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Type la Supernovae are used as standard candles

m Ejected mass ~ M., energy Ey ~ 10%'erg, velocity
vo ~ v/Eo/Ms ~10%m s~!

m Peaks at ~ Lycax ~ 10%3erg s~!

m Duration at peak ~ 30 days
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Interaction with a medium leads to sulerluminous events

m Interaction with pre-existing circumstellar medium (CSM):
m more efficient conversion of kinetic outflow to radiation
(Woosley+2007, Nature; Jerkstrand+2020, Science)
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Different CSM mass changes the peak and duraction of the

lightcurve

m Less CSM mass - shorter and brighter events
m More CSM mass - longer duration and less bright
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m Origin of the CSM is usually its wind itself.
m What about SNe in different environments?



AGN discs are modelled as accretion discs

B Geometrically thin H < r, optically thick 7> 1 accretion discs
m Marginally stable for r > 10°rs, rs = 2GM, /c?

m Potential migration traps around maximal density @r ~ 103r,
(Bellovary+2016)
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AGN accretion discs host many stellar populations

B Many stars and stellar remnants (Miranda+2000, Bartko+2010)

m Star formation: instability (Paczynski 1987, Dittmann+2020) or disc
capture (Artymowicz 1993)

m Accretion and migration, changing mass and orbits (Ostriker41983,
Cantiello+2021)
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Lightcurve is detremined from explosion and AGN disc initial

conditions

Explosion: Disc: initial (I‘O,ZO)
E, M, p(z),k = 1(2)
Self-Similar (Sedov-Taylor) & /
Accelerating (Sakurai) solutions
Matzner & McKee (1999) zV(Z)

Photon diffusion

Planar 2D= Spherical 3D phase
Nakar and Sari (2010) =>Ana|ytic L 5 L(t)
Yalinewich & Matzner (2019) peak

i T Compare to simulations




We compare the analytics with two different codes

m SuperNova Explosion Code (SNEC): spherically symmetric Lagrangian
radiation hydrodynamicals (Morozova+2016)

m ldeal for obtaining lightcurves, radiative transfer, opacity tables

®m HORMONE: Eulerian grid-based Godunov type scheme hydrodynamics
code (Hirai4-2016) - study disc morphology
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The shock wave propagates in three phases

B Free expansion: The shock sweeps mass Mgy, ~ poz3>> Me;j, and the
density is uniform, the velocity is roughly constant
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The shock decelerates

B When Mgy 2 M,j, the shock decelerates via the Sedov-Taylor solution
R o< (E/po)Y/°t2/®, v(t) < (E/po)*/®t3/5
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Finaly the shock accelerates and breaks out

B When p(z) < po in the upper layers, the Shock accelerates as a Sakurai
Law vec p™# (2 0.19), (Sakurai 1960) and breaks out

B 2z, is where T(zp,) = ¢/v(2Zho) (Nakar and Sari 2010)
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The photons then diffuse to the photosphere
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Once v(z), t(z) is known, analytical lightcurve estimation

L(t) is possible

) 1/2 —u
m v(z) from an extrapolation: v(z) = (W) (p’gj))
(Matzner & McKee 1999),
m For ST: V2~ E/M ~ E/(pv3t3) — v® ~ (E/pt3)
B P,7T,Zy-> L(t) via analytical means (Yalinewich & Matzner
2019, Grishin42021)
m Photosphere expansion: d = dy + ot

m planar phase: vyot < Zphot — Zbo CONStant 7.
m Spherical phase, vpot 2 Zphot — Zbo , T decreases

m We later vary the explosion and disc properties.



The analytic lightcurve reproduces the simulation

m Gray area - range of times to breakout ty, = [3* dz/v(z)
m Blue line - end of the spherical phase (Yalinewich and Matzner

2019)
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Lightcurve depends on the different vertical Structure

m (#1: Gaussian) (#7: Radiation dominated profile) (#8 -
Uniform)
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2D Hydrodynamical simulations uncover the disc

morphology

1000 hr

30 AU




Low density and/or high explosion energy events may be

observable

m Gray area - expected to be obscured by the AGN luminosity
Lagn = 0.3Lggqg ~ 4- 1044(I\/I./107I\/I@)erg/s (Hubeny+2001)
m Some AGNs could be much less luminous Lagny = 0.01Lg4q

(Fabian+2009)
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Lower density environments are more likely to be observable

m More massive ejecta as in core collapse SN behave similarly
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Early breakout could be blue optical/UV or hour-long X-ray

flare
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Upper rate limit comparable to AGN BBH marger rates

m Mass doubling time ~ AGN lifetime ~ 108yr
m 100M,, form a SNe = 1073 SNe per yr per AGN

m 1% of galaxies have AGN disc, typical number density of
nagn = 107*Mpc—3 = % = 100 AGN SNe yr~ ! Gpc—3

m BBH merger rate in AGN discs 0.002 — 18 yr—! Gpc ™3
(Groebner + 2020)



Rate has very large uncertaities

m Proper mass function of AGN discs? Fraction of starved
AGNs?

m Most of them could be observable if occur near migration
traps ~ 103r5(Be||ovary+2016)

m Direction of migration could reverse (Gruzinov+2016)

m Accretion could render most stars into supermassive ones
(Cantiello+2021)

m Rotation / radiative feedback can limit accretion, especially in
denser regions near 103rg (Jermyn+2021)

m Extreme 7 ~ 10°% |, energy release is blocked, accretion rate
reduced: "Bondi explosions" (Wang+2021)

m Accretion onto WD —> Chandrasekhar WD and type la SNe
(Ostriker 1983), increasing Z , but accretion efficiency is also
uncretain



Environments of reduced pagn have more chances to be

observed

m Reduced pagn is better for observations

m Compactness, such that pagnH® < Mq;, otherwise the
explosion could be choked
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Summary

m Understanding AGN explosions opens a window to AGN disc
physics and their interactions with the supernova progenitors.
m Typical peak luminosity is around 10** —10%° erg s~
m The most energetic events are also the quickest to break out,
t ~hours to days and occur in low p regions
m The upper limit for the event rate is % < 100 yr Gpc—3, with
large uncertaities
m AGN variability observed on larger tiemscales

m Future high-cadence transient surveys may be able to identify
AGN SNe.



The simulated velocity is somewhere in between
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Off-center explosion also experience a 'crater’ phase

m If the explosion is at the origin, energy production stops
(without nuclear sources)
m If the explosion is close to the surface, the shells inner to the
original explosion will be removed (Yalinewich and Matzner
2019)
m Initial slab geometry, additional crater/gap phase: somewhat

similar to AGN disc
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Different energies and masses fit well

m (#1,canon); (#5,105%erg,) (#6,10%%rg); (#15, Mej = 10My)
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Different radial AGN locations not always fit

m (#4: M, =10°M,r = 10%r); (#13: M, = 10°M,,); (#14 -
starved: p — p/10)
m Reduced densities, less mass in the CSM
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Different vertical Structure

m (#1: Gaussian) (#7: Radiation dominated profile) (#8 -

Uniform)
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Off plane AGN locations not always fit
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Back up - YM19 model

m We take 19 = xpoH and
M= Eo/(Mej +P0/§ff), loff = Zvo — 21 and m evaluated at zy,
m This uniquely detremines the lightcurve

f 4\ z1 zbo zphm
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Back up - YM19 model

m We take
M= Eo/(MeJ —f—poleff) loff = zbo — 21 and @ evaluated at zy,

pl
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Vertical structure

m Hydrostatic Eq. % =—pg;= Kypyflf’f—’z’ where P = Kp” is
the EOS

m Isothermal (gas pressure)
P=clp = p(z) = poexp(—2z°/2H?)

m General polytope: Vertical gravity in a disc: g, ~ Q2%z, we
have p?~2dp = —%i. = y=4/3is

,2 1Y(r-1)

p(2)=po[1-(r—1) ]

2 _ Q2 Q2
u H - 2 = 7—1
cs YKpPg

is the scale height.
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