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We need Realistic CCSN models 
Comparable to observations.

Purpose

Realistic model… based on 3D self-consistent simulations 
without any arbitrary parameters.

Comparable to obs… Eexp~ 1051erg, MNi~ 0.07M
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One of the key inputs is non-spherical structure of initial 
conditions (CCSN progenitors).
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compactness parameter j2.5
（ ≒ mass accretion rate）

KN+15, PASJ

Explosion energy

Growth rate3D simulations
It’s not easy to explode high M progenitors.
Some small mass（≒ small M）progenitors 
can explode, but their Eexp is small.

Melson+15:  9.6M → 1050erg
Mueller+18: 7 progenitors →1-4 x 1050erg.
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We could obtain Eexp~ 1051erg (& MNi~ 0.07M  ) 
CCSM models if high M progenitors explode.
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2D simulations
Mass accretion is important!
high M → high Lν → high Q → high Eexp

Progenitors with high M can attain 1051erg 
in 1-2 s after bounce （if they explode）.
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Previous works
Couch & Ott 13
3D CCSN simulation for a spherical 15M progenitor star with a 
parametric vθ perturbation in 1,000 - 5,000 km. → Shock revival.
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Figure 2. Volume renderings of entropy for models n0m0 fheat 1.02 (left column)
and n5m2 fheat 1.02 (right column) at three different postbounce times, from
top to bottom: 100 ms, 200 ms, and 300 ms. The spatial scale is noted at the
bottom of each pane and increases with time. The PNS is visible in the center
of the renderings, marked by a magenta constant-density contour with value
1012 g cm−3.
(A color version of this figure is available in the online journal.)

fheat 1.02 experiences runaway shock expansion, indicating that
the explosion is aspherical, as is also clear from the bottom-right
panel of Figure 2. The failed explosions show comparatively
small values of σ̃ , implying relative sphericity of the shock
surface, until strong SASI oscillations set in after the shock has
receded (see Couch & O’Connor 2013).

The presence of pre-shock perturbations has substantial im-
pact on the neutrino heating efficiency, η = Qnet(Lνe

+ Lν̄e
)−1.

As shown in the third panel of Figure 3, for n5m2 fheat 1.00,
the heating efficiency history is very similar to that of n0m0
fheat 1.02. This implies that the perturbations drive nonra-
dial motion that increases the dwell time of material in the
gain region, significantly enhancing the fraction of neutrino
luminosity absorbed. For n5m2 fheat 1.02, the combination of
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Figure 3. Time evolution of the global explosion diagnostics for our simulations.
Four 3D simulations are shown: unperturbed models with fheat 1.00 (black
lines) and 1.02 (blue lines), and perturbed models with fheat 1.00 (green
lines) and 1.02 (red lines). The top panel shows the average shock radius.
The second panel shows the normalized standard deviation of the shock radius,
σ̃ = 〈rshock〉−1[(4π )−1

∫
dΩ(rshock − 〈rshock〉)2]1/2. The third panel shows the

heating efficiency, η = Qnet(Lνe + Lν̄e )−1. The bottom panel shows the ratio of
advection-to-heating time scales.
(A color version of this figure is available in the online journal.)

fheat > 1 and pre-shock perturbations results in a sufficiently in-
creased heating efficiency to initiate a neutrino-driven explosion.
Also, η depends sensitively, and nonlinearly, on fheat. The time-
averaged heating efficiencies for simulations n0m0 fheat 1.00,
n0m0 fheat 1.02, n5m2 fheat 1.00, and n5m2 fheat 1.02 are 0.062,
0.080, 0.075, and 0.100, respectively.

It is almost exactly at the positive inflection in the average
shock radius curve of n5m2 fheat 1.02 (∼200 ms) that the critical
condition for explosion, τadv/τheat > 1 is satisfied (Figure 3;
Thompson 2000; Janka 2001; Buras et al. 2006; Fernández
2012). Here we define the average advection time through the
gain region as τadv = Mgain/Ṁ and the gain region heating time
as τheat = |Egain|/Qnet, where |Egain| is the total specific energy
of the gain region and Qnet is the net neutrino heating in the
gain region (cf. Müller et al. 2012; Ott et al. 2013). During
the stalled-shock phase of n5m2 fheat 1.02, around 100–200 ms,
the ratio τadv/τheat is growing continuously. Once this critical
ratio exceeds unity, thermal energy builds up in the gain region
faster than it can be advected out into the cooling layer and the
shock begins to expand.

In order to assess the magnitude of the perturbations as they
are actually impinging upon the shock, and their effect on the
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leakage scheme of O’Connor & Ott (2010), whose 3D version
was also employed in Ott et al. (2012, 2013). The neutrino
leakage scheme includes a multiplicative factor, fheat, in the
neutrino heating source term, which can be adjusted to yield
more efficient neutrino heating (i.e., fheat > 1). The leakage
scheme with fheat = 1.00 is tuned to match the multiangle,
multigroup full neutrino transport simulations of Ott et al.
(2008). In all simulations reported here, we use 3D Cartesian
geometry with a finest grid spacing dxmin = 0.49 km. Using
adaptive mesh refinement, we achieve a pseudo-logarithmic grid
by decrementing the maximum allowed refinement level as a
function of radius. The typical effective “angular” resolution is
0.◦37.

We use a single progenitor model, the 15 M" star of Woosley
& Heger (2007). In order to study the dependence of 3D CCSN
simulations on asphericities extant in the progenitor, we apply
perturbations to the 1D stellar profile. We seed perturbations that
are convolutions of sinusoidal functions of radius and angle.
For simplicity, we perturb only the velocity in the spherical
θ -direction and leave all other variables untouched. The form of
the sinusoidal perturbation to vθ is

δvθ = MpertcS sin[(n − 1)θ ] sin[(n − 1)ζ ] cos(nφ) , (1)

where Mpert is the peak Mach number of the perturbations, cS is
the local adiabatic sound speed, n is the number of nodes in the
interval θ = [0,π ], and ζ = π (r−rpert,min)/(rpert,max −rpert,min).
The perturbations are only applied within a spherical shell
with radial limits rpert,min < r < rpert,max. We scale the
perturbations with local sound speed so that the peak amplitudes
of the perturbations are constant in Mach number, not absolute
velocity. This results in higher-speed perturbations at smaller
radii where the sound speeds are larger. Importantly, for odd
node numbers, Equation (1) results in zero net momentum
contribution to the initial conditions. We have verified this
experimentally to machine-precision.

3. RESULTS

We start our 3D simulations from the results of 1D simulations
at 2 ms after core bounce, and it is at this point that we apply the
perturbations given by Equation (1). In the results we discuss
here, we use a node count n = 5 and peak perturbation Mach
number Mpert = 0.2. This establishes large-scale perturbations
that are similar in extent and speed to some convective plumes
found in multi-D progenitor burning simulations (Meakin &
Arnett 2007; Arnett & Meakin 2011). We choose rpert,min to
correspond to the inner edge of the silicon shell (i.e., the outer
edge of the iron core). For this progenitor at the time of core
bounce, this corresponds to a radius of ∼1000 km. We set
rpert,max = 5000 km, which is sufficiently large to never reach
the shock during the simulated time period. Figure 1 shows a
pseudo-color plot of the perturbations used in this study.

We present the results of four 3D simulations, two perturbed
and two unperturbed. We use two different heat factors for
both perturbed and unperturbed case: fheat = 1.00 and a
slightly enhanced heating case with fheat = 1.02. We refer
to the simulations using the scheme n[node count]m[initial
perturbation Mach number, times ten] fheat [heat factor], such
that the perturbed model with enhanced heat factor is referred
to as “n5m2 fheat 1.02.”

We find that introducing plausibly scaled velocity perturba-
tions in the Si shell of the progenitor star can trigger a successful
explosion for cases in which an unperturbed simulation fails.

Figure 1. Example of the initial θ -velocity perturbations applied in this study.
Shown is the a meridional slice of the Mach number of the θ -direction velocity.
The arrows in the outer ring of perturbations show the local velocity directions.
(A color version of this figure is available in the online journal.)

Figure 2 shows several entropy volume renderings for models
n0m0 fheat 1.02 and n5m2 fheat 1.02 at three postbounce times.
The only difference between these two models is the presence
of initial velocity perturbations in the Si/O layer. Model n5m2
fheat 1.02 results in continued runaway shock expansion and
asymmetric explosion, as clearly shown, while model n0m0
fheat 1.02 fails to explode and the shock recedes to small radii.
At 100 ms, only shortly after the perturbations have reached the
shock, both simulations are quite similar showing strong con-
vection following the preceding period of shock expansion. By
200 ms, however, differences in the models are obvious. The
shock has already begun to recede in n0m0 fheat 1.02 while
model n5m2 fheat 1.02 has retained a large shock radius and is
on the verge of runaway shock expansion. The last frames show
the final states of the two simulations. Model n5m2 fheat 1.02
has exploded, resulting in a large, asymmetric shock structure,
while the shock has fallen back to ∼100 km in model n0m0
fheat 1.02.

In Figure 3, we present the time evolutions of several global
metrics for our four 3D simulations. The top panel of Figure 3
shows the average shock radius. All models, with the exception
of n5m2 fheat 1.02, fail to explode. Compared with the control
case, n0m0 fheat 1.00, both n0m0 fheat 1.02 and n5m2 fheat 1.00
show longer stalled-shock phases prior to shock recession. These
two intermediate cases, despite employing different heat factors,
show remarkably similar average shock radius histories. In the
case of the successful explosion, n5m2 fheat 1.02, the average
shock radius remains extremely similar to the comparable
unperturbed model, n0m0 fheat 1.02, until about 100 ms after
bounce. The average shock radius of n5m2 fheat 1.02 remains
relatively constant just below 200 km until tpb ∼ 200 ms at
which point the shock begins to expand rapidly, signaling the
onset of explosion.

The second panel of Figure 3 shows a measure of the
overall shock asymmetry, the normalized standard deviation
of the shock radius σ̃ . The shock asymmetry grows as n5m2

2

initial vθ
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Mueller+17
3D CCSN simulation following a 3D stellar evolution of 18M
progenitor (Mueller+16). → Eexp ~ 7.7x1050 erg @ 2.4 s.
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Supernova Simulations from a 3D Progenitor Model 3

Figure 2. Slices showing the mass fraction XSi of silicon at the onset of collapse in models s18-3Dr (left) and s18-3D (right). Both models are characterised
by 2–3 silicon rich plumes (darker shades of blue. Due to the higher convective velocities, the boundary between the oxygen shell and the carbon shell is more
strongly distorted by interfacial wave breaking in model s18-3D.)

2 SETUP AND NUMERICAL METHODS

2.1 Initial Models

We compute the collapse and post-bounce evolution of a 1D initial
model (s18-1D) and two 3D initial models (s18-3D and s18-3Dr)
of an 18M� solar metallicity progenitor with a helium core mass of
5.3M�.

s18-3D is a 3D pre-collapse model that has been obtained
by simulating the final 5 minutes of oxygen shell burning in 3D
(Müller et al. 2016). As Müller et al. (2016) simulated only the
region between mass coordinates m of 1.68M� and 4.07M� in 3D,
data from the corresponding 1D stellar evolution model is used out-
side this domain.

In order to better analyse the response of the accretion shock
to the amplitude of the pre-collapse perturbations, we have also
constructed another 3D progenitor model s18-3Dr with reduced
convective velocities. In this model, we assume a fixed tempera-
ture profile for computing the nuclear reaction rates during the last
5 minutes of the pre-collapse evolution (while taking composition
changes into account). Otherwise the setup is identical to s18-3D.

The resulting artificial reduction of the burning rate in s18-
3Dr results in smaller convective Mach numbers in the oxygen shell
at collapse. This is illustrated by radial profiles of the root-mean-
square average Mach number Mar of fluctuations of the radial ve-
locity vr (Figure 1),

Mar =

D
(vr � hvri)2

E1/2

hcsi
, (1)

where angled brackets denote spherical Favre (i.e. density-
weighted) averages.2 The maximum value of Mar is less than 0.04
in model s18-3Dr compared to 0.1 in s18-3D. On the other hand,
the scales of the convective flow at the pre-collapse stage are similar

2 We also adhere to this convention in the remainder of the paper except for
spherical averages of the density itself, which are always volume-weighted.

for both models with 2–3 prominent silicon-rich plumes (Figure 2)
and a convective velocity field dominated by an ` = 2 mode.

In the case of the spherically symmetric model s18-1D, spher-
ical symmetry needs to be broken by hand in the supernova sim-
ulation. To this end, we impose random seed perturbations of
�vr/vr = 5 ⇥ 10�3 onto the radial velocity field around 110 ms after
the onset of collapse.

2.2 Core-Collapse Supernova Simulations

We compute the collapse and post-bounce evolution of the three ini-
tial models with the CoCoNuT-FMT code (Müller & Janka 2015).
The hydro module CoCoNuT solves the equations of general rela-
tivistic hydrodynamics in spherical polar coordinates using piece-
wise parabolic reconstruction (Colella & Woodward 1984), a hy-
brid HLLC/HLLE Riemann solver (Mignone & Bodo 2005), and
second-order time integration. It employs the xCFC approximation
for the space-time metric (Cordero-Carrión et al. 2009) and cur-
rently assumes a spherically symmetric metric for 3D simulations.
To tame the coordinate singularity at the grid axis, we use a mesh
coarsening scheme with variable resolution in the ' direction de-
pending on latitude as in Müller (2015). The interior of the proto-
neutron star (at densities higher than 5 ⇥ 1011 g cm�3) is treated in
spherical symmetry, and the e↵ect of proto-neutron star convection
is captured by means of mixing-length theory using a similar im-
plementation as in Mirizzi et al. (2016) and Bollig et al. (in prepa-
ration).

Neutrino transport is treated using the energy-dependent FMT
scheme of Müller & Janka (2015), which makes various simplify-
ing assumptions, but still achieves reasonable quantitative agree-
ment with more sophisticated methods for many of the quantities
relevant for the supernova explosion problem (neutrino luminosi-
ties and mean energies, heating conditions, etc.) as shown in Ap-
pendix A of Müller & Janka (2015). Technically, the FMT scheme
involves the solution of the zeroth moment equation in fully decou-
pled energy groups under the assumption of stationarity. At high
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Figure 15. Top panel: Diagnostic explosion energy Ediag for model s18-3D.
Bottom panel: Maximum, minimum (red solid curves), and angle-averaged
shock radius (red, dashed) and mass shell trajectories starting from locations
that are uniformly spaced in log r at the onset of collapse.

binding energy and of multi-dimensional e↵ects can be absorbed
in correction factors to obtain a universal critical luminosity curve
that marks the threshold for shock revival across a large variety
of progenitors. This is a somewhat di↵erent perspective than the
one adopted in the present study. Here we essentially seek to mea-
sure these correction factors for models of the same progenitor and
can ascribe all di↵erences (including di↵erences in the binding en-
ergy of the gain region) to the initial perturbations in the O shell
because the inner boundary conditions for the accretion problem
(proto-neutron star radius and mass, neutrino luminosities) are ex-
tremely similar. Whether the concept of a “universal” critical lumi-
nosity of Summa et al. (2016) and Janka et al. (2016) carries over
to models with strong initial perturbations cannot be addressed here
yet, as this would require a larger body of simulations for di↵erent
progenitors.

4 EXPLOSION PHASE

We have continued model s18-3D to 2.35 s after bounce to allow
for a tentative evaluation of the explosion and remnant properties
in a 3D model of a perturbation-aided neutrino-driven explosion.

The evolution of the shock radius and mass shell trajectories
for the entire simulation are shown in the bottom panel of Fig-
ure 15. By the end of the simulation, the minimum shock radius

exceeds 10, 000 km, i.e. the shock has already traversed the entire
O/Si shell and reached the C/O shell. The shock and the ejecta re-
tain a pronounced global asymmetry at this stage with considerably
stronger shock expansion in the y-direction of the computational
grid (Figure 16) with a maximum shock radius of 27, 000 km. The
shock geometry imprinted by forced shock deformation at the time
of shock revival is largely preserved until these late times aside
from some minor adjustments; the direction of fastest shock prop-
agation corresponds to one of the Si-rich convective updrafts in the
progenitor shown in Figure 2.

4.1 Explosion Energy

Even at the end of the simulation, the cycle of mass accretion
and mass ejection due to neutrino heating is still ongoing, and we
can therefore only obtain tentative estimates for the final explo-
sion properties as in previous 2D and 3D explosion models with
multi-group neutrino transport. In lieu of the final explosion en-
ergy, one typically considers the “diagnostic” energy Ediag (Buras
et al. 2006b; Suwa et al. 2010; Müller et al. 2012; Bruenn et al.
2016) as an estimator, which is calculated by integrating the net
total (kinetic+internal+gravitational) energy etot per unit mass over
the region where it is positive (i.e. where matter is formally un-
bound,

Ediag =

Z

etot>0
⇢etot dV, (20)

where the volume element is implicitly taken to include general
relativistic corrections.

The proper definition of etot is not straightforward, especially
in general relativity. Müller et al. (2012) suggested computing etot

as

etot = ↵[(c2 + ✏ + P/⇢)W2 � P/⇢] �Wc2, (21)

in terms of the pressure P, density ⇢, internal energy density ✏ (ex-
cluding rest-mass di↵erences between di↵erent nuclear species),
Lorentz factor W and lapse function ↵ in the relativistic case. In the
Newtonian limit, this reduces to the familiar form

etot = ✏ + v2/2 + �, (22)

where � is the gravitational potential. This form, however, disre-
gards an important subtlety: While the integral of ⇢(✏ + v2/2 + �)
is conserved for a system in an external potential, the conserved
quantity for a self-gravitating system is

Z
⇢(✏ + v2/2 + �/2) dV. (23)

Calculating Ediag based on Equations (21,22) e↵ectively
amounts to double-counting the potential energy of the ejecta that
is due to their own self-gravity (and not to the gravitational field
of the proto-neutron star) and therefore overestimates the energy
needed to expel the ejecta to infinity. In the Newtonian case, Buras
et al. (2006a,b) circumvented this problem by computing � for a
given mass shell from the enclosed mass only, but this is not a suit-
able solution in our case because it would imply discarding GR
corrections to the gravitational field of the proto-neutron star. To
avoid the problem of double-counting, we can, however, subtract
the Newtonian potential �grav,out generated by the shells outside a
given radius r,

etot = ↵[(c2 + ✏ + P/⇢)W2 � P/⇢] �Wc2 � �grav,out(r), (24)

MNRAS 000, 1–22 (0000)
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Couch & Ott 13
3D CCSN simulation for a spherical 15M progenitor star with a 
parametric vθ perturbation in 1,000 - 5,000 km. → Shock revival.
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Bollig+21
“Self-consistent 3D SN models from -7 min. to +7 sec: a 1-Bethe explosion”
3D CCSN simulation following a 3D stellar evolution of 18.88M
progenitor (Yadav+20). → Eexp ~ 1051 erg & MNi ~ 0.087M @ 7 s.
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☆

Mueller+17
3D CCSN simulation following a 3D stellar evolution of 18M
progenitor (Mueller+16). → Eexp ~ 7.7x1050 erg @ 2.4 s.
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Couch & Ott 13
3D CCSN simulation for a spherical 15M progenitor star with a 
parametric vθ perturbation in 1,000 - 5,000 km. → Shock revival.
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We want to construct independent 1-Behte CCSN models 
employing different progenitor models and numerical code.

Previous works

Bollig+21
“Self-consistent 3D SN models from -7 min. to +7 sec: a 1-Bethe explosion”
3D CCSN simulation following a 3D stellar evolution of 18.88M
progenitor (Yadav+20). → Eexp ~ 1051 erg & MNi ~ 0.087M @ 7 s.

1.0

1.1

1.2

1.3

1.4

0 100

Ba
ry

on
ic 

PN
S 

m
as

s 
[M

!
]

Time after bounce [ms]1.0

1.1

1.2

1.3

1.4

0 100
Ba

ry
on

ic 
PN

S 
m

as
s 

[M
!

]
Time after bounce [ms]

☆

Mueller+17
3D CCSN simulation following a 3D stellar evolution of 18M
progenitor (Mueller+16). → Eexp ~ 7.7x1050 erg @ 2.4 s.
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Couch & Ott 13
3D CCSN simulation for a spherical 15M progenitor star with a 
parametric vθ perturbation in 1,000 - 5,000 km. → Shock revival.
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Numerical scheme
Progenitor model（ Yoshida+19 ）
3D stellar evolution of 25M progenitor for 100 s before collapse.
→ O-shell burning drives large convective motions in Si/O layer.
→ Mapping the vr profile on 1D progenitor for the initial condition.
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ongoing core-collapse phase, emitting neutrinos via the pair-
neutrino process.

KamLAND is a one-kiloton size liquid-scintillation-type
neutrino detector (see, e.g., Gando et al. 2013). We take the

neutrino oscillation into account in a simple manner: the
survival probability of Oē is set to be 0.675 and 0.024 in the
normal and inverted mass ordering, respectively (Yoshida et al.
2016). The live-time-to-runtime ratio and the total detection

Figure 7. The time variation of the 28Si mass fraction distribution of model 25M at t=0 s (top left), 10 s (top right), 30 s (middle left), 75 s (middle right), 90 s
(bottom left), and 105 s (bottom right). An animated version of this figure is available, showing the time variation from t=0 to 105 s. The animation duration is 13 s.

(An animation of this figure is available.)
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Core-collapse simulations
2D/3D simulation by means of 3DnSNE code （Takiwaki+18）.
ν transport ：3-flavor IDSA scheme, 20 energy bins (<300 MeV)
EoS ：LS220 + Boltzmann gas
nuclear network ：13-α (He-Ni) simple network calculation 
spatial resolution：0 ≤ r ≤ 104 km, 600(r)x128(θ) or 600x64x128(φ) 

Inputted non-spherical structures
rp: random density perturbation (< 0.01%)
vp: radial velocity perturbation based on 3D stellar evolution.

（vturbl.~ ±108 cm/s, much smaller than vinfall~ -109cm/s）

Numerical scheme
Progenitor model（ Yoshida+19 ）
3D stellar evolution of 25M progenitor for 100 s before collapse.
→ O-shell burning drives large convective motions in Si/O layer.
→ Mapping the vr profile on 1D progenitor for the initial condition.
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Results - 1D/2D simulations
1D （spherical）
No explosion.

rp: random density perturbation (< 0.01%).
vp: radial velocity perturbation from 3D 
stellar evolution calculation.
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1D mass shell trajectory diagram

Average shock radius



2D with rp
Shock revival at ~ 260ms,
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Results - 1D/2D simulations
1D （spherical）
No explosion.

rp: random density perturbation (< 0.01%).
vp: radial velocity perturbation from 3D 
stellar evolution calculation.

1D mass shell trajectory diagram

Average shock radius
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Results - 1D/2D simulations
1D （spherical）
No explosion.

rp: random density perturbation (< 0.01%).
vp: radial velocity perturbation from 3D 
stellar evolution calculation.

1D mass shell trajectory diagram

Average shock radius

2D with rp
Shock revival at ~ 260ms,
earlier than the infall time of 
the convective region.
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We shift the inner 
radius of the region 
inward.

Results - 1D/2D simulations
1D （spherical）
No explosion.

rp: random density perturbation (< 0.01%).
vp: radial velocity perturbation from 3D 
stellar evolution calculation.

2D with rp
Shock revival at ~ 260ms,
earlier than the infall time of 
the convective region.

1D mass shell trajectory diagram

Average shock radius
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2D with rp+vp
Inputted velocity 
perturbation assists early 
shock revival (~ 150ms).

1D mass shell trajectory diagram

Average shock radius

We shift the inner 
radius of the region 
inward.

Results - 1D/2D simulations
1D （spherical）
No explosion.

rp: random density perturbation (< 0.01%).
vp: radial velocity perturbation from 3D 
stellar evolution calculation.

2D with rp
Shock revival at ~ 260ms,
earlier than the infall time of 
the convective region.
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and intermediate optical depths, the flux factor is obtained from a
two-stream solution of the Boltzmann equation in such a way as to
produce the correct di↵usion limit. Where the flux factor exceeds
1/2, we use a two-moment closure based on the assumption max-
imum packing. Velocity-dependent terms in the transport equation
are currently neglected (although gravitational redshift is included),
and the ray-by-ray method (Buras et al. 2006a) is used to sim-
plify the problem of multi-dimensional transport. Simplificatiions
in the treatment of the neutrino microphysics include the omission
of neutrino electron scattering, an approximate treatment of recoil
energy transfer in neutrino-nucleon scattering by an e↵ective ab-
sorption opacity, and the omission of absorption and emission pro-
cesses other than nucleon bremsstrahlung (treated by an e↵ective
single-particle rate) for heavy flavour neutrinos. To better repro-
duce the collapse dynamics of the inner iron core, the deleptoni-
sation scheme of Liebendörfer (2005) is used during the collapse
phase. Modifications of neutrino nucleon reactions due to weak
magnetism and nucleon correlations are not taken into account in
the present study. For details we refer the reader to Appendix A of
Müller & Janka (2015).

Our calculations are performed on a grid of 550 ⇥ 128 ⇥ 256
zones in the r-, ✓- and '-direction (corresponding to an angular
resolution of 1.4�) with a non-equidistant radial grid extending out
to 105 km.

We use the equation of state of Lattimer & Swesty (1991) with
a bulk incompressibility modulus of K = 220 MeV in the high-
density regime. In the low-density regime, we use an EoS account-
ing for photons, electrons, and positrons of arbitrary degeneracy
and an ideal gas contributions from 17 nuclear species. Nuclear
statistical equilibrium is assumed above 5 ⇥ 109 K, and nuclear re-
actions below this temperature are treated using the approximate
“flashing” method of Rampp & Janka (2002).

3 IMPACT OF INITIAL PERTURBATIONS ON SHOCK
REVIVAL

3.1 Qualitative Impact on Shock Evolution and
Hydrodynamics Instabilities

To illustrate the role of initial perturbations in models s18-3D, s18-
3Dr, and s18-1D, we compare the evolution of the shock, gain, and
proto-neutron star radii and the mass accretion rate Ṁ in Figure 3.
We also show neutrino luminosities L⌫ and mean energies E⌫ for
all three models in Figure 4. Meridional slices of the entropy for all
three models at selected times are presented in Figure 5.

As expected, di↵erences between the 3D models are minute at
early times. A minor peculiarity of model s18-1D is the develop-
ment of more violent prompt convection and shock ringing prior to
50 ms after bounce. This behaviour is connected to the imposition
of random seed perturbations in s18-1D on the entire grid, i.e. also
in the Fe and Si core, which is not explicitly perturbed in models
s18-3D and s18-3Dr. Moreover, patching the 3D O shell burning
simulation and the core of the 1D stellar evolution model together
results in slight hydrostatic adjustment in model s18-3D, which
slightly reduces the mass accretion rate and the electron flavour lu-
minosity (top panel of Figure 4) compared to s18-1D and s18-3Dr.
Despite these di↵erences, the shock trajectories in the three mod-
els nonetheless converge again after this transient phase of prompt
convection. 80 ms after bounce (top row Figure 5), they all show
very similar shock radii and incipient neutrino-driven convection
with small-scale plumes of similar size.

Figure 3. Top panel: Evolution of the maximum, minimum and average
shock radius (thick solid and dashed curves), the gain radius (dotted) and
the radii corresponding to densities of 1011 g cm�3 and 1012 g cm�3 (thin
solid lines) for models s18-1D (black), s18-3Dr (blue), and s18-3D (red).
Bottom panel: Mass accretion rate Ṁ for s18-1D, s18-3Dr, and s18-3D,
measured at a radius of 400 km.

The evolution of the models starts to diverge around 150 ms
after bounce with slightly larger shock radii in models s18-3D and
s18-3Dr, This is well before the arrival of the Si/O shell interface at
200-250 ms, but convection in the O shell can already make itself
felt by generating density perturbations in the stable Si shell (via
g-mode excitation), which will then undergo amplification during
collapse (Lai & Goldreich 2000). Shortly before the arrival of the
Si/O shell interface, the density perturbations ahead of the shock
can already become sizeable. To quantify the level of pre-shock
density perturbations, we evaluate the root-mean-square (RMS) de-
viation of the density ⇢ from its spherical average h⇢i

�⇢(r) =
2
666664

R
(⇢ � h⇢i)2 d⌦

4⇡

3
777775

1/2

, (2)

at a radius r of 250 km (Figure 6, top panel).
Prior to the arrival of the Si/O interface, the scale of the in-

falling density perturbations remains small, however. Only once
the O shell reaches the shock do we observe large-scale density
perturbations in s18-3D and s18-3Dr with angular wavenumbers
` ⇡ 2 corresponding to the dominant convective eddies in the pre-
collapse models. This is illustrated by Figure 6 (bottom panel),
which shows the normalised power ⇢`/⇢0 of the density perturba-
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Results - 1D/2D simulations
1D （spherical）
No explosion.

2D with rp
Shock revival at ~ 260ms,
earlier than the infall time of 
the convective region.



Results - 3D simulations
rp: random density perturbation (< 0.01%).
vp: radial velocity perturbation from 3D 
stellar evolution calculation.

3D with rp
Successful shock revival.
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Results - 3D simulations
rp: random density perturbation (< 0.01%).
vp: radial velocity perturbation from 3D 
stellar evolution calculation.

3D with rp
Successful shock revival.
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3D with vp
Earlier shock revival, 
will be produce more 
energetic explosion.



Summary

ü Numerical (self-consistent) CCSN models have been suffered 
from small explosion energy （<1051erg）.

ü One of the key inputs is non-spherical structure of CCSN 
progenitors such as a convective motion driven by nuclear 
shell burning.

ü We perform 3D CCSN simulation for 3D progenitor model and 
confirm that the non-spherical structure helps shock revival.

ü This mechanism may be effective only when the bottom of the 
Si/O layer is close to the progenitor core.


