YITP-OzGrav WS "Nuclear burning in massive stars", 26th July 2021

Stellar Evolution and Nucleosynthesis

Alexander Heger (Monash) Bernhard Müller (Monash) Projjwal Banerjee (IIT Pakalat) Yongzhong Qian (UMN) Stan Woosley (UCSC) James Grimmett (Monash) Conrad Chan (Swinburne)

ASTRO 3D

MONASH

Jniversity

IReNA

OzGrav

Once formed, the evolution of a star is governed by gravity: continuing contraction to higher central densities and temperatures

Evolution of Center for Different Initial Masses

Langer (2012)

Nuclear burning stages

Fuel	Main Product	Secondary Product	T (10 ⁹ K)	Time (yr)	Main Reaction
н	He	¹⁴ N	0.02	10 ⁷	$4 H \rightarrow {}^{CNO} He$
He 🖌	0, C	¹⁸ O, ²² Ne s-process	0.2	10 ⁶	3 ⁴He → ¹²C ¹²C(α,γ)¹6O
C	Ne, Mg	Na	0.8	10 ³	¹² C + ¹² C
Ne	O, Mg	AI, P	1.5	3	²⁰ Ne(γ,α) ¹⁶ O ²⁰ Ne(α,γ) ²⁴ Mg
OX	Si, S	CI, Ar, K, Ca	2.0	0.8	¹⁶ O + ¹⁶ O
Si,S	Fe	Ti, V, Cr, Mn, Co, Ni	3.5	0.02	²⁸ Si(γ,α)

(Nomoto 2002, priv. com.)

initial mass (solar masses)

Convective Mach Numbers at CC

Mueller, Chan, Heger 2018

Spin and Kick in BH Formation

- Stars that make BH may have initial explosion
- Initial asymmetries may be swallowed by fallback, reducing kick and spin for large BHs
- For large explosion energies, spin and kick may persist, but making smaller BHs

(Chan+ 2018)

¹²C Production as a function of ¹²C(α,γ) and 3α reaction rates

Carbon mass fraction at the end of helium burning depends the reaction rates and the mass of the star

~2,000 stellar models

(West+ 2013)

Results

[Top] Carbon mass fraction in the centre of a $25 M_{\odot}$ star after core helium depletion

[Bottom Left]

Baryonic remnant mass after 1.2 B supernova explosion

Masses in the Stellar Graveyard in Solar Masses

GWTC-2 plot v1.0 LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern

Pulsational Pair Instability Supernovae

Plot after data from Woosley (2016)

PSN/PPSN as Function of Mass and ¹²C(a,g) Rate

Impact of Pulsational Pair Instability SN On Binary Black Hole Merger Mass

(Belczynski+ 2016)

Conclusions

- Can do full-network 1D simulations, but still have many limitations from input physics, including rotation, magnetic fields, nuclear data, ...
- WANTED nuclear data for reaction rates, masses and energy levels and the weak rates and nu loss rates to compute consistent models.
- Due to the multitude of effects, conversely, modeling can not be used easily to constrain nuclear data except for special cases.