大規模N体シミュレーション群を用いた

宇宙大規模構造の精密理論模型の構築

西道啓博

(**東大**Kavli IPMU; JST CREST)

観測的宇宙論ワークショップ @ YITP Nov. 18 2015

Our mission

300 nights of observation "HSC sky survey" using Subaru 2014-2019. About 1PB of data

in 5 years. Survey Data will be released in 2016, 2018, and 2020.

Kavli IPMU

- Sky survey data
- Data visualization
- Supercomputer sim.

PI: 吉田 直紀

NTT/ISM

 Obj. classification by machine-learning
 Bayesian statistics and computing

Tsukuba

 Extremely parallel pipeline
 High-speed distributed database 1 Giga pixel per snapshot. Typically 15 min exposure. Five broad band filters are installed. The camera will produce a total of 1 Peta Byte of data in five years.

JST CREST「ビッグデータ応用」 広域撮像探査観測のビッグデータ解析による統計計算 宇宙物理学 ' using Subaru 2014年10月 ~ 2020年3月 Subaru Hyper-Suprime Cam

1.5 degree Field of View

宇宙論的揺らぎの距離・時間依存性

$\langle \delta_{\vec{k}} \delta_{\vec{k}'} \rangle = (2\pi)^3 \delta_{\rm D} (\vec{k} + \vec{k}') P(k)$

■ 小スケールから順次非線形段階へ ■ ギガパーセククラスの巨大な観測が BAOのスケールは線形から非線形段 階への過渡期→摂動論の有効性? ■ より小さいスケールに行くと、摂動 展開やsingle stream近似がいよいよ

シミュレーションで探る摂動論的ア プローチの可能性と限界

非線形構造進化=異なるスケール間のモード結合

Valageas, TN, Taruya '13

■ 揺らぎが大きい → 非線形性が大きい **× 異なる波数のモードはもはや独立でなくなる** ■ 小スケールではsingle-streamの流体近似で はダメだろうし、重力以外の様々な物理が 入ってくるはず (ex. cooling, feedback,…) ■ もっとも単純かつ強力な摂動論的アプローチ がどこでどのように破綻するのか理解するこ とは極めて大切 ■ Q: 大スケールの揺らぎは忠実に"宇宙論"を反 映? (初期条件+構成要素+重力法則) 次世代観測で統計誤差>系統誤差を保証する解 析法を確立する

摂動論の限界!?

これまでの摂動計算は1-または 2-loop(揺らぎの4次ないし6次)の

■ 単純には次数↑で精度↑ 通常の摂動計算(@3-loop(8次!!)が 最近やられたが、、、

■ 高次項が大きすぎる!!!! ■ 2-loopの"良い"結果は偶然と言わざ

■ もはや摂動計算は諦めるべき?

 ・ 摂動論大ピンチ!?

Blas, Garny & Konstandin '14

■ 異なるスケール間のモード結合の構造に

■ 2点の伝播関数のモード結合の構造を汎

■ 波数 k (@ 時刻 t) の波は波数 q (@ 時刻 t₀)

■ あらゆるスケールで3-loop > 2-loop!?

■ 小スケール → 大スケールの結合に何か

Bernardeau, Taruya, TN '14

小スケールからのモード輸送の減衰 $K(k,q;z) = q \frac{\delta P^{nl}}{\delta P^{lin}}$

high qで摂動論 >> シミュレーション ここがまさに摂動論計算が真っ先に破れる所 単純なローレンツ型の関数でよく説明できる q_0 independent of k $1 + (q/q_0)^2$ 大スケールは何らかの機構で守られている? • shell crossing? \rightarrow Effective Field Theory? ■ UV safeな理論構築に対する定量的な指針

TN, Bernardeau, Taruya '14

応答関数の応用:宇宙論パラメタに対する応答 Taruya, Bernardeau, TN, Codis'12

RegPT-fast ■ 3つの模型につきスペクトルをあらかじめ計算 = 宇宙論パラメタに対する応答関数を元に、別 の模型に対する予言を得る 計算は1次元積分に落ちる~2,3秒で計算可能

■ 摂動論の実用上のもう一つの欠点

ハイブリッド応答関数を用いた理論構築 150 RegPT+(仮名) TN et al. in prep This model 140 汎関数微分の定義より $\Delta P_{\rm nl}(k) = \int \mathrm{d}q \, K(k,q) \Delta P_{\rm lin}(q)$ 130 P(k) 線形パワーの変化を時間進化と解釈する k^{1.5} RegPl 120 $\Delta P_{\rm lin}(q) = P_{\rm lin}(q; t + \Delta t) - P_{\rm lin}(q; t)$ linear この関係式を用いて少しずつ時間 110 進化させることが可能 z = 0.35100 KにはSPT (damped)とRegPTを 0.25 0.05 0.100.20 0.15 組み合わせたものを利用 k [h Mpc⁻¹]

ハイブリッド応答関数を用いた理論構 250 RegPTfast+(仮名) TN et al. in prep Z = O汎関数微分の定義より 200 'n 000 $\Delta P_{\rm nl}(k) = \int \mathrm{d}q \, K(k,q) \Delta P_{\rm lin}(q)$ ⁵Mpc¹ 000 000 150 線形パワーの変化を宇宙論パラメタの変 ع (Y) 化と解釈する 100 $\Delta P_{\rm lin}(q) = P_{\rm lin,target}(q) - P_{\rm lin,fiducial}(q)$ 50 WMAP5のシミュレーションデータ (点破線)

0.1

0.0

→ PLANCK15の予言 (実線)

0.2 0.3 0.4 0.5 k [h Mpc⁻¹]

シミュレーションと機械学習を利用 したgalaxy-galaxy lensing signal高精 度理論テンプレートの作成

Simulation effort Simulations for Subaru HSC ✓ 高精度理論テンプレートの構築 Galaxy (cluster)-galaxy lensing \checkmark Galaxy-3D spatial clustering \checkmark BOSS CMASSなどとの共相関解析を念頭 当面はダークマターハローで代用 ✓ 必要なスペック/カバーすべき領域 ✓ 赤方偏移:0 < z < 1.5 ✓ 体積: 少なくとも1(Gpc/h)³ ✓ 質量: 10¹² ~ 10¹⁵⁻¹⁶ M_{solar}/h ✓ 6D 宇宙論パラメタ (標準 + ダークエナジー "w")

こういうのを大量に作って "data driven"なサイエンスを追求

Kavli IPMU Takahiro Nishimichi* Masahiro Takada Naoki Yoshida

U. Tokyo Ken Osato* Masamune Oguri

× NAOJ Masato Shirasaki* Takashi Hamana **Hirosaki U.** Ryuichi Takahashi*

Stacked weak lensing signal

region

cluster

Oguri & Takada '11

 $\gamma_{+}^{\text{obs}}(\theta_{i}) = \gamma_{+}^{\text{cluster}}(\theta_{i}) + \gamma_{+}^{\text{LSS}}(\theta_{i}) + \varepsilon_{+}(\theta_{i})$ projection effect

$\Delta \Sigma(R) = \gamma_t(R) \Sigma_c = \overline{\Sigma}(\langle R) - \Sigma(R),$

 $\Sigma(R) = \overline{
ho} \int \left[1 + \xi_{
m gm} \left(\sqrt{R^2 + \Pi^2}
ight)
ight] \mathrm{d} \Pi_{
m s}$

シミュレーションの詳細

- √ 粒子数:20483
- √ ボックス長: 1h⁻¹Gpc
 - 10¹² h⁻¹M_{solar} のハローを約100粒子で解像
- ✓ 2nd-order Lagrangian PT 初期条件 @ z_{in}=59
 - (宇宙論を変えた際には変位のRMSを平均) 粒子間距離の25%になるようzinを変更)
- ✓ Gadget-2のTree-PMモード (w/4096³)

PM mesh)

- ✓ 0 ≤ z ≤ 1.5 の間で21出力 (線形成長因)
 - 子で等間隔)

- - \checkmark FOF + Subfind
 - - trees)
- 256GB -> 48GB) √ 速度: ハロー同定後に捨てる

✓ ハロー及びサブハローカタログ

✓ Rockstar (+ merger tree by consistent-

✓ データ圧縮 (スナップショット当たり)

√ 粒子位置 -> 変位ベクタに (1次元につき 16 bits; 精度 ~1h⁻¹kpc程度を保持) ✓ ID: ID順に並び変えた後で捨てる

多次元空間の効率的なサンプリング: 超ラテン格子デザイン

- どの1次元を見ても、興味のある区間を均 等なN個の区域に切ると、一回ずつサンプリ ングされているようなN個の点の集合
 - そのような点列自体は無数に存在 (ex. 対角線上) のデザイン)
 - 「最も近い点との距離が最大となる」など、条 件を課してデザインを決定する
- 多数の実験を繰り返すことが難しい時に特 に有用

多次元空間の効率的なサンプリング

fiducial model

- ✓ PLANCK15 flat ACDM模型
- ✓ 24 試行が完了
- ✓ 統計誤差の評価
- √ "エミュレータ"の精度チェック

 $\omega_{\rm b} = \Omega_{\rm b}h^{2}: \pm 5\%$ $\omega_{\rm c} = \Omega_{\rm c}h^{2}: \pm 10\%$ $\Omega_{\Lambda}: \pm 20\%$ $\ln(10^{10} \text{ A}_{\text{s}}): \pm 20\%$ $n_{\rm s}: \pm 5\%$ W: \pm 20\%

varied cosmology

 ✓ "sliced" LHデザイン (Ba, Brenneman & Myers '15)
 ✓ 100模型を発生
 ✓ 20模型ごとにLHD (e.g., red points)

 ✓ 2種類のシミュレーション
 ✓ 初期条件の位相をそろえ たもの(20模型 done)
 ✓ 独立な位相(40模型 done)

合計で現在84 試行が完了

g-g lensing シグナルの測定

- Rockstarで同定したハロー ■ ビリアル質量の区間 [10¹²,8x10¹⁵) h⁻¹M_{solar}
- ファクター2毎に12の質量ビンに分類

フーリエ空間でcross spectrumを測定

$$P_{
m hm}(ec{k})$$
 (on 10

$$f_{
m hm}(ec{r})$$

spherical avg.

直接ペアカウントして小スケールの ξhm を測定 最後に2次元に射影して Σ(R) 更に ΔΣ(R) を得る

$$\Sigma(R) = \overline{
ho} \int \Big[1 + \xi_{
m g} \Big]$$

2次元に射影してから測定するよりも精度が出る

024³ mesh by FFT)

角度平均

 $\xi_{\rm hm}(r)$

$_{\rm gm}\left(\sqrt{R^2+\Pi^2}\right) | \, \mathrm{d}\Pi_{\rm s}$

Products

Excess surface mass profile for the fiducial PLANCK15 model

24 realizations

Products

Fractional error on excess surface mass

24 realizations

Varied cosmology

Gaussian process

validation at the fiducial PLANCK15 cosmology

Gaussian process

validation at the fiducial PLANCK15 cosmology

まとめ

- 摂動論的に宇宙の大規模構造を記述する可能性
 - どこでどのように破れるかを理解する (小スケールから大スケールへのモード結合)
 - 様々な模型のいいとこ取り+シミュレーションの助けも借りて高精度を実現
- 高次元宇宙論パラメタ空間で、シミュレーションから模型を作る可能性
 - 効率的なサンプリングと機械学習による"emulator"の構築
 - Gaussian processを利用してgalaxy-galaxy lensing用の理論テンプレートを構築した
 - データがどんどん出てきていて、まだまだできること/やるべきことが沢山ある
 - 高次統計, RSD, merger historyとassembly bias, haloのintrinsic alignment, etc., etc., …
 - 使っていただけると大変嬉しいです!

スケールへのモード結合) りて高精度を実現 模型を作る可能性

ンプレートを構築した <mark>るべきことが沢山ある</mark> c alignment, etc., etc., …