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* Yang-Baxter eq., commuting transfer matrices
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Crude History of Quantum Integrable Models

B |attice models
1931: Heisenberg XXX chain (Bethe) Bethe ansatz
1944: 2d Ising model (Onsager, Kaufman) Free fermions
1958-1966: XXZ chain (Orbach, Walker, Yang-Yang)
1961-1962: XY chains (Lieb-Schultz-Mattis, Katsura)
1968: Hubbard chain (Lieb-Wu)
1972: XYZ chain (Baxter) TQ relation
2d stat. mech.: 6-, 8-, 16-vertex models, RSOS models

B Continuum models & field theories

1963: Quantum NLS (Lieb-Liniger)

1979: Massive Thirring (Bergknoff-Thacker)
Sine-Gordon (Sklyanin-Takhtajan-Faddeev)

Kondo problem: Andrei, Wiegmann, Kawakami, ...

B Mathematical sophistication Ancestor of MPS/MPQO?

1979-:@ISI\/I (Leningrad group) or ABA
1985-: Quantum group (Drinfeld, Jimbo), Yangian, ...
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Present Status
Sik ) (mbam meV’ s¢" per Cu™) Sk} (mbam meV" s per Cu™)

B Applications to cond-mat. and atomic physics =i .
1. Quantum magnetism: KCuFj3, Sr,CuO,, ... |» == D e
Inverse scattering meets neutron scatter/ng/ |

2. Cold atoms in optical lattices .
Realization & manipulation of 1d systems - -

Wavaueclor K Wawe\necto L3

e.g. Kinoshita et al., Science 305, 1125 (‘04). Lake et al., PRL 111 (‘13)
B Classical & Quantum nonequilibrium models

1. Solvable stochastic processes w0 Prosen’s siide.
ASEP, TASEP, KPZ eq. & XXZ, quantum NLS (%),
See short review by Spohn, arXiv:1204.2657. T Re

2. Solvable dissipative dynamics
Exact NESS of boundary-driven Lindblad eq.
Prosen, PRL 106, 107 (‘11), Prosen, llievski & Popkov, NJP 15 (‘13).

B AdS/CFT integrability

Duality between N = 4 super Yang-Mills & |IB superstrings
Bethe ansatz computation of scaling dimensions A’

See e.g. Beisert et al., LMP 99 ('11), arXiv:1012.3982.
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Today’s subject
B |ntegrability in the age of MPS, MPO & tensor network

Quantum inverse scattering method (QISM) & algebraic Bethe
ansatz (ABA) borrowed the ideas from classical soliton theory.
(See e.g. FaddeeV’s lecture notes, Korepin’s textbook.)

But they can be reformulated in the language of MPS & MPO.
1. H. Katsura & |I. Maruyama, JPA 43, 175003 (2010).
2. V. Murg, V. E. Korepin & F. Verstraete, PRB 86, 045125 (2012).

QISM & ABA in
the age of solitons?

Conference “Quantum Solitons” in the early 1980s (from Reshetikhin’s webpage)
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2. MPS, MPO and Tensor Networks
 How to express many-body states? MPS & MPO

« Tensor networks ~ stat. mech. rephrasing
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How to express many-body states

B Preliminary

Consider a finite “spin” chain of length N.
Local Hilbert space: C¢ spanned by {|0),[1),...,|d — 1)}
Total Hilbert space: H =C?® -..-® C4

~

N

A general many-body state |¢) € H can be expressed as

hb): Z Yoy, an |01) ®@ -+ @ |an)

aN—O
We need to store d”¥ C numbers! Too hard to deal with...
B Product states
Wal c QN (r’b[l],al T °¢[N]’QN7 ¢[j]’aj € C
Ex.) ¢ =6,0 forallj > |¥)=]0,0,...,0)

Classical states with no entanglement. Too boring to study...
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Auxiliary Space & Matrix Product States (MPS)

Consider an auxiliary vector space C” on which Dx D
matrices A“ act. Any state |¢) € H{ can be expressed with

Matrix-product . )
states (MPS) ’()bal,...,aN = TI' [A[l]’ L... A[N]’ N]

We can handle states with small D.
States with D ~ dt are still hard to deal with...

Ex.1) GHZ state (d=2, D=2) |¢) =0,0,...,0) + |1, 1, ...,

glo_ (10 alilr _ (00
A= (g o) A= (o 1)

Ex.2) Valence-bond-solid (VBS) state (d=3, D=2)
Affleck-Kennedy-Lieb-Tasaki (AKLT) - “Haldane gap”
Finitely correlated states: Fannes et al. Kluemper et al.
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Matrix Product Operators

Any operator on C%can be expressed as a sum of ¥ = |a) (3.
Any operator on H can be expressed in the form:

O — Z Oalaﬁla'“aaNaﬂN ealaﬂl ® ... ® eaNa/@N
{aj}a{ﬂj}

We need to store d?” C numbers! Too hard to deal with...

B Matrix-product operators (MPO)

Again consider an auxiliary vector space C* on which Dx D
matrices A%° act. Any operator on H can be expressed as

O = Z Tr [A[l]aalaﬂl ... A[N]aaNnBN] 1,01 R ® eON BN
{aj}a{ﬁj}
or more generally, a sum of

O(Q) — Z Tr |:Q A[l]:alaﬂl . A[N],O!N,,BN] eal,ﬁl ® L ® eaN“@N
{o; {85} Boundary matrix
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Tensor Networks ~ Stat. Mech. Rephrasing
B MPS (uniform case) o

Building block A — 43 | g
(Local weight) * 77
Stat mech. model on a comb’

THTCCIIRTS NI G G WD SN U SN

B MPO (uniform case)

(87

Building block Aa’? _ 7 ,L
| weiah s

(Local weight) Tﬁ

Transfer matrix of a 2d vertex model!

1,01, AANSPN | — l J\ J\ J\ J\ l
R P A O O I

N

MPO naturally act on MPS. But tensor I f i I I
products of aux. space should appear. ) S D W | ‘W)
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3. Integrability in the Age of MPS & MPO
* Yang-Baxter eq., commuting transfer matrices
« Algebraic Bethe ansatz in a nutshell

» Bethe states as MPS, Factorizing F-matrix
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Integrability in the age of MPS & MPO (1)

B | ocal Lax matrix (L-operator)

Consider a finite “spin” chain of length N.
V, ~ CP : auxiliary space, Vj ~ C? : quantum space of j-th site.
L -operators actingon Vo ® V; ® --- ® Vy is defined by

;=31 ele--Igefolg---I U=L-N)
3 — ~——— A: spectral parameter
’ J—1 N—j
This is not an MPO! (Trace is not taken over V,.)
Graphical rules: | | | | |
e e e
Vj
| [ I | | |
LiL; = vl )
Cor o T 1 Ty, ||
T 1 Tyl |
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Integrability in the age of MPS & MPO (2)
B Monodromy matrix (actingon Vo @ Vi ® --- ® V)

T(\) = Li(N)Ls(N) -+ Ly(A) = —3 + + % + +

T
— Z (Lal’ﬁl()\)-”LaN’BN ()\))® (ea1,61 ®.__®eaN,ﬂN)

J

{oj {8} actingvon Vo acting on \\;1®---®VN
This is still not an MPO... (Trace is not taken over V,,.)

B Transfer matrix

_ ) D N
TV =T ? 0 o
_ Z Ty Lal,ﬁl LCXN,/@N( )] eO1Pl @ ... @ N PN

{1185}

This is an MPO! (Trace is taken over V{,.) T(A) can be thought
of as a transfer matrix of 2d vertex models (d2D? configurations).

So far, everything is quite general.
How does integrability come into play??
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Integrability in the age of MPS & MPO (3)

B Yang-Baxter relation
A ® B :tensor product, A.B :matrix product
R(A, p) : R-matrix € End(Vp ® Vi)

acting on VO®VO: acting on Vj

N

~

30 30RO @ (L () @ (282
— RLL =LLR

=D > T (u).(L*F (N @ I).RO, 1) @ (e*F.e7) relation
a,B a’,[’

Sufficient condition
Vo

STRO, )L () @ L7 ()] Xj)v=
6 \i

= S TILPT(N) © LY ()] R(A, ) o g e

|
S

(Infinitely) many solutions have been found. Many important
examples have the difference property: R(\, u) = R(A — p).
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Integrability in the age of MPS & MPO (4)

B From local to global
Suppose R-matrix is invertible.
Noting Try |A] Try/ |B] = Trygv/|[A ® B|, and the cyclic rule

—1

=O0—C0O0—C00—0—¢ O——C0O0—=0—"0
TNT (1) = .6 X:
O O O —& ), O O O
B o= y———(———O—

. Commuting
[T(A), T(K)]=0 for any A, p. transfer matrices!

£\

B Infinitely many conserved charges
InT(\) = Z)\k I T(N), T(p)] = 0 implies [Ij, Iy] =0, VE,£.
k

l,'s are mutually commuting! They are spatially local and
simultaneously diagonalizable via Algebraic Bethe ansatz.
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Integrability in the age of MPS & MPO (4)
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Integrability in the age of MPS & MPO (4)
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B 0=<>=<>=<>=<>=; é s

. Commuting
[T(A), T(K)]=0 for any A, p. transfer matrices!

£\

B Infinitely many conserved charges
InT(\) = Z)\k I T(N), T(p)] = 0 implies [Ij, Iy] =0, VE,£.
k

l,'s are mutually commuting! They are spatially local and
simultaneously diagonalizable via Algebraic Bethe ansatz.



" JE
Integrability in the age of MPS & MPO (4)

B From local to global
Suppose R-matrix is invertible.
Noting Try |A] Try/ |B] = Trygv/|[A ® B|, and the cyclic rule

N £\ ™\ 7\ ‘ R ra\ ra\ ™\ £\ R
(A) ( ) ﬁl 7 7 g e g 7 7
H\ ) £ N ‘ N, £ e )
4 ' \/ 4 Y Y \/ Y

- O—0O0—0O0—0O— *—O—O0—O0—0O0—&
- MO = = T()T(Y)
=0—0—0—0— —=0—0—0—0—+

. Commuting
[T(A), T(K)]=0 for any A, p. transfer matrices!

£\

B Infinitely many conserved charges
InT(\) = Z)\k I T(N), T(p)] = 0 implies [Ij, Iy] =0, VE,£.
k

l,'s are mutually commuting! They are spatially local and
simultaneously diagonalizable via Algebraic Bethe ansatz.
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Algebraic Bethe Anstaz in a Nutshell (1)

B The simplest case (d=D=2, difference property)
Pauli matrices

10 0 1 0 —i
0 __ 1 _ 2 __ 3 _
P n) = (o) (0 7)

L-operators . . R-matrix

L2000 = A0 + 0%, L2\ = S (0! —io?), A
) ] 0
L1O(N) = %(01 +io?), LY = Mo — %(;3. 0

RLL=LLR can be checked easily (with Mathematica).

O > = O

B Six-vertex model ~ stat. mech. rephrasing

Quantum space: [0) = | 1), |1) = |).
Auxiliary space: 0) = | —), [1) =] «).

4
«
N e e
L?i?=7—+—5 R(a,8),(7.6) = X
’ IR b
\_

Only six configurations have nonzero weights.

Ice rule: (# of incoming arrows)=(# of outgoing arrows)
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Algebraic Bethe ansatz in a Nutshell (2)
B Quantum Hamiltonian PG P
Pauli matrix on j-th site: o5 = '@ @R @]
Heisenberg XXX Hamiltonian

H = 22% In T()\)

Z(UJ oi1+0 J+1 + ajoj+1) + const.

H and T{(A) are commutlng. 9 They share the same eigenstates.

B ABCD of ABA in the basis of auxiliary space

) op _ (TO°(N) TOY(N)\ _ [A(N) B\
_azﬁl Bl®T (TIO(A) Tl’l(A))_ (C(/\) DW)

0= e =
0= o0 -

From Yang-Baxter eq., we get
RA—pw)TAN) ®@T(p) =T (u) @ T (AR — p), which gives
algebraic relations among A,B,C & D, e.g., |B(\), B(p)] = 0.
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Algebraic Bethe ansatz in a Nutshell (3)

u Diagonalization of T
M) =1|11---1) is an eigenstate of T(A)=A

A = % %
CN)|M) = -)-*—H—*—(— = 0, because there must be ->-$<-
BA)| ) = e*—*—*—*—) is a new state! (1-magnon state)

Demanding that B(A1)B(X2)---B(Aa)| ) is an eigenstate of
T(A), we get the condition on A’s. Bethe equation:

Aa + /2 Ao — N +i
—1,., M
(Aa—i/2> H)\a—)\b—z @
b#a

Now the hard work begins. Yang-Yang, string hypothesis ...
Generalized Pauli principle: N's are distinct.
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Bethe states as MPS (1)

B Domain wall boundary condition (DWBC) in aux. space
Bethe states: B )\1 B(An) | )

g1 02 01 02

Partition function of

6-vertex with DWBC!

= Tr [QA"1 - --A"N]

. ¥ e

B Construction of AT and A!

%H% F1

n n

Al =LAl +1% g A} v =LAl + LM @ AL
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Bethe states as MPS (2)
B Factorizing F-matrix (Drinfeld twist)
There is a similarity tr. which makes A’ diagonal:
AT =F 'A%F,, Qn,=F.'Q.F,
One can prove this by mductlon on n. In addition,
Bethe states & DWBC remain unchanged!! én = Q,

F=t L F FtF 1 2) Al(k M

A M A AP AL A
We never have the vertex .

: . l(k') l(e) L(€) p LK)
AlW) satisfy an analogue of the Ap Anr” =Sk, Ae) A" Ay
Zamolodchikov-Faddeev algebra. Aﬁk) A}VS’“) =0

For explicit expressions, see Katsura & Maruyama, JPA 43 (‘10).
This gives a proof of ansatz raised by Alcaraz & Lazo, JPA 37 (‘04).



" A
Outline

4. Entanglement Meets Integrability
« How to cook up integrable density matrix?
* Integrable MPO with D=4



How to cook up Integrable Density Matrix?
| Vertex/Face correspondence

@ Transfer matrlx
B e e oo

Yang-Baxter relation

This correspondence is not always
— one-to-one. Face-type models
include Ising, hard-hexagon, IRF, ...

B MPO/ladder state correspondence

Q:II ..... I ..... I: = 3" TV, .., an{as, .o an|

{a;}
aj ag anN

Bijection |a)(b| < |a) ® |b), leads to |¥) = Z(T(A)Haj})) ® [{a;}).
{a;}
Reduced density matrix for A: pa()\) o< Trg|U)(¥| = T(N) TT(N).

[pa(N), pa(p)] = 0, if there exists v s.t. TT(\) = cT(v).
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Quantum hard-hexagon model
B Frustration-free model
Parent Hamiltonian: H = Z hl(2)hi(2), G.S.: hi(2)|¥(z)) =0, Vi.

For a triangular ladder '
g ! Face weights (n.n. exclusion)

e = Y relemelw) NN N NN N

{a;} 1 J1/4 ,1/a /a0 1/a )2
B Entanglement spectrum (ES)
Double-row
pa(z) x T(2)T1 (2) = transfer matrix

of hard-hexagons!

Ent I t Hamiltoni
ntangiement Hamiltonian The 2d classical model is integrable

pa(z) = exp(—HE) (Baxter, 1980). Critical at z,=11.09...
Spectrum of Hg at z=z, 27'*2;'“:,:,:5?;:5:5_‘
is described by c=4/5 CFT. =._ ' . .. o . ' 3
(3-state Potts universality) I L poseisle m_'.féf_- o _,.,]-__'lé'im o 4/5+1e9/57
See Tanaka, Tamura & Katsura, | **° e oe
PRA 86, 032326 (2012). 0 a0 e R L 09 -
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Integrable MPO with D=4 (1)
B Deformation of hexagonal VBS density matrix
{|a)}3_, : orthonormal basis in C* (aux. space), e“’ = |a)(b|.

Consider the following MPO:
3

Mz,y)= Y. TM*(z,y)--M*(2,9)] 0% @ --- ® ¥,

O{]_,...,O{N-:O

3
4 x4 0 _ 0,0 2 a,a a _ 0,a a,0
Hexagonal VBS on 2-leg ladder Entanglement spectrum

- $=3/2 and S=1
spins are mixed.

Trrr R e|d
= R N

2
~ s ( 11 ) ES resembles the spectrum
= of the ferromagnetic XXX!

s 1 13

0 :
Lou, Tanaka, Katsura & Kawashima, PRB 84, 245128 (2011). .
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Integrable MPO with D=4 (2)

B Miraculous properties

M(x,y) related to VBS does not exhibit any integrability...
However, M(cos8,sinB) have the following properties:

Property 1. For any N and arbitrary A, 6€R, the operator
M(cosB,sinB) commutes with the XXX transfer matrix T(A).

Property 2. For any N and arbitrary 8,, 6,€R, the operator
M(cos8,,sin6,) and M(cos6,,sin6,) commute with each other.

They strongly suggest the integrabilty of M(cos,sinf).
In fact, they can be proved as corollaries of

Theorem. For any N and arbitrary 6 €R, the operator
M(cos8,sinB) is written in terms of transfer matrices as

, i /143 cos?6
M (cosf, sinf) = (sinf)* T'(\g) T'(—Ng) with \g= —\/ e
2 sin“6
Proof is based on a similarity transformation A% = X"1A7X
and the Yang-Baxter eq. For details, see H.Katsura, arXiv:1407.4267.
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Summary
 Modern formulation of QISM & ABA

» Bethe states can be expressed as MPS

 Factorizing F-matrix simplifies the MPS

 Construction of integrable density matrix

AR R I H
|

VvV VYV

* Integrable MPO and hexagonal VBS state

B Prospects

* ABA with OBC: reflection eq.: RKRK=KRKR
V.Murg, V.E.Korepin & F.Verstraete, PRB 86 (2012).

* Integrable density matrix + Suzuki-Trotter
Exact computation of Renyi entropies for ladders?

b
<

* Application to many-body localization? (Cirac, Huse, Hastings, ...)

» 3(=2+1) D generalizations
Tetrahedron relation: RRRR=RRRR (Zamolodchikov, Baxter-Bazhanov)
Topological invariants of 3-manifolds (Witten, Reshetikhin, Turaev-Viro)




