高速電波バースト (FRB) と小スケール揺らぎ 井上 進 (理研)、市來淨與、島袋隼人(名大)

power spectrum of large-scale structure consistent with CDM+ Λ +adiabatic power-law fluctuations down to galaxy scales

missing satellite problem: paucity of Milky Way satellites compared to CDM expectations

- astrophysical feedback? Madau+ 08
- modification to CDM?

c.f. 田中さん

dispersion of EM waves in cold plasma

Maxwell's eq. + electron eq. mot. + charge consv., expand in o(v/c)

probing ionized IGM with radio dispersion SI 04 Ioka 03

probing ionized IGM with radio dispersion SI 04 Ioka 03

unID extragalactic radio burst

Parkes multi-beam pulsar survey

 $S_{v} \sim 30 \text{ Jy @1.4GHz!} \Delta t \sim 5 \text{ms}$

Lorimer+ Science 07

fast radio b	io bursts Thornton+ Science 13			
	FRB 110220	FRB 110627	FRB 110703	FRB 120127
Beam right ascension (12000)	22 ^h 34 ^m	21 ^h 03 ^m	23 ^h 30 ^m	23 ^h 15 ^m
Beam declination (J2000)	-12 <i>°</i> 24′	-44° 44′	-02° 52′	-18° 25′
Galactic latitude, <i>b</i> (°)	-54.7	-41.7	-59.0	-66.2
Galactic longitude, <i>l</i> (°)	+50.8	+355.8	+81.0	+49.2
UTC (dd/mm/yyyy	20/02/2011	27/06/2011	03/07/2011	27/01/2012
hh:mm:ss.sss)	01:55:48.957	21:33:17.474	18:59:40.591	08:11:21.723
DM (cm ⁻³ pc)	$\textbf{944.38} \pm \textbf{0.05}$	$\textbf{723.0} \pm \textbf{0.3}$	1103.6 \pm 0.7	$\textbf{553.3} \pm \textbf{0.3}$
DM _E (cm ^{−3} pc)	910	677	1072	521
Redshift, z (DM _{Host} = $100 \text{ cm}^{-3} \text{ pc}$)	0.81	0.61	0.96	0.45
Co-moving distance, <i>D</i> (Gpc) at <i>z</i>	2.8	2.2	3.2	1.7
Dispersion index, α	-2.003 ± 0.006	_	-2.000 ± 0.006	_
Scattering index, β	$-4.0~\pm~0.4$	_	_	_
Observed width at 1.3 GHz, <i>W</i> (ms)	$\textbf{5.6} \pm \textbf{0.1}$	<1.4	<4.3	<1.1
SNR	49	11	16	11
Minimum peak flux density S _v (Jy)	1.3	0.4	0.5	0.5
Fluence at 1.3 GHz, F (Jy ms)	8.0	0.7	1.8	0.6
$S_{\rm v}D^2$ (x 10 ¹² Jy kpc ²)	10.2	1.9	5.1	1.4
Energy released, E (J)	~10 ³⁹	~10 ³⁷	~10 ³⁸	~10 ³⁷

from B. Zhang's slides FRBs: Models proposed so far as of June 2014

- Collapses of supra-massive neutron stars to black holes (thousands to million years later after their births), ejecting "magnetic hair" (Falcke & Rezzolla 2013)
- Magnetospheric interaction during NS-NS mergers (Totani 2013)
- Mergers of binary white dwarfs (Kashiyama et al. 2013)
- Magnetar radio bursts (Popov et al. 2007, 2013; Kulkarni et al. 2014)
- Cosmic sparks from superconducting strings (Vachaspati 2008)
- Evaporation of primordial black holes (Keane et al. 2012)
- Flaring stars (Loeb et al. 2013)
- Probably just local events, not astrophysical origin (Kulkarni et al. 2014)

a lot more since!

partial correlation with GRBs possible?

need independent redshift for cosmological use 1. arcsec localization -> host galaxy ID + z measurement 2. 21cm absorption by host galaxy Macquart+ 15, Margalit+ 15

warm dark matter

- warm dark matter becomes non-rela. when galactic scales enter horizon -> suppress LSS by free streaming below m_{WDM} -dependent scale
- particle physics motivation, e.g. sterile neutrinos
- solve missing Galactic satellite problem? <-> astrophysical feedback
- current lower limits $m_{WDM} > 1 \text{ keV}$ Viel+ 05, Smith & Markovic 11

sterile neutrinos as dark matter: current constraints

FRBs as probes of missing satellite problem?

lines of sight out to $z\sim1$ intersect large number of $\sim10^{10}$ M_{sun} halos -> variance of DM sensitive to abundance and baryon distribution of $\sim10^{10}$ M_{sun} halos SI, Ichiki, Shimabukuro, in prep.

halo mass function for WDM follow Smith & Markovic 11

dispersion measure: mean and variance McQuinn 13

dispersion measure: mean and variance

まとめ

- 銀河スケール以下の揺らぎの性質は未解明 - 最近発見されたFRBは大きな電波分散を示す
- -> z~1程度の距離で電波分散は主にIGM起源 - 将来は大きなサンプルで独立にz測定が期待できる
- -> z~1までのIGM電離成分の総量+揺らぎのプローブ - WDMに対する新たな制限?
 - missing satellite問題解決の糸口? 他の方法と相補的