Pseudo-spectrum analysisChiaki Hikageof galaxy-galaxy lensing(Kavli IPMU)

### Galaxy redshift surveys



Science goals

- Dark energy
- Dark matter
- Neutrino mass
- Primordial Non-Gaussianity

Galaxy redshift surveys

- CfA, LCRS, 2dF, SDSS, BOSS, WiggleZ, VVDS, Vipers, FastSound
- PFS, HETDEX, eBOSS, Euclid, WFIRST

**SDSS** Collaboration

# Uncertainty of galaxy biasing

Relationship between galaxy number density field  $\delta_g$  and mass density field  $\delta_m$ 

 $\delta_g(k) = b(k) \delta_m(k)$ 

galaxy power spectrum:

 $P_{gg}(k) = b^2(k)P_{mm}(k)$ 

galaxy biasing depends on scale, redshift, galaxy types,..



# galaxy-galaxy lensing

 Cross correlation between foreground galaxies and background galaxy image distortion



galaxy-DM cross spectrum  $P_{gm}(k)=b(k)P_{mm}(k)$ 

Combination of  $P_{gg}$  and  $P_{gm}$  can reduce bias uncertainty

Credit: Karen Teramura, U Hawai IfA

## SUbaru Measurement of Images and REdshift

Joint Mission of Imaging and Redshift surveys using 8.2m Subaru Telescope

### **Hyper-Suprime Cam (HSC)**

- 1300 deg<sup>2</sup> sky (overlap w/ ACT, BOSS)
- 30gals/arcmin<sup>2</sup>,  $z_{mean}=1$ ,  $i\sim 26(5\sigma)$
- 1.5 deg FoV, grizy band, 0.16"pix,
- 2014-2018

### **Prime Focus Spectrograph (PFS)**

- 1300 deg<sup>2</sup> of sky (overlap w / HSC)
- Redshift of LRGs + OII emitters at 0.8<z<2.4 (9.3 Gpc/h<sup>3</sup> comoving vol)
- 2400 fibers, 380~1300nm (R~3000)
- 2019-2023 (planed)



Mauna Kea, Hawaii, 4139m alt., 0.6-0.7" seeing

# g-g lensing expected from HSC+LRG



# How can we measure lensing spectrum?

#### 20-30% of sky is masked by bright stars

![](_page_6_Picture_2.jpeg)

lensing power spectrum

### g-g lensing spectrum

Suprime Cam

# Convolution of survey mask

obs mask (weight) true  

$$\tilde{\gamma}_{1}(\mathbf{n}) \pm i\tilde{\gamma}_{2}(\mathbf{n}) = W(\mathbf{n})[\gamma_{1}(\mathbf{n}) \pm i\gamma_{2}(\mathbf{n})] \quad W(\mathbf{n})$$
: mask field  
 $\tilde{E}_{\mathbf{k}} \pm i\tilde{B}_{\mathbf{k}} = \sum_{\mathbf{n}} [\tilde{\gamma}_{1}(\mathbf{n}) \pm i\tilde{\gamma}_{2}(\mathbf{n})] \exp(-i\mathbf{k}\cdot\mathbf{n} \pm 2\varphi_{\mathbf{k}})$   
 $= \sum_{\mathbf{k}'} [E_{\mathbf{k}'} \pm iB_{\mathbf{k}'}] \quad W_{\mathbf{k}-\mathbf{k}'} \exp(\pm 2(\varphi_{\mathbf{k}'} - \varphi_{\mathbf{k}}))$ 

#### E-mode and B-mode power spectrum

$$\begin{pmatrix} \tilde{C}_{\mathbf{k}}^{EE} \\ \tilde{C}_{\mathbf{k}}^{BB} \end{pmatrix} = \sum_{\mathbf{k}'} \mathbf{W}_{\mathbf{k}-\mathbf{k}'} \begin{pmatrix} \cos^2 2\varphi_{\mathbf{k}'\mathbf{k}} & \sin^2 2\varphi_{\mathbf{k}'\mathbf{k}} \\ \sin^2 2\varphi_{\mathbf{k}'\mathbf{k}} & \cos^2 2\varphi_{\mathbf{k}'\mathbf{k}} \end{pmatrix} \begin{pmatrix} C_{\mathbf{k}'}^{EE} \\ C_{\mathbf{k}'}^{BB} \end{pmatrix} + \begin{pmatrix} \tilde{N}_{\mathbf{k}} \\ \tilde{N}_{\mathbf{k}} \end{pmatrix}$$
  
E-B mode mixing due to mask  
$$\cos \varphi_{\mathbf{k}'\mathbf{k}} = \mathbf{k}' \cdot \mathbf{k} / k' k$$

# Reconstruction of power spectrum

true mask 
$$k \in k'_b$$
 obs noise  
 $C_b = \mathbf{M}_{bb'}^{-1} \sum_{\mathbf{k}} P_{b'k} (\tilde{\mathbf{C}}_{\mathbf{k}} - \langle \tilde{\mathbf{N}}_k \rangle_{\mathrm{MC}}),$ 

♦ Commonly used to reconstruct CMB temperature / polarization spectrum (e.g., Hivon et al. 2002)
 ♦ Analogy to CMB polarization (Q,U) ⇔(γ<sub>1</sub>, γ<sub>2</sub>)

Noise spectrum is estimated by randomly rotating shapes

### Ray-Tracing Simulations (Sato et al. 2009)

- N-body simulations
  - Gadget 2 at z<sub>init</sub>=50
  - 200 realizations with L<sub>box</sub>=240 and 480Mpc/h
  - ACDM based on WMAP 3
- Ray-Tracing simulations
  - 5° x 5°, 2048<sup>2</sup> grids (grid size: 0.15')
  - Multiple lens plane algorithm (Jain et al. 2000)
  - \* Lens plane width  $\Delta \chi = 120 Mpc/h$ , z=0 - 3.5
  - 1000 realizations

![](_page_9_Figure_10.jpeg)

## Mock star mask

![](_page_10_Picture_1.jpeg)

Suprime Cam

#### side length: 20 arcmin

![](_page_10_Figure_4.jpeg)

25% field is masked

### Reconstruction of lensing power spectrum

![](_page_11_Figure_1.jpeg)

Input lensing power spectrum is successfully reconstructed

## **B-mode contamination**

![](_page_12_Figure_1.jpeg)

Residual B-mode is suppressed below a percent of E-mode

# CFHTLenS public data

- Ω<sub>sky</sub>=154 deg<sup>2</sup> for 4

   CFHTLS fields (W1 W4)
- \*  $n_{gal}=17 \operatorname{arcmin}^2$ ,  $z_{mean}=0.75$
- \* 5-year data taken in Hawaii
- Lensfit: Bayesian model fitting method of shape measurement
- Bayesian Photometric
   Redshift Code (BPZ)

![](_page_13_Figure_6.jpeg)

Credit: Van Waerbeke, C. Heymans

# CFHTLenS power spectrum

#### Preliminary results of CFHTLenS lensing power spectrum

Error: sample variance estimated from 4 CFHTLS fields B-mode is consistent with zero up to l<4000

### pseudo-spectrum for galaxy-galaxy lensing

shear field

 $ilde{\gamma}(\mathbf{n}) = W_{\gamma}(\mathbf{n})\gamma(\mathbf{n})$ 

weight for shear field: source numbers, shape noise, intrinsic noise

2D galaxy number density field

weight for density field: angular selection function, redshift failure, fiber collision

galaxy-galaxy lensing spectrum cross spectrum of the two weight fields

$$\tilde{C}_{l}^{\mathrm{gE(B)}} = \frac{1}{L^2} \sum_{\mathbf{l}'} C_{\mathbf{l}'}^{\mathrm{gE(B)}} \mathcal{W}_{\mathbf{l}-\mathbf{l}'}^{g\gamma} \cos(2\varphi_{\mathbf{l}\mathbf{l}'}) \qquad \langle W_{l}^{g} W_{\mathbf{l}'}^{\gamma*} \rangle = L^2 \delta_{\mathbf{l}-\mathbf{l}'}^{\mathrm{W}} \mathcal{W}_{l}^{g\gamma}$$

Pseudo-spectrum method can be applied for g-g lensing spectrum

### Reconstruction of galaxy (halo) lensing spectrum

![](_page_16_Figure_1.jpeg)

Input halo lensing spectrum is successfully reconstructed

## Covariance matrix

![](_page_17_Figure_1.jpeg)

## CFHTLenS + SDSS

![](_page_18_Figure_1.jpeg)

Overlapped area for CMASS galaxies ~100 deg<sup>2</sup>

3 spectroscopic samples
SDSS DR7 LRG

(0.16<z<0.33): Ng=445</li>

BOSS LOWZ

(0.16<z<0.33): Ng=2396</li>

BOSS CMASS

(0.47<z<0.59): Ng=5415</li>

# observed g-g lensing spectrum

#### Preliminary results of g-g lensing

Residuals systematics of shape measurement is subtracted

Error includes Poisson error and sample variance estimated from 4 CFHTLS fields

We use source galaxies with  $P(z_{BPZ}>z_{l,max})>0.84$ 

## Halo model

$$P_{g\kappa} = P_{g\kappa}^{1h} + P_{g\kappa}^{2h}$$

### 1-halo term $P_{g\kappa}^{1h}(k) = \int d\chi \left(\frac{W_g(z)W_\kappa(z)}{\chi^2(z)}\right) \int dM \frac{dn}{dM} \frac{M}{\bar{\rho}_m} \tilde{u}_{\rm NFW}(k;M,z) [\langle N_{\rm cen} \rangle + \langle N_{\rm sat} \rangle \tilde{p}_{\rm sat}(k;M)]$

off-centering profile of satellites

$$ilde{p}_{
m sat}(k;M)=\exp(-k^2R_{
m vir}^2(M)/2)$$

2-halo term

$$P_{
m g\kappa}^{
m 2h}(k) = \int d\chi \left(rac{W_g(z)W_\kappa(z)}{\chi^2(z)}
ight) \left[\int dM rac{dn}{dM} (\langle N_{
m cen} 
angle + \langle N_{
m sat} 
angle ilde{m{p}}_{
m sat}(k;M)) P_{
m hm}(k,z;M)
ight]$$

halo matter power spectrum  $P_{hm}(k, z; M) = b(M, z)P_{mm}^{(lin)}(k, z)$ linear bias (Tinker et al. 2010)

# Comparison with halo model: LRG

HOD for LRGs: Reid, Spergel 2009

Preliminary results of LRG-galaxy lensing

LRG lensing spectrum is consistent with halo model predictions

# Summary

- We apply pseudo-spectrum analysis to measure lensing power spectrum and galaxy-galaxy lensing
- We find that observed g-g lensing spectrum using CFHTLenS and SDSS LRG, BOSS CMASS, LOWZ samples are consistent with halo model predictions
- The measurements can be used for the analysis of cosmology and galaxy-DM relation (e.g., stellar masshalo mass relation)