L → ∞ gives an esti-
mate of Tc = 1.920(2), as shown in the inset of Fig. 11(a).
The estimate coincides well with that obtained in the inset of
Fig. 4(b). Furthermore, we confirm that the scaling of the flux
density ⟨φ̄2⟩/L also gives the same critical exponents, as in
Sec. IV D (not shown). These results indicate that the global
constraints (i) and (ii) are not relevant to the thermodynam-
ics in the present effective model; the finite-T phase transition
takes place at the same Tc with the same critical properties.

For further analysis from the viewpoint of the loop topol-
ogy, let us introduce the parity variable η = ηxηyηz for
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FIG. 9: (Color online) (a) MC results for ⟨φ̄2⟩/L. The inset
in (a) shows ⟨φ̄2⟩/L in a wide T range. (b) T dependence of
(⟨φ̄2⟩/L)/L−z and (c) scaling plot for ⟨φ̄2⟩/L. We assume z = 1
in both (b) and (c). See the text for details.

is reasonable also for the present case. In addition, the scaling
plot is shown in Fig. 9(c). Here, assuming z = 1, we optimize
Tc and ν so that all the data collapse onto a single univer-
sal function. The analysis gives the estimates Tc = 1.925(1)
and ν = 0.60(5). The value of Tc is fairly consistent with
T (L→∞)
c in the inset of Fig. 4(b). In addition, the value of

the critical exponent ν is consistent with that of the 3D Ising
universality class. The values of Tc and ν will be discussed in
the next section IV E.

The loop picture presented in Fig. 10 will be effective for
understanding the nature of phase transition even in the pa-
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FIG. 10: (Color online) Schematic pictures of (a) the loop configu-
ration below Tc and (b) that above Tc. The thin red (thick blue) lines
represent the loops with zero (nonzero) flux.

rameter region apart from the limit of J/Jz → 0 consid-
ered here. A finite J brings about complicated interactions in
the effective Hamiltonian from higher-order contributions in
terms of J , which lead to interactions between loops. Never-
theless, the higher-order terms do not alter the loop-like struc-
ture of excited states, since it is a direct consequence of the
local constraint of Kp in Eq. (2) stemming from the basic spin
algebra, which is imposed in the entire range of parameters.
Given that the nature of transition is dominated by the global
behavior of loop-like excitations in the limit of J/Jz → 0 as
sketched in Fig. 10, it is reasonable to expect that a similar
transition takes place even at finite J . Such extension will be
discussed elsewhere.

E. Effective model without global constraints

As described in Sec. II, the effective model in Eq. (3) is
subject to both local and global constraints for the variables
Bp. The local constraint restricts the excited states in the form
of closed loops of Bp = −1 sites. It plays a decisive role on
the finite-T phase transition, as demonstrated in the previous
sections. On the other hand, the role of the global constraints
(i) and (ii) is not obvious. In this section, we examine it by
studying the model with omitting the global constraints.

Figure 11(a) shows T dependence of the specific heat di-
vided by T for the model in the absence of the global loops.
In the MC simulation, we allow MC update by flipping a sin-
gle six-site loop as well as the global update along an ex-
tended loop. Similar to the result in Fig. 4(b), the specific
heat exhibits divergent behavior, although the peak values
are slightly smaller than those in Fig. 4(b). The extrapola-
tion of the peak temperature of C to L → ∞ gives an esti-
mate of Tc = 1.920(2), as shown in the inset of Fig. 11(a).
The estimate coincides well with that obtained in the inset of
Fig. 4(b). Furthermore, we confirm that the scaling of the flux
density ⟨φ̄2⟩/L also gives the same critical exponents, as in
Sec. IV D (not shown). These results indicate that the global
constraints (i) and (ii) are not relevant to the thermodynam-
ics in the present effective model; the finite-T phase transition
takes place at the same Tc with the same critical properties.

For further analysis from the viewpoint of the loop topol-
ogy, let us introduce the parity variable η = ηxηyηz for

��̄2�/L = L�zf(L1/�(T � Tc))finite-size scaling:


➡ Tc = 1.925(1), � = 0.60(5) [z = 1]
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FIG. 9: (Color online) (a) MC results for ⟨φ̄2⟩/L. The inset
in (a) shows ⟨φ̄2⟩/L in a wide T range. (b) T dependence of
(⟨φ̄2⟩/L)/L−z and (c) scaling plot for ⟨φ̄2⟩/L. We assume z = 1
in both (b) and (c). See the text for details.

is reasonable also for the present case. In addition, the scaling
plot is shown in Fig. 9(c). Here, assuming z = 1, we optimize
Tc and ν so that all the data collapse onto a single univer-
sal function. The analysis gives the estimates Tc = 1.925(1)
and ν = 0.60(5). The value of Tc is fairly consistent with
T (L→∞)
c in the inset of Fig. 4(b). In addition, the value of

the critical exponent ν is consistent with that of the 3D Ising
universality class. The values of Tc and ν will be discussed in
the next section IV E.

The loop picture presented in Fig. 10 will be effective for
understanding the nature of phase transition even in the pa-

(a) (b)

FIG. 10: (Color online) Schematic pictures of (a) the loop configu-
ration below Tc and (b) that above Tc. The thin red (thick blue) lines
represent the loops with zero (nonzero) flux.

rameter region apart from the limit of J/Jz → 0 consid-
ered here. A finite J brings about complicated interactions in
the effective Hamiltonian from higher-order contributions in
terms of J , which lead to interactions between loops. Never-
theless, the higher-order terms do not alter the loop-like struc-
ture of excited states, since it is a direct consequence of the
local constraint of Kp in Eq. (2) stemming from the basic spin
algebra, which is imposed in the entire range of parameters.
Given that the nature of transition is dominated by the global
behavior of loop-like excitations in the limit of J/Jz → 0 as
sketched in Fig. 10, it is reasonable to expect that a similar
transition takes place even at finite J . Such extension will be
discussed elsewhere.

E. Effective model without global constraints

As described in Sec. II, the effective model in Eq. (3) is
subject to both local and global constraints for the variables
Bp. The local constraint restricts the excited states in the form
of closed loops of Bp = −1 sites. It plays a decisive role on
the finite-T phase transition, as demonstrated in the previous
sections. On the other hand, the role of the global constraints
(i) and (ii) is not obvious. In this section, we examine it by
studying the model with omitting the global constraints.

Figure 11(a) shows T dependence of the specific heat di-
vided by T for the model in the absence of the global loops.
In the MC simulation, we allow MC update by flipping a sin-
gle six-site loop as well as the global update along an ex-
tended loop. Similar to the result in Fig. 4(b), the specific
heat exhibits divergent behavior, although the peak values
are slightly smaller than those in Fig. 4(b). The extrapola-
tion of the peak temperature of C to L → ∞ gives an esti-
mate of Tc = 1.920(2), as shown in the inset of Fig. 11(a).
The estimate coincides well with that obtained in the inset of
Fig. 4(b). Furthermore, we confirm that the scaling of the flux
density ⟨φ̄2⟩/L also gives the same critical exponents, as in
Sec. IV D (not shown). These results indicate that the global
constraints (i) and (ii) are not relevant to the thermodynam-
ics in the present effective model; the finite-T phase transition
takes place at the same Tc with the same critical properties.

For further analysis from the viewpoint of the loop topol-
ogy, let us introduce the parity variable η = ηxηyηz for



Topological viewpoint: back to the generic case
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Discussion

spin ice (frustrated classical-spin antiferromagnets): local constraint 
by competing interactions 
๏ exact local constraint only at T=0

๏ smearing out at finite T → no finite-T phase transition, just a crossover


close-packed dimers: exact local constraint for all T (by hand) 
๏ unconventional phase transitions


• zero flux state = columnar order of dimers

• non-zero flux state = Coulomb phase


3D hyperhoneycomb Kitaev model: exact local constraint on local 
conserved quantities Wp for all T 
๏ phase transition between quantum spin liquid and paramagnet = 

proliferation of loops consisting of flipped conserved quantities Wp 
๏ The exact local constraint comes from S=1/2 algebra.



Prospects

further characterization of the phase transition in the quantum case 
• hidden order? topological order? weak 1st order?

• any difference between gapped and gapless regions?

• how universal? specific to Kitaev models?

cf. U(1) case (quantum spin ice): just a crossover? (Y. Kato and S. Onoda, preprint) 

any classical correspondence? 
• transition between Coulomb liquid and paramagnet

• quantumness is necessary?


further interesting physics by transcription to mobile electrons 
• quantum spin liquids + mobile electrons = ?


