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We need Realistic CCSN models
Comparable to observations.

-

Realistic model... based on 3D self-consistent simulations
without any arbitrary parameters.

Comparable to obs... E,,~ 10°Terg, My~ 0.07M,

One of the key inputs is non-spherical structure of initial
conditions (CCSN progenitors).



Previous works

2D simulations

Mass accretion is important! 0.6 [
high M — high L, — high O — high E,,, ;2 -
Progenitors with high M can attain 105'erg :; b
in 1-2 s after bounce (if they explode). £
3D simulations 16
It's not easy to explode high M progenitors. £ ok
Some small mass (= small M) progenitors 7’9
can explode, but their £, is small. — 08
Melson+15: 9.6M. — 10°%erg oy
Mueller+18: 7 progenitors —1-4 x 10~%erg 0. 40

We could obtain E,,,~ 10°'erg (& My~ 0.07M.)
CCSM models if high M progenitors explode.
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Previous works

Couch & Ott 13
3D CCSN simulation for a spherical 15M. progenitor star with a
parametric vy perturbation in 1,000 - 5,000 km. — Shock revival.
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Previous works

Couch & Ott 13
3D CCSN simulation for a spherical 15M. progenitor star with a
parametric vy perturbation in 1,000 - 5,000 km. — Shock revival.

Mueller+17
3D CCSN simulation following a 3D stellar evolution of 18M-
progenitor (Mueller+16). — Eq,~ 7.7x10°%erg @ 2.4 s.
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Previous works
Couch & Ott 13

3D CCSN simulation for a spherical 15M. progenitor star with a
parametric vy perturbation in 1,000 - 5,000 km. — Shock revival.

Mueller+17
3D CCSN simulation following a 3D stellar evolution of 18M-

progenitor (Mueller+16). — Eq,~ 7.7x10°%erg @ 2.4 s.

< Bollig+21
“Self-consistent 3D SN models from -7 min. to +7 sec: a 1-Bethe explosion”

3D CCSN simulation following a 3D stellar evolution of 18.88M.
progenitor (Yadav+20). — E,~ 10> erg & My;~ 0.087M- @ 7 s.




Previous works
Couch & Ott 13

3D CCSN simulation for a spherical 15M. progenitor star with a
parametric vy perturbation in 1,000 - 5,000 km. — Shock revival.

Mueller+17
3D CCSN simulation following a 3D stellar evolution of 18M-

progenitor (Mueller+16). — Eq,~ 7.7x10°%erg @ 2.4 s.

< Bollig+21
“Self-consistent 3D SN models from -7 min. to +7 sec: a 1-Bethe explosion”

3D CCSN simulation following a 3D stellar evolution of 18.88M.
progenitor (Yadav+20). — E,,~ 10 erg & My;~ 0.087M-@ 7 s.

We want to construct independent 1-Behte CCSN models
employing different progenitor models and numerical code.




Numerical scheme

Progenitor model ( Yoshida+19)
3D stellar evolution of 25M: progenitor for 100 s before collapse.

— O-shell burning drives large convective motions in Si/O layer.
— Mapping the v, profile on 1D progenitor for the initial condition.

Si/O layer(2490-11400km)
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Numerical scheme

Progenitor model ( Yoshida+19)
3D stellar evolution of 25M: progenitor for 100 s before collapse.

— O-shell burning drives large convective motions in Si/O layer.
— Mapping the v, profile on 1D progenitor for the initial condition.

Core-collapse simulations
2D/3D simulation by means of 3DnSNE code (Takiwaki+18).
v transport : 3-flavor IDSA scheme, 20 energy bins (<300 MeV)

EoS :L.S220 + Boltzmann gas
nuclear network :13-a (He-Ni) simple network calculation

spatial resolution:0 <r < 10* km, 600(r)x128(8) or 600x64x128(¢p)

Inputted non-spherical structures
rp: random density perturbation (< 0.01%)

vp: radial velocity perturbation based on 3D stellar evolution.
(Vg ~ 108 cm/s, much smaller than v~ -10%cm/s)




Results - 1D/2D simulations

1D (spherical)

No explosion.
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rp: random density perturbation (< 0.01%).
vp: radial velocity perturbation from 3D
stellar evolution calculation.
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Results - 1D/2D simulations

1D (spherical) rp: random density perturbation (< 0.01%).
No explosion. vp: radial velocity perturbation from 3D
, Stellar evolution calculation.
2D with rp 107 |
Shock revival at ~ 260ms, | 1D mass shell trajectory diagram |
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Results - 1D/2D simulations

1D (spherical) rp: random density perturbation (< 0.01%).
No explosion. vp: radial velocity perturbation from 3D
. , Stellar evolution calculation.
2D with rp 107 |
Shock revival at ~ 260ms, | 1D mass shell trajectory diagram |
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Results - 1D/2D simulations

1D (spherical)

No explosion.

rp: random density perturbation (< 0.01%).
vp: radial velocity perturbation from 3D
stellar evolution calculation.

2D with rp 109| |
Shock revival at ~ 260ms, | 1D mass shell trajectory diagram |
earlier than the infall time of
the convective region. 108 N
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Results - 1D/2D simulations

1D (spherical) rp: random density perturbation (< 0.01%).
No explosion. vp: radial velocity perturbation from 3D
stellar evolution calculation.

2D with rp 10°
Shock revival at ~ 260ms, | 1D mass shell trajectory diagram

earlier than the infall time of
the convective region. g8

We shift the inner
radius of the region
inward.
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Results - 1D/2D simulations

1D (spherical) 400
No explosion. &

2 300
2D with rp 8
Shock revival at ~ 260ms, § 200 |
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2D with rp+vp
Inputted velocity

perturbation assists early
shock revival (~ 150ms).
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Results - 3D simulations

3D with rp rp: random density perturbation (< 0.01%).
Successful shock revival. vp: radial velocity perturbation from 3D
stellar evolution calculation.
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Results - 3D simulations

3D with rp rp: random density perturbation (< 0.01%).
Successful shock revival. vp: radial velocity perturbation from 3D
stellar evolution calculation.

3D with vp
Earlier shock revival,

will be produce more
energetic explosion.
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Summary

v Numerical (self-consistent) CCSN models have been suffered
from small explosion energy (<10%'erg).

v One of the key inputs is non-spherical structure of CCSN
progenitors such as a convective motion driven by nuclear
shell burning.

v We perform 3D CCSN simulation for 3D progenitor model and
confirm that the non-spherical structure helps shock revival.

v This mechanism may be effective only when the bottom of the
Si/O layer is close to the progenitor core.



