Z₃ symmetry-protected topological phases in SU(3) AKLT model

Takahiro Morimoto RIKEN

Collaborators

Hiroshi Ueda (RIKEN)

Tsutomu Momoi (RIKEN)

Akira Furusaki (RIKEN)

Phys. Rev. B 90, 235111 (2014).

Plan of this talk

- Introduction
 - Symmetry-protected topological phases
 - Group cohomology classification
- Z3 symmetry-protected topological phase
 - SU(3) AKLT model
- SU(3) bilinear-biquadratic model
 - iDMRG calculation
 - Phase transition between Z3 SPT phase and dimer phase

Haldane phase

S=1 spin chain:
$$H = J \sum_i S_i \cdot S_{i+1} + D \sum_i (S^z)^2$$

No order parameter from symmetry breaking

Symmetry protected topological (SPT) phase in 1D

S=1 spin chain:
$$H = J \sum_i \boldsymbol{S}_i \cdot \boldsymbol{S}_{i+1} + D \sum_i (S^z)^2$$

Symmetry: Time reversal, inversion, Z2 × Z2

Boundary: S=1/2 spin No excitation

Boundary states with an anomalous symmetry action

Matrix product states

AKLT model:
$$H_{\text{AKLT}} = \sum_{i} \left[\mathbf{S}_{i} \cdot \mathbf{S}_{i+1} + \frac{1}{3} (\mathbf{S}_{i} \cdot \mathbf{S}_{i+1})^{2} \right],$$

$$|\Psi\rangle = \sum_{\{m_i\}} \operatorname{tr}[A^{m_1}A^{m_2}\dots A^{m_L}] |m_1\dots m_L\rangle,$$

Projection onto S=1 states

$$\tilde{A}^1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad \tilde{A}^0 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \tilde{A}^{-1} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \qquad \tilde{B} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Projection onto a singlet state

$$\tilde{B} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix}$$

$$A^m = \tilde{A}^m \tilde{B}$$

$$A^{m} = \tilde{A}^{m}\tilde{B} \qquad \qquad A^{\pm 1} = \frac{\pm \sigma_{x} + i\sigma_{y}}{2\sqrt{2}},$$

$$A^0 = -\frac{1}{2}\sigma_z$$

Symmetry transformation of MPS

Symmetry operation

Transformation of MPS wavefunction

$$|m\rangle \to \sum_{n} g_{nm}|n\rangle$$

$$|\Psi\rangle = \sum_{\{m_i\}} \operatorname{tr}[A^{m_1}A^{m_2}\dots A^{m_L}] |m_1\dots m_L\rangle,$$

$$|\tilde{\Psi}\rangle = e^{iL\theta_g} \sum_{\{m_i\}} \operatorname{tr}[U_g^{-1} A^{m_1} U_g \dots U_g^{-1} A^{m_L} U_g] |m_1 \dots m_L\rangle$$

Ug: unitary transformation of matrices of MPS

$$\sum_{m} g_{mn} A^m = e^{i\theta_g} U_g^{-1} A^m U_g,$$

Ug forms a representation upto U(1) phase : $U_q U_h = \exp[i\phi(q,h)]U_{ah}$, Projective representation

$$U_g U_h = \exp[i\phi(g,h)]U_{gh}$$

Classified by group cohomology

$$H^2(G, U(1)),$$

Fidkowski, Kitaev, PRB (2011) Chen, Gu, Wen, PRB (2011) Pollmann, Turner, Berg, Oshikawa, PRB (2010)

Z2 × Z2 symmetry and AKLT state

Dihedral group (Z2 × Z2) of spin π rotations around x,y,z axes for S=1 spins

Symmetry transformation of effective ½ spins:

$$(U_{C_x}, U_{C_z}, U_{C_x C_z}) = (\sigma_x, \sigma_z, i\sigma_y),$$

The projective representation is nontrivial element of

$$H^2(Z_2 \times Z_2, U(1)) = \mathbb{Z}_2$$

Do we have Z3 analog of Haldane phase?

Construction of Z3 SPT phase from cocycles in the group cohomology:

$$H^2(Z_3 \times Z_3, U(1)) = \mathbb{Z}_3$$

Z3 SPT phase with Z3 × Z3 symmetry

Suppose that x, y generates $Z3 \times Z3$ symmetry.

Projective rep.
$$U_x = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \qquad U_y = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{pmatrix},$$

$$U_x U_y = \omega U_y U_x, \qquad \qquad \omega = \exp(2\pi i/3)$$

A^m should be 3 by 3 matrices

g=x or y,
$$\sum_n g_{mn}A^n=e^{i\theta_g}U_g^{-1}\underline{A}^mU_g,$$

8 traceless 3 by 3 matrices A^m can realize the required symmetry transformation.

SU(3) AKLT state

$$|\Psi\rangle = \frac{1}{3^{L/2}C} \operatorname{tr}[M_1 M_2 \cdots M_L]$$

$$M_{i} = \begin{pmatrix} \frac{2}{3}|u\bar{u}\rangle_{i} - \frac{1}{3}|d\bar{d}\rangle_{i} - \frac{1}{3}|s\bar{s}\rangle_{i} & |u\bar{d}\rangle_{i} & |u\bar{s}\rangle_{i} \\ |d\bar{u}\rangle_{i} & -\frac{1}{3}|u\bar{u}\rangle_{i} + \frac{2}{3}|d\bar{d}\rangle_{i} - \frac{1}{3}|s\bar{s}\rangle_{i} & |d\bar{s}\rangle_{i} \\ |s\bar{d}\rangle_{i} & |s\bar{d}\rangle_{i} & -\frac{1}{3}|u\bar{u}\rangle_{i} - \frac{1}{3}|d\bar{d}\rangle_{i} + \frac{2}{3}|s\bar{s}\rangle_{i} \end{pmatrix}$$

SU(3) AKLT model

 SU(3) AKLT wave function is the ground state for the Hamiltonian of projection operators

$$H_3 = \frac{1}{4} \sum_{i} [(T_i + T_{i+1})^2 - C(8)][(T_i + T_{i+1})^2 - C(1)],$$
 su(3) ops. in 8 rep.

$$\mathbf{8}\otimes\mathbf{8}=\mathbf{27}\oplus\mathbf{10}\oplus\overline{\mathbf{10}}\oplus\underline{\mathbf{8}\oplus\mathbf{8}\oplus\mathbf{1}}.$$

Project out....

$$\mathbf{3}\otimes \mathbf{ar{3}}=\mathbf{8}\oplus \mathbf{1}.$$

Greiter, Rachel PRB (2007)

Two MPS ground-state wave functions

MPS: A^m , Symmetry operations: Ux, Uy, SPT phase: $1 \in \mathbb{Z}_3$

MPS: $(A^m)^T$, Symmetry operations: Ux^* , Uy^* , SPT phase: $-1 \in \mathbb{Z}_3$

SU(N) AKLT model

$$H_N = \sum_i \left[(\boldsymbol{T}_i \cdot \boldsymbol{T}_{i+1})^2 + \frac{3N}{2} \boldsymbol{T}_i \cdot \boldsymbol{T}_{i+1} + \frac{N^2}{2} \right]$$
 adjoint rep.

Ground state = Two SU(N) AKLT wave functions

Correlation function

Exponential decay of correlation function.

$$\langle \Psi | T_i^a T_j^a | \Psi \rangle \propto \left(\frac{-1}{N^2 - 1} \right)^{i - j}.$$

$$\xi_N = rac{1}{\ln(N^2-1)},$$
 Katsura, et al., J. Phys. A (2008). Rachel et al., JPCS (2010).

SU(3) AKLT model has an energy gap.

Local magnetic orders are absent in SU(3) AKLT phase

Back to the order parameters

String order in SU(3) AKLT wave fucntion

$$\mathcal{O}_i^u = T_i^3 + \frac{1}{\sqrt{3}} T_i^8.$$

$$M \to \begin{pmatrix} |0\rangle^u & |1\rangle^u & |1\rangle^u \\ |-1\rangle^u & |0\rangle^u & |0\rangle^u \\ |-1\rangle^u & |0\rangle^u & |0\rangle^u \end{pmatrix},$$

An example of sequence of local states:

$$\cdots |0\rangle_{i-2}^{u}|1\rangle_{i-1}^{u}|-1\rangle_{i}^{u}|0\rangle_{i+1}^{u}|0\rangle_{i+2}^{u}|1\rangle_{i+3}^{u}|0\rangle_{i+4}^{u}|-1\rangle_{i+5}^{u}\cdots.$$

Non-vanishing string correlation

Cf. Duivenvoorden, Quella PRB (2013)

$$\lim_{L \to \infty} \langle \Psi | \mathcal{O}_j^u \exp\left(i\pi \sum_{j \le l \le k} \mathcal{O}_l^u\right) \mathcal{O}_k^u | \Psi \rangle = \frac{1}{4} - \frac{1}{4} \left(-\frac{1}{8}\right)^{k-j}$$

SU(3) bilinear-biquadratic model

$$H_{\theta} = \sum_{i} [\cos \theta \, \mathbf{T}_i \cdot \mathbf{T}_{i+1} + \sin \theta \, (\mathbf{T}_i \cdot \mathbf{T}_{i+1})^2],$$

Entanglement spectra

Z3 SPT phase

Dimer phase

Scaling of entanglement entropy

c=16/5 → Level 2 SU(3) Wess-Zumino-Witten model

Cf. level 2 SU(2) WZW model at Haldane-dimer transition in S=1 bilinear-biquadratic chain.

S=1 chain reducing to SU(3) AKLT model

Haldane phase can be realized S=1/2 spin chain with staggered interactions.

With a basis of S=1 spin
$$|x\rangle=i\frac{|1\rangle-|-1\rangle}{\sqrt{2}}, \quad |y\rangle=\frac{|1\rangle+|-1\rangle}{\sqrt{2}}, \quad |z\rangle=-i|0\rangle$$

spin dipole and quadrupole operators form su(3) generators

$$\sum_{a} \hat{\lambda}_{a}(i) \hat{\bar{\lambda}}_{a}(j) = S_{i} \cdot S_{j} - Q_{i} \cdot Q_{j}$$

$$\mathcal{H}_3 = -\sum_i \left[J'(S_{i,1} \cdot S_{i,2})^2 + J(S_{i,2} \cdot S_{i+1,1})^2 \right].$$

S=1 spins with staggered biquadratic couplings

S=1 chain reducing to SU(3) AKLT model

$$\mathcal{H}_3 = -\sum \left[J'(S_{i,1} \cdot S_{i,2})^2 + J(S_{i,2} \cdot S_{i+1,1})^2 \right].$$

Summary

 Z3 symmetry-protected topological phases in SU(3) AKLT model

- Phase diagram of SU(3) bilinear-biquadratic model by iDMRG calculation
- S=1 spin model with staggered quadrupole couplings is connected to SU(3) AKLT model