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Crude History of Quantum Integrable Models
 Lattice models

1931: Heisenberg XXX chain (Bethe) 
1944: 2d Ising model (Onsager, Kaufman) 
1958-1966: XXZ chain (Orbach, Walker, Yang-Yang)
1961-1962: XY chains (Lieb-Schultz-Mattis, Katsura)
1968: Hubbard chain (Lieb-Wu)
1972: XYZ chain (Baxter) 
2d stat. mech.: 6-, 8-, 16-vertex models, RSOS models

 Continuum models & field theories
1963: Quantum NLS (Lieb-Liniger)
1979: Massive Thirring (Bergknoff-Thacker)

Sine-Gordon (Sklyanin-Takhtajan-Faddeev)
Kondo problem: Andrei, Wiegmann, Kawakami, …

 Mathematical sophistication

Bethe ansatz
Free fermions

TQ relation

1979-: QISM (Leningrad group) or ABA
1985-: Quantum group (Drinfeld, Jimbo), Yangian, …

Ancestor of MPS/MPO?



Present Status
 Applications to cond-mat. and atomic physics

1. Quantum magnetism: KCuF3, Sr2CuO3, …
Inverse scattering meets neutron scattering!

2. Cold atoms in optical lattices
Realization & manipulation of 1d systems
e.g. Kinoshita et al., Science 305, 1125 (‘04). Lake et al., PRL 111 (‘13)

 Classical & Quantum nonequilibrium models
1. Solvable stochastic processes

ASEP, TASEP, KPZ eq.⇔ XXZ, quantum NLS
See short review by Spohn, arXiv:1204.2657.

2. Solvable dissipative dynamics
Exact NESS of boundary-driven Lindblad eq.
Prosen, PRL 106, 107 (‘11), Prosen, Ilievski & Popkov, NJP 15 (‘13).

From Prosen’s slide.

 AdS/CFT integrability
Duality between N = 4 super Yang-Mills & IIB superstrings
Bethe ansatz computation of scaling dimensions
See e.g. Beisert et al., LMP 99 (’11), arXiv:1012.3982.



Today’s subject
 Integrability in the age of MPS, MPO & tensor network

Quantum inverse scattering method (QISM) & algebraic Bethe 
ansatz (ABA) borrowed the ideas from classical soliton theory.
(See e.g. Faddeev’s lecture notes, Korepin’s textbook.) 

But they can be reformulated in the language of MPS & MPO.
1. H. Katsura & I. Maruyama, JPA 43, 175003 (2010).
2. V. Murg, V. E. Korepin & F. Verstraete, PRB 86, 045125 (2012).

Conference “Quantum Solitons” in the early 1980s (from Reshetikhin’s webpage)

QISM & ABA in 
the age of solitons?
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How to express many-body states
 Preliminary

Consider a finite “spin” chain of length N. 
Local Hilbert space:          spanned by  
Total Hilbert space: 

We need to store            numbers! Too hard to deal with…

A general many-body state                can be expressed as

 Product states

Ex.)                                         
Classical states with no entanglement. Too boring to study…



Auxiliary Space & Matrix Product States (MPS)
Consider an auxiliary vector space on which D×D
matrices        act. Any state                 can be expressed with

We can handle states with small D. 
States with D ~ dL are still hard to deal with…

Ex.1) GHZ state (d=2, D=2)

Ex.2) Valence-bond-solid (VBS) state (d=3, D=2)
Affleck-Kennedy-Lieb-Tasaki (AKLT)  “Haldane gap”
Finitely correlated states: Fannes et al., Kluemper et al.

Matrix-product 
states (MPS)



Matrix Product Operators
Any operator on       can be expressed as a sum of                       .
Any operator on       can be expressed in the form:

We need to store              numbers! Too hard to deal with…
 Matrix-product operators (MPO)

Again consider an auxiliary vector space on which D×D
matrices          act. Any operator on       can be expressed as

or more generally, a sum of

Boundary matrix



Tensor Networks ~ Stat. Mech. Rephrasing
 MPS (uniform case)

Building block
(Local weight) Stat. mech. model on a comb!

 MPO (uniform case)
Building block
(Local weight)

Transfer matrix of a 2d vertex model!

MPO naturally act on MPS. But tensor 
products of aux. space should appear.
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Integrability in the age of MPS & MPO (1)
 Local Lax matrix (L-operator)

Consider a finite “spin” chain of length N. 
: auxiliary space,                : quantum space of j-th site.

L-operators acting on                                 is defined by 

This is not an MPO! (Trace is not taken over V0.) 

λ: spectral parameter

Graphical rules:



Integrability in the age of MPS & MPO (2)
 Monodromy matrix (acting on                                )

This is still not an MPO… (Trace is not taken over V0.) 
 Transfer matrix

This is an MPO! (Trace is taken over V0.) T(λ) can be thought 
of as a transfer matrix of 2d vertex models (d2D2 configurations). 
So far, everything is quite general. 
How does integrability come into play??



Integrability in the age of MPS & MPO (3)
 Yang-Baxter relation

: tensor product, : matrix product
: R-matrix

Sufficient condition

(Infinitely) many solutions have been found. Many important 
examples have the difference property:  

RLL = LLR 
relation



 Infinitely many conserved charges

Integrability in the age of MPS & MPO (4)
 From local to global

Suppose R-matrix is invertible. 
Noting                                                          and the cyclic rule

[T(λ), T(μ)]=0 for any λ, μ. 

implies

Ik’s are mutually commuting! They are spatially local and 
simultaneously diagonalizable via Algebraic Bethe ansatz.

Commuting 
transfer matrices!
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Algebraic Bethe Anstaz in a Nutshell (1) 
 The simplest case (d=D=2, difference property)

 Six-vertex model ~ stat. mech. rephrasing

L-operators R-matrix

Pauli matrices

RLL=LLR can be checked easily (with Mathematica).

Quantum space:                                   
Auxiliary space: 

Only six configurations have nonzero weights.
Ice rule: (# of incoming arrows)=(# of outgoing arrows)



Algebraic Bethe ansatz in a Nutshell (2) 
 Quantum Hamiltonian

Pauli matrix on j-th site:
Heisenberg XXX Hamiltonian

in the basis of auxiliary space ABCD of ABA

From Yang-Baxter eq., we get
, which gives 

algebraic relations among A,B,C & D, e.g., 

H and T(λ) are commuting.  They share the same eigenstates.



 Diagonalization of T

Demanding that                                             is an eigenstate of
T(λ), we get the condition on λ’s. Bethe equation:

Algebraic Bethe ansatz in a Nutshell (3) 

is an eigenstate of T(λ)=A(λ)+D(λ).

because there must be         .

is a new state! (1-magnon state)

Now the hard work begins. Yang-Yang, string hypothesis …
Generalized Pauli principle: λ’s are distinct.



 Domain wall boundary condition (DWBC) in aux. space
Bethe states as MPS (1)

Bethe states:

Partition function of
6-vertex with DWBC!

 Construction of A↑ and A↓



 Factorizing F-matrix (Drinfeld twist)
Bethe states as MPS (2)

There is a similarity tr. which makes A↑ diagonal:

One can prove this by induction on n. In addition,
Bethe states & DWBC remain unchanged!!

For explicit expressions, see Katsura & Maruyama, JPA 43 (‘10).
This gives a proof of ansatz raised by Alcaraz & Lazo, JPA 37 (‘04).

We never have the vertex        .
A↓(j) satisfy an analogue of the 
Zamolodchikov-Faddeev algebra.
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How to cook up Integrable Density Matrix?
 Vertex/Face correspondence

Transfer matrix

Yang-Baxter relation
This correspondence is not always 
one-to-one. Face-type models 
include Ising, hard-hexagon, IRF, …

 MPO/ladder state correspondence
A
B

Bijection                            , leads to                                                  .

Reduced density matrix for A:                                                      .



Quantum hard-hexagon model
 Frustration-free model

Parent Hamiltonian:              G.S.:
For a triangular ladder, 

Face weights (n.n. exclusion) 

 Entanglement spectrum (ES)
Double-row 

transfer matrix
of hard-hexagons!

The 2d classical model is integrable
(Baxter, 1980). Critical at zc=11.09…  

k

Entanglement Hamiltonian

Spectrum of HE at  z=zc
is described by c=4/5 CFT.
(3-state Potts universality)
See Tanaka, Tamura & Katsura, 
PRA 86, 032326 (2012).



Integrable MPO with D=4 (1)
 Deformation of hexagonal VBS density matrix

: orthonormal basis in      (aux. space),         
Consider the following MPO: 

4×4
matrices

Hexagonal VBS on 2-leg ladder

A
B

Reduced density matrix

Entanglement spectrum

ES resembles the spectrum 
of the ferromagnetic XXX!

Lou, Tanaka, Katsura & Kawashima, PRB 84, 245128 (2011).

S=3/2 and S=1 
spins are mixed.



Integrable MPO with D=4 (2)
 Miraculous properties

M(x,y) related to VBS does not exhibit any integrability…
However, M(cosθ,sinθ) have the following properties:

Property 1. For any N and arbitrary λ, θ∈R, the operator 
M(cosθ,sinθ) commutes with the XXX transfer matrix T(λ). 

Property 2. For any N and arbitrary θ1, θ2∈R, the operator 
M(cosθ1,sinθ1) and M(cosθ2,sinθ2) commute with each other. 

They strongly suggest the integrabilty of M(cosθ,sinθ).
In fact, they can be proved as corollaries of 

Theorem. For any N and arbitrary θ∈R, the operator 
M(cosθ,sinθ) is written in terms of transfer matrices as 

Proof is based on a similarity transformation 
and the Yang-Baxter eq. For details, see H.Katsura, arXiv:1407.4267.



Summary
• Modern formulation of QISM & ABA

• Bethe states can be expressed as MPS

• Factorizing F-matrix simplifies the MPS

• Construction of integrable density matrix

• Integrable MPO and hexagonal VBS state

 Prospects
• ABA with OBC: reflection eq.: RKRK=KRKR

V.Murg, V.E.Korepin & F.Verstraete, PRB 86 (2012).

• Integrable density matrix + Suzuki-Trotter
Exact computation of Renyi entropies for ladders?

• Application to many-body localization? (Cirac, Huse, Hastings, …)

• 3(=2+1) D generalizations
Tetrahedron relation: RRRR=RRRR (Zamolodchikov, Baxter-Bazhanov)
Topological invariants of 3-manifolds (Witten, Reshetikhin, Turaev-Viro)


