Precollapse Shell Burning in the Si and O-rich Layers in Massive Stars

Yoshida et al. 2021, ApJ 908, 44

Takashi Yoshida¹

Tomoya Takiwaki², Kei Kotake³, Koh Takahashi⁴, Ko Nakamura³, Hideyuki Umeda⁵,

¹YTIP, Kyoto Univ., ²NAOJ, ³Fukuoka University, ⁴AEI, ⁵University of Tokyo

Nuclear burning in massive stars: towards the formation of binary black holes July 26th, 2021, YITP, Kyoto University and Monash University

3D Simulations of Shell Burning in SN Progenitors

- Aspherical structure of SN progenitors affects the explosion of SNe. (e.g., Couch & Ott 2013; Müller & Janka 2015)
- O Simulations of Si or O/Si-rich convective layers in precollapse stars (e.g., Couch & Ott 2015; Müller et al. 2016)
 - Convective motion with high Mach number and a large scale (e.g., Müller et al. 2016; , Yadav et al. 2020; Yoshida et al. 2019, 2021a,b)

(Müller et al. 2016)

Increasing 3D simulations of convective layers in precollapse stars

- Large convective layers (Yoshida et al. 2021a; Fields & Couch 2020, 2021)
- Merging of convective layers (Yadav et al. 2020)
- **Rotating effects** (Yoshida et al. 2021b; McNeill & Müller 2021)

Magnetic field (Varma & Müller 2021)

3D Simulations of Shell Burning in SN Progenitors

This study

 3D hydrodynamics simulations of the O/Si-rich layer of a 27 M_{\odot} precollapse star (model 27L_A) for ~200 s

Properties of convective motion in the O/Si-rich layer

 3D nuclear hydrodynamics code for Stellar EVolution (3DnSEV) (Yoshida et al. 2019, 2021a,b)

A branch of **3DnSNe** (e.g. Takiwaki et al. 2016, Nakamura et al. 2016, Kotake et al. 2018)

- Nuclear reaction network of 21 species of nuclei (aprox21)
 NSE is assumed in $T > 5 \times 10^9$ K.
- Tabulated EOS of Helmholtz (Timmes & Swesty 2000)
- Neutrino cooling (Itoh et al. 1996)
- $N_r \times N_{\theta} \times N_{\phi} = 512 \times 64 \times 128$ meshes

Initial Structure of Model 27LA

Model 27L_A: Turbulent Velocity

- Angle averaged radial profiles
- **Turbulent Mach number**

High turbulence region extends with time.

- High turbulence velocity with $\langle Ma^2 \rangle^{1/2} \sim 0.1$ appears in the O/Si/Ne layer.
- $v_{turb,max} = 3.8 \times 10^7$ cm s⁻¹ at the last time step

Neon Mass Fraction

3D color contour map of the Ne mass fraction

Neon Mass Fraction

- Time evolution of the angle-averaged radial profiles
- The whole region

Close to the lower boundary

- Decrease in the Ne mass fraction by Ne shell burning in the region close to the lower boundary
- The Ne mass fraction is homogenized through inflows.

Angle-Averaged Mass Fractions

O, Ne, Si mass fractions

Thick lines: angle averaged value Thin lines: angular dispersion

- Strong turbulence by shell burning
 - Radial homogenization
 - Larger angular dispersion
- As turbulence weakens
- - Angular dispersion becomes smaller.

Power Spectrum of Radial Turbulent Velocity

Power spectrum of the radial turbulent velocity

High turbulent velocity region

 \Rightarrow Large scale (low mode: $\ell \sim 2 - 4$) turbulence dominates.

Summary

 Aspherical structure of the Si/O-rich convective layer in SN progenitor gives a favorable effect to SN explosions.

> 3D hydrodynamics simulations of the O/Si/Ne layer of a 27 M_{\odot} precollapse star (model 27L_A) for ~200 s

Episodic shell burnings of O and Ne

Turbulent mixing with $\langle Ma^2 \rangle^{1/2} \sim 0.1$ and small ℓ_{peak} in the O/Si/Ne-rich layer.

Favorable to SN explosion

Mass fraction distribution

More homogeneous in the radial distribution Inhomogeneous in the angular direction

Application to multi-D SN explosion simulations

Si/O-rich convective layer of a 25 M_{\odot} model

See Nakamura-san's short talk/poster