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✦ 2-point statistics: require more sample than 1pt     

    -         : 3D 2pt correlation function


    -               : galaxy-galaxy lensing 

For convenience, 
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Figure 1. The two-dimensional correlation function ⇠(r�, r⇡) of SDSS-III
CMASS galaxies. The perturbations of the observed redshifts about the
Hubble flow due to peculiar velocities introduce anistropy in the correlation
strength with respect to the line of sight (y-axis in the figure). In this plot
fiber collisions have been corrected using the angular upweighting method.
The dashed circle indicates the separation scale (⇠ 8 h�1 Mpc) at which
the observed quadrupole transitions from positive (dominated by Finger-of-
God velocities) to negative (dominated by large scale Kaiser infall veloci-
ties). Contours at ⇠ = [2, 1, 0.5, 0.25] are shown with solid black curves.

Table 1. Cosmological and simulation parameters for the N-body simula-
tions used in this paper.

Parameter LowRes MedRes HiRes
Lbox (h�1 Mpc) 2750 1380 677.7
Np 30003 20483 20483

mp (h�1 M�) 5.86 ⇥ 1010 2.5 ⇥ 1010 3.10 ⇥ 109

⌦m 0.274 0.292 0.30851
⌦bh2 0.0224 0.022 0.022161
h 0.7 0.69 0.6777
ns 0.95 0.965 0.9611
�8 0.8 0.82 0.8288
zbox 0.550 0.550 0.547
f�8(zbox) 0.455 0.472 0.482

to only integrating up to a µmax that is different for each fine s bin.
The previous step ensures that no pairs with r� smaller than the
fiber collision scale are included. The exact s and µ boundaries for
our final bins are listed in Table 3.

2.4 N-body simulation Halo Catalogs

We make use of three periodic N-body simulation sets throughout
this paper. We have a single realization for the LowRes and HiRes
cases, and three independent realizations (labelled 0,1,2) in the
MedRes case. The simulation parameters are listed in Table 1. The
LowRes box has parameters favored by WMAP7 (Komatsu et al.
2011), while the HiRes box adopts the “Planck+WP+highL+BAO”
constraints from the Planck analysis (Planck Collaboration 2013);
all N-body simulations assume massless neutrinos, while the pa-
rameter constraints from Planck assume

P
m⌫ = 0.06 eV. The

Planck best fit and HiRes cosmologies will therefore have slightly
different expansion and structure growth histories which should be
negligible for the present application. The MedRes cosmology is
“between” LowRes and HiRes. For each simulation we generate
spherical overdensity (SO) halo catalogs using an overdensity of

�m = 200 relative to the mean matter density ⇢m to define the halo
virial radius rvir. Our catalogs extend down to fifty particles per halo
where necessary. We use the Tinker et al. (2008) implementation of
the SO halo finder, which allows halo virial radii to overlap, as long
as the center of one halo is not within the virial radius of another
halo; this choice alters the halo-halo clustering on scales near rvir

compared with a friends-of-friends halo catalog, in which two such
halos would be bridged into a single halo (see figure 9 of Reid &
Spergel 2009).

More specifically, halos are identified around pseudo-peaks
in the density field, which may or may not be located on the true
density peak of the host halo. A radius Rhalo is computed for each
pseudo-peak in the density field within which the density is 200⇢m.
Starting at a radius of 1/3 the initial Rhalo, the center of mass is
computed within this restricted radius and iterated to convergence.
If the pseudo -peak lies on a subhalo, this procedure migrates the
halo center to the true host halo density peak. Once convergence is
reached, the top-hat radius is incrementally reduced and the center
of mass is recomputed until the top-hat radius is Rhalo/15.9 or the
number of particles within the top-hat radius drops below 20. The
center of mass is again computed iteratively at the tophat radius
of Rhalo/15.9. For halos above the 20 particle limit, this algorithm
averages over ⇠ 3.7% of all halo members. This algorithm was
originally refined to accurately locate the halo center; we verified
that it recovers the position of the potential minimum within the
halo to within 0.01-0.02 h�1 Mpc. We denote the mean velocity of
these densest particles as vDENS, and is our fiducial choice for the
velocity of each halo’s central galaxy. This choice is by no means
unique, and Appendix B shows that while there is strong evidence
that the dense central region of the halo does have a bulk veloc-
ity with respect to the halo members, the rms offset between the
“central” velocity and the center-of-mass velocity depends on the
radius over which the average is taken. The effective radius for our
vDENS definition ranges from 0.04 - 0.08 h�1 Mpc for halos with
M < 1.2 ⇥ 1014 h�1 M� in our MedRes simulation; this mass range
hosts 90% of the central galaxies in our sample for our best fit
halo occupation distribution model. The median seeing-corrected
effective radius of CMASS targets is 1.2” (Masters et al. 2011), or
0.0087 h�1 Mpc. For a de Vaucouleurs profile, 0.04 (0.08) h�1 Mpc
would contain 87% (96%) of the light. Therefore, our choice of
central velocity definition is reasonably well matched to the typical
extent of our target galaxies. Of course, since our simulations con-
tain only dark matter, any impact of baryonic physics on the central
dynamics has been neglected.

The LowRes box provides a volume much larger than the sur-
vey we analyse. To match the observed clustering strength using the
LowRes box, we require halos below the SO halo catalog thresh-
hold; for this purpose, we use a friends-of-friends (FOF) algorithm
with linking length 0.168 to identify halos (Davis et al. 1985), and
then compute their masses in a spherical aperture at �180. We fur-
ther rescaled the FOF-derived halo masses by a factor of 0.975 to
approximate �200 masses used in the SO catalogs. The FOF cata-
log extends down to 5.4 ⇥ 1011 h�1 M�. Typically only ⇠ 5% of
the mock galaxies are assigned to FOF-derived halos, so the im-
pact of these details should be minimal. This hybrid catalog did
show evidence for numerical artefacts in the halo clustering, which
led us to adopt higher resolution simulations for our primary pa-
rameter constraints. The HiRes box provides more than sufficient
mass resolution but its small volume made the theoretical predic-
tions somewhat noisy. Because this box is smaller than our survey
size, we have to add a theoretical error budget to the observational
one. We use mock catalogs derived from the LowRes box for two
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Figure 8. Check of finite-volume effects (“cosmic variance”) in the measured luminosity dependence of the correlation function. Each panel shows projected correlation
functions of two adjacent luminosity bins in their full volume-limited range (symbols with error bars) and in their common overlap regions (lines). The solid line and
filled symbols correspond to the fainter luminosity bin in each panel, while the dashed line and open symbols correspond to the brighter sample. Comparison of the
dashed and solid lines in each panel tests for luminosity segregation between the two adjacent bins measured in a common volume.
(A color version of this figure is available in the online journal.)

The luminosity-threshold samples allow more precise bias
measurements, and they avoid binning effects that can influence
the estimates of b(L) when it changes rapidly across a bin.
The HOD and DM-ratio values of bg(>L) agree well for all
luminosity-threshold samples except Mr < −18.0, where the
HOD fit overpredicts the large-scale wp(rp) measurements (see
Figure 10 below). The HOD bias points are fit to 3% or better
by the functional form

bg(>L) × (σ8/0.8) = 1.06 + 0.21(L/L∗)1.12, (9)

where L is the r-band luminosity corrected to z = 0.1 and L∗
corresponds to Mr = −20.44 (Blanton et al. 2003c). Except for
the Mr < −18 point, this formula also accurately describes the
DM-ratio bias factors. The HOD and DM-ratio bias factors scale
as σ−1

8 to a near-perfect approximation, since at large scales
ξgg = b2

gξmm ∝ b2
gσ

2
8 . We consider Equation (9) to be our most

robust estimate of the dependence of large-scale bias on galaxy
luminosity, applicable over the range 0.16 L∗ < L < 6.3 L∗
(−22.5 < Mr < −18.5). Fitting the DM-ratio bias values for

the luminosity-bin samples yields

bg(L) × (σ8/0.8) = 0.97 + 0.17(L/L∗)1.04, (10)

which is close to the formula derived by Norberg et al. (2001)
for bJ-selected galaxies, but has a slightly steeper rise at high
luminosities.

3.2. Tests of Cosmic Variance

Our volume-limited, luminosity-bin samples span different
ranges in redshift (specified in Table 1), with intrinsically
brighter galaxies observed over larger volumes. It is thus
important to test for the robustness of the detected luminosity
dependence to “cosmic variance” of the structure in these
different volumes. (We follow common practice in referring
to these finite-volume effects as cosmic variance, though a more
precise term would be “sample variance”; Scott et al. 1994.)
Figure 8 compares projected correlation functions of adjacent
luminosity bins when using their respective full volume-limited
redshift range (points with error bars) and when restricting both

11

Zehavi+ (2011)

4 Saito et al.

3.1. The CMASS Two-Point Correlation Function

In this paper we use the DR10 projected two-point cor-
relation function, wp, and the monopole and quadrupole

of the correlation function, ξ̂ℓ, and the associated covari-
ance matrix determined by R14. We only give a brief
summary of how these measurements were performed
and we refer the reader to R14 for additional details. The
two-dimensional redshift-space correlation function ξ(s)
is measured using the Landy-Szalay estimator Landy &
Szalay (1993):

ξ(s) =
DD(∆s)− 2DR(∆s) +RR(∆s)

RR(∆s)
, (3)

where DD, DR, and RR are the data-data, data-
random, and random-random pairs in a given bin [s −
∆s/2, s+∆s/2]. The randoms account for the survey ge-
ometry and for the completeness factor which depends on
angular position and a radial selection function, dn/dz.
The correlation function is integrated over the line-of-
sight separation to obtain the projected correlation func-
tion Davis & Peebles (1983),

wp(rp) = 2

∫ rπ,max

0
drπ ξ(rp, rπ), (4)

where the three-dimensional pair separation s in redshift
space is split into a component transverse (rp) and paral-
lel (rπ) to the line-of-sight direction. The integral is per-
formed to rπ,max = 80Mpc/h and wp is measured from
0.194 Mpc/h to 25.98 Mpc/h with 18 equally spaced log-
arithmic bins. The advantage of using the projected cor-
relation function is that it is less sensitive than ξ(s) to the
effects of galaxy peculiar velocities. Note that, however,
we do account for the RSD effect (van den Bosch et al.
2013) in our modeling through the velocity of subhalos
(see next section). The projected two-point correlation
function is measured separately for the NGC and the
SGC and these measurements are combined using a sim-
ple average, weighted by the number of CMASS galaxies
in each hemisphere.
The wp measurement from R14 does not use the opti-

mal weights (the so-called “FKP” weights), or the sys-
tematic weights. The systematic weights affect large
scales and hence are not relevant for our small-scale
measurement. Also, this approach enables a more fair
comparison with our measurement of the galaxy stellar
mass function which does not use any weighting scheme.
Weights are applied, however, to account for redshift fail-
ures and for fiber collisions. Fiber collisions are par-
ticularly important for small scale clustering measure-
ments with BOSS – the fiber-collison scale in BOSS is
62 arcsecond which corresponds to a comoving scale of
∼ 0.45Mpc/h at z ∼ 0.57. To complicate matters, the
BOSS tiling strategy also introduces a correlation be-
tween fiber collisions and the density field. R14 studied
the impact of fiber collisions for the CMASS sample us-
ing tiled mock catalogs. They adopted a radial depen-
dent correction scheme in which an angular upweight-
ing method is adopted at rp < 1.09Mpc/h and a near-
est neighbor (NN) weighting scheme is adopted at larger
scales. Finally, the correlation function is debiased for
residual fiber-collision effects using the tiled mock cata-
logs.

The covariance matrix for wp, Cwp,boot, is derived from
5,000,000 realizations drawn from 200 bootstrap regions
which are roughly equal in size and shape. An addi-
tional 10% uncertainty due to the angular upweighting
method and the debiasing procedure are propagated into
the diagonal element of the covariance matrix. As a re-
sult, the measurement error on wp increases below rp =
1.09Mpc/h. Finally, the inverse covariance matrix is cor-
rected following Hartlap et al. (2007). With nboot = 200
and nbin = 18, this leads to a 0.904 correction to the final
inverse covariance matrix, C−1

wp,meas = 0.904C−1
wp,boot

.
In addition to wp, we will also use the monopole

and quadrupole of the correlation function which con-
tain information about the peculiar velocities of galax-
ies. Again, following R14, we adopt the pseudo multipole
correlation function defined by

ξ̂ℓ(s) = (2ℓ+ 1)

∫ µmax(s)

0
dµ ξ(s, µ)Lℓ(µ), (5)

where s2 = r2p + r2π, µ = rπ/s, and Lℓ(µ) is the ℓ-th
order Legendre polynomial. The integration over the az-
imuthal angle µ is performed up to µmax(s) ≡ 0.534/s
in order to minimize the impact of fiber collisions on the
small-scale measurements. We refer the reader to R14
for further details.

3.2. The Total Stellar Mass Function at z = 0.55

As shown in Leauthaud et al. (in prep), the CMASS
sample is only stellar mass complete at the very high
mass end and in a narrow redshift range. To perform
abundance matching, however, we need to measure the
total SMF as well as the fraction of CMASS galaxies as
a function of stellar mass and redshift. Indeed, for abun-
dance matching a complete galaxy sample is necessary
when rank ordering galaxies versus halos.
Bundy et al. (in prep) present an estimate of the to-

tal SMF at z ∼ 0.5 by using the s82-mgc catalog which
extends ∼ 2 magnitudes fainter than the SDSS single
epoch imaging data (Reis et al. 2012; Jiang et al. 2014).
In order to compute the total SMF, Bundy et al. (in
prep) use a combination of spectroscopic redshifts, sup-
plemented with photometric redshifts (photo-z’s) when a
spectroscopic redshift is not available. We adopt a simi-
lar approach and compute the total SMF from the s82-
mgc at log10(M∗/M⊙) > 10.5 over 0.43 < z < 0.70. Our
analysis assumes that the total SMF does not vary over
this redshift range. The result is shown in Figure 1. Er-
ror bars on SMF represent the square root of the diagonal
component of the covariance matrix which is estimated
from the data using 214 nearly-equal area bootstrap re-
gions.
The left panel of Figure 1 shows a comparison between

our SMF with results from COSMOS (Leauthaud et al.
2011) and PRIMUS (Moustakas et al. 2013) at similar
redshifts. As can be seen in Figure 1, because of the large
area covered by Stripe 82, the high mass end of the total
SMF is tightly constrained at log10(M∗/M⊙) > 11.3 over
0.43 < z < 0.70 while COSMOS and PRIMUS constrain
the low mass end. The comparison with COSMOS and
PRIMUS suggests that the s82-mgc is roughly complete
to log10(M∗/M⊙) ∼ 11.2.
To perform abundance matching, we need to evaluate

the total SMF over the entire mass range covered by the
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Measurable Statistics

§1. Introduction 4

✦ 1-point statistics: statistically easy to measure!     
   - dN/dz: redshift distribution 

   -             : Stellar Mass Function: typically ~0.1-0.2dex uncertainty 
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Figure 10. Evolution of the SMFs of quiescent (dark red diamonds and light red hatched region) and star-forming (dark blue points and light blue shaded region)
galaxies from z = 0–1. Filled (open) symbols correspond to stellar mass bins above (below) our stellar mass completeness limit in each redshift interval. The dashed
blue and solid red curves are the SDSS-GALEX star-forming and quiescent-galaxy SMFs (upper-left panel), and have been reproduced in every panel for reference.
We find a significant increase in the number of intermediate-mass (∼1010 M⊙) quiescent galaxies toward lower redshift, but essentially no change in the SMF of
quiescent galaxies above ∼1011 M⊙. Meanwhile, the SMF of star-forming galaxies is largely invariant below ∼1011 M⊙ (at least where PRIMUS is complete), but
exhibits significant evolution above ∼1011 M⊙ by shifting toward lower stellar mass at fixed number density with decreasing redshift.
(A color version of this figure is available in the online journal.)

remarkably fixed. Meanwhile, the largest changes in the SMF
of star-forming galaxies occur at the massive end. We find a
perceptible shift in the star-forming galaxy SMF toward lower
mass at fixed number density with decreasing redshift, while
the low-mass end of the SMF remains relatively constant over
the whole range of stellar masses and redshifts where our
sample is complete. The so-called transition mass—the stellar
mass at which the quiescent and star-forming galaxy SMFs
cross—evolves roughly as ∝(1 + z)1.5, from ∼3 × 1010 M⊙
at z ≈ 0.1 to ∼7 × 1010 M⊙ at z ≈ 0.9, which agrees
reasonably well with previous measurements (e.g., Bundy et al.
2006; Vergani et al. 2008; Pozzetti et al. 2010). It is not clear,
however, that the transition mass has any physical interpretation,
as Figure 10 shows that its evolution is entirely driven by the
rise in the number of intermediate-mass quiescent galaxies (e.g.,
Borch et al. 2006; Cattaneo et al. 2008).

Another way to visualize these results is with Figure 11,
which shows the individual SMFs from all seven redshift bins
on top of one another. For clarity, we only plot each SMF above
our stellar mass completeness limit, and we only show stellar
mass bins containing three or more galaxies. In the left panel we
use progressively lighter shades of blue to show the evolution
of the star-forming galaxy SMF, and in the right panel we show
the evolution of the quiescent-galaxy SMF using progressively
lighter shades of orange. The black shaded region shows the
corresponding SDSS-GALEX SMF, which we plot on top so
that the changes in the SMF with redshift can be more easily
evaluated. This figure clearly shows the significant steepening
of the low-mass end of the SMF of quiescent galaxies toward
lower redshift, and the simultaneous decline in the number of
massive star-forming galaxies.

In Figure 12 we quantify the observed evolution by plot-
ting the integrated number density of galaxies measured in four
0.5 dex wide intervals of stellar mass between 109.5–1011.5 M⊙.
As in Section 5.2.1, we calculate the number density by inte-
grating the observed SMFs directly, excluding stellar mass bins

with fewer than three galaxies, and use our Schechter model fits
to extrapolate over small ranges of stellar mass. We plot the evo-
lution in the number density of all, quiescent, and star-forming
galaxies using black squares, red diamonds, and blue points,
respectively, and indicate lower limits on the number density
in redshift bins where our SMF is partially incomplete using
upward-pointing arrows. The error bars reflect the quadrature
sum of the Poisson and sample variance uncertainties. We list
the derived number and stellar mass densities in Table 6.

We quantify the observed trends by fitting a power-law
function of redshift to the measured number densities, given
by

n(z) = n0(1 + z)γ . (9)

In addition, we model the evolution in the stellar mass density,
ρ(z), as

ρ(z) = ρ0(1 + z)β . (10)

In detail, we fit the data in log (n)−log (1+z) and log (ρ)−log (1+
z) space using weighted linear least-squares minimization, and
we only fit over the range of redshifts where our measurements
are complete (i.e., we ignore lower limits). We also exclude
from the fits our measurements at z ≈ 0.7 because of the
above-average overdensity of galaxies in this redshift bin (see
Figure 7). We emphasize, however, that including this redshift
bin would only strengthen our claim of minimal evolution in the
number density of massive galaxies; in other words, excluding
the z ≈ 0.7 measurements is a conservative choice. The solid
black, dot-dashed red, and dashed blue lines in Figure 12 show
the results of fitting the number density of all, quiescent, and star-
forming galaxies, respectively, and the corresponding shaded
regions show the 1σ range of power-law fits drawn from the full
covariance matrix. Table 7 lists the best-fitting coefficients and
uncertainties, where the uncertainties have been rescaled as in
Section 5.2.1 such that χ2

ν = 1.
Figure 12 synthesizes nearly all the key results of this section,

and conveys many of the core conclusions of this paper. First,
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Galaxy-Halo Connection

§1. Introduction 5

✦ Impossible to perform hydro simulations in a cosmological volume


- state-of-the-art Illustris Lbox=70 Mpc/h   c.f.: BOSS  Vsurvey ~3(Gpc/h)3


- phenomenological way to connect observed gals to halos in N-body


- important even in cosmology to construct a “realistic” mock catalog

Nelson+ (2015)

✦ 3 major effective models for galaxy-halo connection


- Semi-Analytic Model (SAM)


- Halo Occupation Distribution (HOD)


- Subhalo Abundance Matching (SHAM)



Semi-Analytic Model

§1. Introduction 6

1.2 Basic Elements of Galaxy Formation 5

population. With modern, large telescopes we can now observe galaxies out to redshifts beyond
six, making it possible for us to probe the galaxy population back to a time when the Universe
was only about 10 percent of its current age.

1.2 Basic Elements of Galaxy Formation

Before diving into details, it is useful to have an overview of the basic theoretical framework
within which our current ideas about galaxy formation and evolution have been developed. In
this section we give a brief overview of the various physical processes that play a role dur-
ing the formation and evolution of galaxies. The goal is to provide the reader with a picture
of the relationships among the various aspects of galaxy formation to be addressed in greater
detail in the chapters to come. To guide the reader, Fig. 1.1 shows a flow chart of galaxy for-
mation, which illustrates how the various processes to be discussed below are intertwined. It
is important to stress, though, that this particular flow chart reflects our current, undoubtedly
incomplete view of galaxy formation. Future improvements in our understanding of galaxy for-
mation and evolution may add new links to the flow chart, or may render some of the links shown
obsolete.

Fig. 1.1. A logic flow chart for galaxy formation. In the standard scenario, the initial and boundary con-
ditions for galaxy formation are set by the cosmological framework. The paths leading to the formation of
various galaxies are shown along with the relevant physical processes. Note, however, that processes do
not separate as neatly as this figure suggests. For example, cold gas may not have the time to settle into a
gaseous disk before a major merger takes place.

Mo, van den Bosch, White (2010)

✦ Introduce baryon physics in halo merging history  

    but MANY free parameters: e.g., Benson (2012, 2014), Lu et al. (2014) etc

+ feedback



Halo Occupation Distribution (HOD)

§1. Introduction 7

✦ How it works: 
       1) assume a functional form P(Ngal|Mhalo) for central and satellite HODs  
       2) determine the HOD parameters to reproduce  
           or 3D correlation function or gal-gal lensing 
       3) randomly down sample to reproduce dn/dz 

✦ The most popular method to link galaxies with halos. Berlind & Weinberg (2002) etc

4 Saito et al.

3.1. The CMASS Two-Point Correlation Function

In this paper we use the DR10 projected two-point cor-
relation function, wp, and the monopole and quadrupole

of the correlation function, ξ̂ℓ, and the associated covari-
ance matrix determined by R14. We only give a brief
summary of how these measurements were performed
and we refer the reader to R14 for additional details. The
two-dimensional redshift-space correlation function ξ(s)
is measured using the Landy-Szalay estimator Landy &
Szalay (1993):

ξ(s) =
DD(∆s)− 2DR(∆s) +RR(∆s)

RR(∆s)
, (3)

where DD, DR, and RR are the data-data, data-
random, and random-random pairs in a given bin [s −
∆s/2, s+∆s/2]. The randoms account for the survey ge-
ometry and for the completeness factor which depends on
angular position and a radial selection function, dn/dz.
The correlation function is integrated over the line-of-
sight separation to obtain the projected correlation func-
tion Davis & Peebles (1983),

wp(rp) = 2

∫ rπ,max

0
drπ ξ(rp, rπ), (4)

where the three-dimensional pair separation s in redshift
space is split into a component transverse (rp) and paral-
lel (rπ) to the line-of-sight direction. The integral is per-
formed to rπ,max = 80Mpc/h and wp is measured from
0.194 Mpc/h to 25.98 Mpc/h with 18 equally spaced log-
arithmic bins. The advantage of using the projected cor-
relation function is that it is less sensitive than ξ(s) to the
effects of galaxy peculiar velocities. Note that, however,
we do account for the RSD effect (van den Bosch et al.
2013) in our modeling through the velocity of subhalos
(see next section). The projected two-point correlation
function is measured separately for the NGC and the
SGC and these measurements are combined using a sim-
ple average, weighted by the number of CMASS galaxies
in each hemisphere.
The wp measurement from R14 does not use the opti-

mal weights (the so-called “FKP” weights), or the sys-
tematic weights. The systematic weights affect large
scales and hence are not relevant for our small-scale
measurement. Also, this approach enables a more fair
comparison with our measurement of the galaxy stellar
mass function which does not use any weighting scheme.
Weights are applied, however, to account for redshift fail-
ures and for fiber collisions. Fiber collisions are par-
ticularly important for small scale clustering measure-
ments with BOSS – the fiber-collison scale in BOSS is
62 arcsecond which corresponds to a comoving scale of
∼ 0.45Mpc/h at z ∼ 0.57. To complicate matters, the
BOSS tiling strategy also introduces a correlation be-
tween fiber collisions and the density field. R14 studied
the impact of fiber collisions for the CMASS sample us-
ing tiled mock catalogs. They adopted a radial depen-
dent correction scheme in which an angular upweight-
ing method is adopted at rp < 1.09Mpc/h and a near-
est neighbor (NN) weighting scheme is adopted at larger
scales. Finally, the correlation function is debiased for
residual fiber-collision effects using the tiled mock cata-
logs.

The covariance matrix for wp, Cwp,boot, is derived from
5,000,000 realizations drawn from 200 bootstrap regions
which are roughly equal in size and shape. An addi-
tional 10% uncertainty due to the angular upweighting
method and the debiasing procedure are propagated into
the diagonal element of the covariance matrix. As a re-
sult, the measurement error on wp increases below rp =
1.09Mpc/h. Finally, the inverse covariance matrix is cor-
rected following Hartlap et al. (2007). With nboot = 200
and nbin = 18, this leads to a 0.904 correction to the final
inverse covariance matrix, C−1

wp,meas = 0.904C−1
wp,boot

.
In addition to wp, we will also use the monopole

and quadrupole of the correlation function which con-
tain information about the peculiar velocities of galax-
ies. Again, following R14, we adopt the pseudo multipole
correlation function defined by

ξ̂ℓ(s) = (2ℓ+ 1)

∫ µmax(s)

0
dµ ξ(s, µ)Lℓ(µ), (5)

where s2 = r2p + r2π, µ = rπ/s, and Lℓ(µ) is the ℓ-th
order Legendre polynomial. The integration over the az-
imuthal angle µ is performed up to µmax(s) ≡ 0.534/s
in order to minimize the impact of fiber collisions on the
small-scale measurements. We refer the reader to R14
for further details.

3.2. The Total Stellar Mass Function at z = 0.55

As shown in Leauthaud et al. (in prep), the CMASS
sample is only stellar mass complete at the very high
mass end and in a narrow redshift range. To perform
abundance matching, however, we need to measure the
total SMF as well as the fraction of CMASS galaxies as
a function of stellar mass and redshift. Indeed, for abun-
dance matching a complete galaxy sample is necessary
when rank ordering galaxies versus halos.
Bundy et al. (in prep) present an estimate of the to-

tal SMF at z ∼ 0.5 by using the s82-mgc catalog which
extends ∼ 2 magnitudes fainter than the SDSS single
epoch imaging data (Reis et al. 2012; Jiang et al. 2014).
In order to compute the total SMF, Bundy et al. (in
prep) use a combination of spectroscopic redshifts, sup-
plemented with photometric redshifts (photo-z’s) when a
spectroscopic redshift is not available. We adopt a simi-
lar approach and compute the total SMF from the s82-
mgc at log10(M∗/M⊙) > 10.5 over 0.43 < z < 0.70. Our
analysis assumes that the total SMF does not vary over
this redshift range. The result is shown in Figure 1. Er-
ror bars on SMF represent the square root of the diagonal
component of the covariance matrix which is estimated
from the data using 214 nearly-equal area bootstrap re-
gions.
The left panel of Figure 1 shows a comparison between

our SMF with results from COSMOS (Leauthaud et al.
2011) and PRIMUS (Moustakas et al. 2013) at similar
redshifts. As can be seen in Figure 1, because of the large
area covered by Stripe 82, the high mass end of the total
SMF is tightly constrained at log10(M∗/M⊙) > 11.3 over
0.43 < z < 0.70 while COSMOS and PRIMUS constrain
the low mass end. The comparison with COSMOS and
PRIMUS suggests that the s82-mgc is roughly complete
to log10(M∗/M⊙) ∼ 11.2.
To perform abundance matching, we need to evaluate

the total SMF over the entire mass range covered by the
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Figure 17. The best-fitting model using the ‘MedRes0’ box, fixing γ IHV = 1 and γ cenv = 0 compared to our measurements for wp, ξ̂0,2, and ξ0, 2 (bottom first
column of Table 4). In the second two panels ξ̂2 and ξ2 measurements are indicated with an X, and the model predictions with green curves instead of blue,
since ξ0 and ξ2 cross on small scales. The varying parameters took best-fitting values fσ 8 = 0.452, Mmin = 1013.011 h−1 M⊙, Mcut = 1013.159 h−1 M⊙, M1 =
1014.068 h−1 M⊙, α = 0.89, σlog10 M = 0.358. This HOD has n̄HOD = 4.23 × 10−4 (h−1 Mpc)−3 and fsat = 10.4 per cent. The best-fitting χ2 values are listed
in the first lower column in Table 4. This best-fitting model is derived by fitting only the first nine bins of wp and ξ̂0,2, but also provides a good fit to ξ0, 2, for
which χ2 = 20.9 for 20 measurement bins. Compared to the best fit with γ HV = 1 (fσ 8 = 0.472), the fit to the quadrupole on large scales is improved. Our
last 1.5 bins overlap with the smallest bins in the large-scale RSD analysis in Reid et al. (2012) and Samushia et al. (2013) and our best-fitting fσ 8 values are
nearly identical.

between the two independent measurements is 1.9σ , which we take
to be reasonable agreement since we have not included a mod-
elling systematics error budget. Despite the dominance of satellite
galaxies on the observed anisotropies (Fig. 13), there is still ample
information on the rate of structure growth on these smaller scales
where the clustering signal is strong and well measured, resulting
in a factor of 2.5 reduction in uncertainty on fσ 8 compared with
our DR11 large-scale RSD analysis. In Fig. 17 we show the the-
oretical prediction from the best-fitting model using the MedRes0
box. In this model, fσ 8 = 0.452 and we have held γ IHV = 1 and
γ cenv = 0 fixed. Compared to the best-fitting model with γ HV = 1
(fσ 8 = 0.472) in Fig. 14, the amplitude of ξ 2 on large scales pro-
vides a better fit to the data. These are the same scales dominating
the Samushia et al. (2013) large-scale RSD measurement of fσ 8; the
last ∼1.5 bins overlap between the analyses. The best-fitting models
as a function of fσ 8 have nearly identical behaviour in the first three
bins s < 3 h−1 Mpc, and divide on larger scales, indicating that the
constraint on fσ 8 is driven by the relative amplitudes of ξ̂0 and ξ̂2.
Fig. 17 also shows that even though the model was fit to wp(rσ <

2 h−1 Mpc) and ξ̂0,2, it provides a good fit to wp out to 25 h−1 Mpc
(χ2 = 12.4 for 18 bins), and correctly models scales below the fibre
collision radius, so that ξ 0, 2 is also fit (χ2 = 20.9 for 20 bins).

7.6 Robustness of the fσ 8 constraint to model extensions

The basic redshift-independent HOD model we are using to fit
the CMASS clustering assumes that the observed galaxies are a
subsample of objects defined by those HOD parameters. We enforce
only a broad prior on n̄HOD from the observed CMASS selection
function n̄(z). However, both intrinsic stochasticity in the stellar
mass–halo mass relation and photometric errors in the imaging
catalogue will broaden the distribution of halo masses hosting the
CMASS sample. In order to test our sensitivity to the allowed host
halo mass scatter, we refit our measurements with the n̄HOD prior
shifted to higher values: 4.25 < 104n̄HOD(h−1 Mpc)3 < 4.75. The
results of fits that fix or vary fσ 8 are labelled in Table 4 as ‘high
n̄HOD’. This choice is similar to relaxing our assumption that Ncen(M)
in equation (17) approaches one at large halo masses. Indeed, we

find that this region of HOD parameter space provides a better fit
to the observed clustering (&χ2 ∼ 4). There are small (expected)
shifts in the HOD parameters with the higher n̄HOD prior; most
importantly for our conclusions in this work, the constraint on fσ 8

shifts by only ∼0.5σ . If we completely remove the n̄ prior, the
HOD is limited to 104n̄HOD(h−1 Mpc)3 < 6 as σlog10 M approaches
0, which is an unphysical limit of noisy target selection producing
a precise mass cut in central galaxy host mass. Given our HOD
parametrization, models with higher number density are unable to
generate sufficiently large clustering. Even in this unrealistic case,
the fσ 8 shifts upward compared to our fiducial value by only 1σ .

Both the colour selection and photometric errors in the imaging
used for target selection could result in haloes where the central
galaxy does not pass our target selection cuts, while one or more
satellite galaxies in that halo do pass. To test the impact of such
cases (labelled ‘cen/sat’ test in Table 4), we consider the drastic
case where 20 per cent of centrals in massive haloes are not CMASS
selected galaxies, implemented in our model by simply multiplying
Ncen(M) by 0.8. In contrast to the rest of our analyses, in this test
we do not require a central galaxy in order for a particular halo to
host a satellite galaxy, thus lowering the contribution of ‘one-halo’
central-satellite pairs at fixed HOD parameters. This model provides
a much better fit than our fiducial HOD assumptions (&χ2 = 10.2).
The satellite fraction is larger, n̄HOD in the model moves closer to
the typical n̄ in the sample, and the satellite occupation distribution
steepens. In future work, we hope to explore such model extensions
more generally in concert with a better understanding of the impact
of photometric errors on targeting, as well as redshift evolution
and intrinsic diversity in the CMASS galaxy population. Again, the
important result for this work is that a plausible extension of our
halo occupation modelling can improve the fit, but the constraint on
fσ 8 shifts only slightly.

Next we consider the impact of varying the galaxy intrahalo
velocities through the parameters γ IHV and γ cenv defined in Sec-
tion 6.3. Their impact on the ξ̂0,2 observable is shown in Fig. 18,
holding the HOD parameters fixed to the best-fitting values for
γ HV = γ IHV = 1.0 and γ cenv = 0. Increasing the intrahalo velocity
dispersion lowers the number of pairs at small s separations, while
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           or 3D correlation function or gal-gal lensing 
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✦ The most popular method to link galaxies with halos. Berlind & Weinberg (2002) etc
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3.1. The CMASS Two-Point Correlation Function

In this paper we use the DR10 projected two-point cor-
relation function, wp, and the monopole and quadrupole

of the correlation function, ξ̂ℓ, and the associated covari-
ance matrix determined by R14. We only give a brief
summary of how these measurements were performed
and we refer the reader to R14 for additional details. The
two-dimensional redshift-space correlation function ξ(s)
is measured using the Landy-Szalay estimator Landy &
Szalay (1993):

ξ(s) =
DD(∆s)− 2DR(∆s) +RR(∆s)

RR(∆s)
, (3)

where DD, DR, and RR are the data-data, data-
random, and random-random pairs in a given bin [s −
∆s/2, s+∆s/2]. The randoms account for the survey ge-
ometry and for the completeness factor which depends on
angular position and a radial selection function, dn/dz.
The correlation function is integrated over the line-of-
sight separation to obtain the projected correlation func-
tion Davis & Peebles (1983),

wp(rp) = 2

∫ rπ,max

0
drπ ξ(rp, rπ), (4)

where the three-dimensional pair separation s in redshift
space is split into a component transverse (rp) and paral-
lel (rπ) to the line-of-sight direction. The integral is per-
formed to rπ,max = 80Mpc/h and wp is measured from
0.194 Mpc/h to 25.98 Mpc/h with 18 equally spaced log-
arithmic bins. The advantage of using the projected cor-
relation function is that it is less sensitive than ξ(s) to the
effects of galaxy peculiar velocities. Note that, however,
we do account for the RSD effect (van den Bosch et al.
2013) in our modeling through the velocity of subhalos
(see next section). The projected two-point correlation
function is measured separately for the NGC and the
SGC and these measurements are combined using a sim-
ple average, weighted by the number of CMASS galaxies
in each hemisphere.
The wp measurement from R14 does not use the opti-

mal weights (the so-called “FKP” weights), or the sys-
tematic weights. The systematic weights affect large
scales and hence are not relevant for our small-scale
measurement. Also, this approach enables a more fair
comparison with our measurement of the galaxy stellar
mass function which does not use any weighting scheme.
Weights are applied, however, to account for redshift fail-
ures and for fiber collisions. Fiber collisions are par-
ticularly important for small scale clustering measure-
ments with BOSS – the fiber-collison scale in BOSS is
62 arcsecond which corresponds to a comoving scale of
∼ 0.45Mpc/h at z ∼ 0.57. To complicate matters, the
BOSS tiling strategy also introduces a correlation be-
tween fiber collisions and the density field. R14 studied
the impact of fiber collisions for the CMASS sample us-
ing tiled mock catalogs. They adopted a radial depen-
dent correction scheme in which an angular upweight-
ing method is adopted at rp < 1.09Mpc/h and a near-
est neighbor (NN) weighting scheme is adopted at larger
scales. Finally, the correlation function is debiased for
residual fiber-collision effects using the tiled mock cata-
logs.

The covariance matrix for wp, Cwp,boot, is derived from
5,000,000 realizations drawn from 200 bootstrap regions
which are roughly equal in size and shape. An addi-
tional 10% uncertainty due to the angular upweighting
method and the debiasing procedure are propagated into
the diagonal element of the covariance matrix. As a re-
sult, the measurement error on wp increases below rp =
1.09Mpc/h. Finally, the inverse covariance matrix is cor-
rected following Hartlap et al. (2007). With nboot = 200
and nbin = 18, this leads to a 0.904 correction to the final
inverse covariance matrix, C−1

wp,meas = 0.904C−1
wp,boot

.
In addition to wp, we will also use the monopole

and quadrupole of the correlation function which con-
tain information about the peculiar velocities of galax-
ies. Again, following R14, we adopt the pseudo multipole
correlation function defined by

ξ̂ℓ(s) = (2ℓ+ 1)

∫ µmax(s)

0
dµ ξ(s, µ)Lℓ(µ), (5)

where s2 = r2p + r2π, µ = rπ/s, and Lℓ(µ) is the ℓ-th
order Legendre polynomial. The integration over the az-
imuthal angle µ is performed up to µmax(s) ≡ 0.534/s
in order to minimize the impact of fiber collisions on the
small-scale measurements. We refer the reader to R14
for further details.

3.2. The Total Stellar Mass Function at z = 0.55

As shown in Leauthaud et al. (in prep), the CMASS
sample is only stellar mass complete at the very high
mass end and in a narrow redshift range. To perform
abundance matching, however, we need to measure the
total SMF as well as the fraction of CMASS galaxies as
a function of stellar mass and redshift. Indeed, for abun-
dance matching a complete galaxy sample is necessary
when rank ordering galaxies versus halos.
Bundy et al. (in prep) present an estimate of the to-

tal SMF at z ∼ 0.5 by using the s82-mgc catalog which
extends ∼ 2 magnitudes fainter than the SDSS single
epoch imaging data (Reis et al. 2012; Jiang et al. 2014).
In order to compute the total SMF, Bundy et al. (in
prep) use a combination of spectroscopic redshifts, sup-
plemented with photometric redshifts (photo-z’s) when a
spectroscopic redshift is not available. We adopt a simi-
lar approach and compute the total SMF from the s82-
mgc at log10(M∗/M⊙) > 10.5 over 0.43 < z < 0.70. Our
analysis assumes that the total SMF does not vary over
this redshift range. The result is shown in Figure 1. Er-
ror bars on SMF represent the square root of the diagonal
component of the covariance matrix which is estimated
from the data using 214 nearly-equal area bootstrap re-
gions.
The left panel of Figure 1 shows a comparison between

our SMF with results from COSMOS (Leauthaud et al.
2011) and PRIMUS (Moustakas et al. 2013) at similar
redshifts. As can be seen in Figure 1, because of the large
area covered by Stripe 82, the high mass end of the total
SMF is tightly constrained at log10(M∗/M⊙) > 11.3 over
0.43 < z < 0.70 while COSMOS and PRIMUS constrain
the low mass end. The comparison with COSMOS and
PRIMUS suggests that the s82-mgc is roughly complete
to log10(M∗/M⊙) ∼ 11.2.
To perform abundance matching, we need to evaluate

the total SMF over the entire mass range covered by the
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Figure 17. The best-fitting model using the ‘MedRes0’ box, fixing γ IHV = 1 and γ cenv = 0 compared to our measurements for wp, ξ̂0,2, and ξ0, 2 (bottom first
column of Table 4). In the second two panels ξ̂2 and ξ2 measurements are indicated with an X, and the model predictions with green curves instead of blue,
since ξ0 and ξ2 cross on small scales. The varying parameters took best-fitting values fσ 8 = 0.452, Mmin = 1013.011 h−1 M⊙, Mcut = 1013.159 h−1 M⊙, M1 =
1014.068 h−1 M⊙, α = 0.89, σlog10 M = 0.358. This HOD has n̄HOD = 4.23 × 10−4 (h−1 Mpc)−3 and fsat = 10.4 per cent. The best-fitting χ2 values are listed
in the first lower column in Table 4. This best-fitting model is derived by fitting only the first nine bins of wp and ξ̂0,2, but also provides a good fit to ξ0, 2, for
which χ2 = 20.9 for 20 measurement bins. Compared to the best fit with γ HV = 1 (fσ 8 = 0.472), the fit to the quadrupole on large scales is improved. Our
last 1.5 bins overlap with the smallest bins in the large-scale RSD analysis in Reid et al. (2012) and Samushia et al. (2013) and our best-fitting fσ 8 values are
nearly identical.

between the two independent measurements is 1.9σ , which we take
to be reasonable agreement since we have not included a mod-
elling systematics error budget. Despite the dominance of satellite
galaxies on the observed anisotropies (Fig. 13), there is still ample
information on the rate of structure growth on these smaller scales
where the clustering signal is strong and well measured, resulting
in a factor of 2.5 reduction in uncertainty on fσ 8 compared with
our DR11 large-scale RSD analysis. In Fig. 17 we show the the-
oretical prediction from the best-fitting model using the MedRes0
box. In this model, fσ 8 = 0.452 and we have held γ IHV = 1 and
γ cenv = 0 fixed. Compared to the best-fitting model with γ HV = 1
(fσ 8 = 0.472) in Fig. 14, the amplitude of ξ 2 on large scales pro-
vides a better fit to the data. These are the same scales dominating
the Samushia et al. (2013) large-scale RSD measurement of fσ 8; the
last ∼1.5 bins overlap between the analyses. The best-fitting models
as a function of fσ 8 have nearly identical behaviour in the first three
bins s < 3 h−1 Mpc, and divide on larger scales, indicating that the
constraint on fσ 8 is driven by the relative amplitudes of ξ̂0 and ξ̂2.
Fig. 17 also shows that even though the model was fit to wp(rσ <

2 h−1 Mpc) and ξ̂0,2, it provides a good fit to wp out to 25 h−1 Mpc
(χ2 = 12.4 for 18 bins), and correctly models scales below the fibre
collision radius, so that ξ 0, 2 is also fit (χ2 = 20.9 for 20 bins).

7.6 Robustness of the fσ 8 constraint to model extensions

The basic redshift-independent HOD model we are using to fit
the CMASS clustering assumes that the observed galaxies are a
subsample of objects defined by those HOD parameters. We enforce
only a broad prior on n̄HOD from the observed CMASS selection
function n̄(z). However, both intrinsic stochasticity in the stellar
mass–halo mass relation and photometric errors in the imaging
catalogue will broaden the distribution of halo masses hosting the
CMASS sample. In order to test our sensitivity to the allowed host
halo mass scatter, we refit our measurements with the n̄HOD prior
shifted to higher values: 4.25 < 104n̄HOD(h−1 Mpc)3 < 4.75. The
results of fits that fix or vary fσ 8 are labelled in Table 4 as ‘high
n̄HOD’. This choice is similar to relaxing our assumption that Ncen(M)
in equation (17) approaches one at large halo masses. Indeed, we

find that this region of HOD parameter space provides a better fit
to the observed clustering (&χ2 ∼ 4). There are small (expected)
shifts in the HOD parameters with the higher n̄HOD prior; most
importantly for our conclusions in this work, the constraint on fσ 8

shifts by only ∼0.5σ . If we completely remove the n̄ prior, the
HOD is limited to 104n̄HOD(h−1 Mpc)3 < 6 as σlog10 M approaches
0, which is an unphysical limit of noisy target selection producing
a precise mass cut in central galaxy host mass. Given our HOD
parametrization, models with higher number density are unable to
generate sufficiently large clustering. Even in this unrealistic case,
the fσ 8 shifts upward compared to our fiducial value by only 1σ .

Both the colour selection and photometric errors in the imaging
used for target selection could result in haloes where the central
galaxy does not pass our target selection cuts, while one or more
satellite galaxies in that halo do pass. To test the impact of such
cases (labelled ‘cen/sat’ test in Table 4), we consider the drastic
case where 20 per cent of centrals in massive haloes are not CMASS
selected galaxies, implemented in our model by simply multiplying
Ncen(M) by 0.8. In contrast to the rest of our analyses, in this test
we do not require a central galaxy in order for a particular halo to
host a satellite galaxy, thus lowering the contribution of ‘one-halo’
central-satellite pairs at fixed HOD parameters. This model provides
a much better fit than our fiducial HOD assumptions (&χ2 = 10.2).
The satellite fraction is larger, n̄HOD in the model moves closer to
the typical n̄ in the sample, and the satellite occupation distribution
steepens. In future work, we hope to explore such model extensions
more generally in concert with a better understanding of the impact
of photometric errors on targeting, as well as redshift evolution
and intrinsic diversity in the CMASS galaxy population. Again, the
important result for this work is that a plausible extension of our
halo occupation modelling can improve the fit, but the constraint on
fσ 8 shifts only slightly.

Next we consider the impact of varying the galaxy intrahalo
velocities through the parameters γ IHV and γ cenv defined in Sec-
tion 6.3. Their impact on the ξ̂0,2 observable is shown in Fig. 18,
holding the HOD parameters fixed to the best-fitting values for
γ HV = γ IHV = 1.0 and γ cenv = 0. Increasing the intrahalo velocity
dispersion lowers the number of pairs at small s separations, while
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       1) assume a functional form P(Ngal|Mhalo) for central and satellite HODs  
       2) determine the HOD parameters to reproduce  
           or 3D correlation function or gal-gal lensing 
       3) randomly down sample to reproduce dn/dz 

✦ The most popular method to link galaxies with halos. Berlind & Weinberg (2002) etc

4 Saito et al.

3.1. The CMASS Two-Point Correlation Function

In this paper we use the DR10 projected two-point cor-
relation function, wp, and the monopole and quadrupole

of the correlation function, ξ̂ℓ, and the associated covari-
ance matrix determined by R14. We only give a brief
summary of how these measurements were performed
and we refer the reader to R14 for additional details. The
two-dimensional redshift-space correlation function ξ(s)
is measured using the Landy-Szalay estimator Landy &
Szalay (1993):

ξ(s) =
DD(∆s)− 2DR(∆s) +RR(∆s)

RR(∆s)
, (3)

where DD, DR, and RR are the data-data, data-
random, and random-random pairs in a given bin [s −
∆s/2, s+∆s/2]. The randoms account for the survey ge-
ometry and for the completeness factor which depends on
angular position and a radial selection function, dn/dz.
The correlation function is integrated over the line-of-
sight separation to obtain the projected correlation func-
tion Davis & Peebles (1983),

wp(rp) = 2

∫ rπ,max

0
drπ ξ(rp, rπ), (4)

where the three-dimensional pair separation s in redshift
space is split into a component transverse (rp) and paral-
lel (rπ) to the line-of-sight direction. The integral is per-
formed to rπ,max = 80Mpc/h and wp is measured from
0.194 Mpc/h to 25.98 Mpc/h with 18 equally spaced log-
arithmic bins. The advantage of using the projected cor-
relation function is that it is less sensitive than ξ(s) to the
effects of galaxy peculiar velocities. Note that, however,
we do account for the RSD effect (van den Bosch et al.
2013) in our modeling through the velocity of subhalos
(see next section). The projected two-point correlation
function is measured separately for the NGC and the
SGC and these measurements are combined using a sim-
ple average, weighted by the number of CMASS galaxies
in each hemisphere.
The wp measurement from R14 does not use the opti-

mal weights (the so-called “FKP” weights), or the sys-
tematic weights. The systematic weights affect large
scales and hence are not relevant for our small-scale
measurement. Also, this approach enables a more fair
comparison with our measurement of the galaxy stellar
mass function which does not use any weighting scheme.
Weights are applied, however, to account for redshift fail-
ures and for fiber collisions. Fiber collisions are par-
ticularly important for small scale clustering measure-
ments with BOSS – the fiber-collison scale in BOSS is
62 arcsecond which corresponds to a comoving scale of
∼ 0.45Mpc/h at z ∼ 0.57. To complicate matters, the
BOSS tiling strategy also introduces a correlation be-
tween fiber collisions and the density field. R14 studied
the impact of fiber collisions for the CMASS sample us-
ing tiled mock catalogs. They adopted a radial depen-
dent correction scheme in which an angular upweight-
ing method is adopted at rp < 1.09Mpc/h and a near-
est neighbor (NN) weighting scheme is adopted at larger
scales. Finally, the correlation function is debiased for
residual fiber-collision effects using the tiled mock cata-
logs.

The covariance matrix for wp, Cwp,boot, is derived from
5,000,000 realizations drawn from 200 bootstrap regions
which are roughly equal in size and shape. An addi-
tional 10% uncertainty due to the angular upweighting
method and the debiasing procedure are propagated into
the diagonal element of the covariance matrix. As a re-
sult, the measurement error on wp increases below rp =
1.09Mpc/h. Finally, the inverse covariance matrix is cor-
rected following Hartlap et al. (2007). With nboot = 200
and nbin = 18, this leads to a 0.904 correction to the final
inverse covariance matrix, C−1

wp,meas = 0.904C−1
wp,boot

.
In addition to wp, we will also use the monopole

and quadrupole of the correlation function which con-
tain information about the peculiar velocities of galax-
ies. Again, following R14, we adopt the pseudo multipole
correlation function defined by

ξ̂ℓ(s) = (2ℓ+ 1)

∫ µmax(s)

0
dµ ξ(s, µ)Lℓ(µ), (5)

where s2 = r2p + r2π, µ = rπ/s, and Lℓ(µ) is the ℓ-th
order Legendre polynomial. The integration over the az-
imuthal angle µ is performed up to µmax(s) ≡ 0.534/s
in order to minimize the impact of fiber collisions on the
small-scale measurements. We refer the reader to R14
for further details.

3.2. The Total Stellar Mass Function at z = 0.55

As shown in Leauthaud et al. (in prep), the CMASS
sample is only stellar mass complete at the very high
mass end and in a narrow redshift range. To perform
abundance matching, however, we need to measure the
total SMF as well as the fraction of CMASS galaxies as
a function of stellar mass and redshift. Indeed, for abun-
dance matching a complete galaxy sample is necessary
when rank ordering galaxies versus halos.
Bundy et al. (in prep) present an estimate of the to-

tal SMF at z ∼ 0.5 by using the s82-mgc catalog which
extends ∼ 2 magnitudes fainter than the SDSS single
epoch imaging data (Reis et al. 2012; Jiang et al. 2014).
In order to compute the total SMF, Bundy et al. (in
prep) use a combination of spectroscopic redshifts, sup-
plemented with photometric redshifts (photo-z’s) when a
spectroscopic redshift is not available. We adopt a simi-
lar approach and compute the total SMF from the s82-
mgc at log10(M∗/M⊙) > 10.5 over 0.43 < z < 0.70. Our
analysis assumes that the total SMF does not vary over
this redshift range. The result is shown in Figure 1. Er-
ror bars on SMF represent the square root of the diagonal
component of the covariance matrix which is estimated
from the data using 214 nearly-equal area bootstrap re-
gions.
The left panel of Figure 1 shows a comparison between

our SMF with results from COSMOS (Leauthaud et al.
2011) and PRIMUS (Moustakas et al. 2013) at similar
redshifts. As can be seen in Figure 1, because of the large
area covered by Stripe 82, the high mass end of the total
SMF is tightly constrained at log10(M∗/M⊙) > 11.3 over
0.43 < z < 0.70 while COSMOS and PRIMUS constrain
the low mass end. The comparison with COSMOS and
PRIMUS suggests that the s82-mgc is roughly complete
to log10(M∗/M⊙) ∼ 11.2.
To perform abundance matching, we need to evaluate

the total SMF over the entire mass range covered by the
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Figure 17. The best-fitting model using the ‘MedRes0’ box, fixing γ IHV = 1 and γ cenv = 0 compared to our measurements for wp, ξ̂0,2, and ξ0, 2 (bottom first
column of Table 4). In the second two panels ξ̂2 and ξ2 measurements are indicated with an X, and the model predictions with green curves instead of blue,
since ξ0 and ξ2 cross on small scales. The varying parameters took best-fitting values fσ 8 = 0.452, Mmin = 1013.011 h−1 M⊙, Mcut = 1013.159 h−1 M⊙, M1 =
1014.068 h−1 M⊙, α = 0.89, σlog10 M = 0.358. This HOD has n̄HOD = 4.23 × 10−4 (h−1 Mpc)−3 and fsat = 10.4 per cent. The best-fitting χ2 values are listed
in the first lower column in Table 4. This best-fitting model is derived by fitting only the first nine bins of wp and ξ̂0,2, but also provides a good fit to ξ0, 2, for
which χ2 = 20.9 for 20 measurement bins. Compared to the best fit with γ HV = 1 (fσ 8 = 0.472), the fit to the quadrupole on large scales is improved. Our
last 1.5 bins overlap with the smallest bins in the large-scale RSD analysis in Reid et al. (2012) and Samushia et al. (2013) and our best-fitting fσ 8 values are
nearly identical.

between the two independent measurements is 1.9σ , which we take
to be reasonable agreement since we have not included a mod-
elling systematics error budget. Despite the dominance of satellite
galaxies on the observed anisotropies (Fig. 13), there is still ample
information on the rate of structure growth on these smaller scales
where the clustering signal is strong and well measured, resulting
in a factor of 2.5 reduction in uncertainty on fσ 8 compared with
our DR11 large-scale RSD analysis. In Fig. 17 we show the the-
oretical prediction from the best-fitting model using the MedRes0
box. In this model, fσ 8 = 0.452 and we have held γ IHV = 1 and
γ cenv = 0 fixed. Compared to the best-fitting model with γ HV = 1
(fσ 8 = 0.472) in Fig. 14, the amplitude of ξ 2 on large scales pro-
vides a better fit to the data. These are the same scales dominating
the Samushia et al. (2013) large-scale RSD measurement of fσ 8; the
last ∼1.5 bins overlap between the analyses. The best-fitting models
as a function of fσ 8 have nearly identical behaviour in the first three
bins s < 3 h−1 Mpc, and divide on larger scales, indicating that the
constraint on fσ 8 is driven by the relative amplitudes of ξ̂0 and ξ̂2.
Fig. 17 also shows that even though the model was fit to wp(rσ <

2 h−1 Mpc) and ξ̂0,2, it provides a good fit to wp out to 25 h−1 Mpc
(χ2 = 12.4 for 18 bins), and correctly models scales below the fibre
collision radius, so that ξ 0, 2 is also fit (χ2 = 20.9 for 20 bins).

7.6 Robustness of the fσ 8 constraint to model extensions

The basic redshift-independent HOD model we are using to fit
the CMASS clustering assumes that the observed galaxies are a
subsample of objects defined by those HOD parameters. We enforce
only a broad prior on n̄HOD from the observed CMASS selection
function n̄(z). However, both intrinsic stochasticity in the stellar
mass–halo mass relation and photometric errors in the imaging
catalogue will broaden the distribution of halo masses hosting the
CMASS sample. In order to test our sensitivity to the allowed host
halo mass scatter, we refit our measurements with the n̄HOD prior
shifted to higher values: 4.25 < 104n̄HOD(h−1 Mpc)3 < 4.75. The
results of fits that fix or vary fσ 8 are labelled in Table 4 as ‘high
n̄HOD’. This choice is similar to relaxing our assumption that Ncen(M)
in equation (17) approaches one at large halo masses. Indeed, we

find that this region of HOD parameter space provides a better fit
to the observed clustering (&χ2 ∼ 4). There are small (expected)
shifts in the HOD parameters with the higher n̄HOD prior; most
importantly for our conclusions in this work, the constraint on fσ 8

shifts by only ∼0.5σ . If we completely remove the n̄ prior, the
HOD is limited to 104n̄HOD(h−1 Mpc)3 < 6 as σlog10 M approaches
0, which is an unphysical limit of noisy target selection producing
a precise mass cut in central galaxy host mass. Given our HOD
parametrization, models with higher number density are unable to
generate sufficiently large clustering. Even in this unrealistic case,
the fσ 8 shifts upward compared to our fiducial value by only 1σ .

Both the colour selection and photometric errors in the imaging
used for target selection could result in haloes where the central
galaxy does not pass our target selection cuts, while one or more
satellite galaxies in that halo do pass. To test the impact of such
cases (labelled ‘cen/sat’ test in Table 4), we consider the drastic
case where 20 per cent of centrals in massive haloes are not CMASS
selected galaxies, implemented in our model by simply multiplying
Ncen(M) by 0.8. In contrast to the rest of our analyses, in this test
we do not require a central galaxy in order for a particular halo to
host a satellite galaxy, thus lowering the contribution of ‘one-halo’
central-satellite pairs at fixed HOD parameters. This model provides
a much better fit than our fiducial HOD assumptions (&χ2 = 10.2).
The satellite fraction is larger, n̄HOD in the model moves closer to
the typical n̄ in the sample, and the satellite occupation distribution
steepens. In future work, we hope to explore such model extensions
more generally in concert with a better understanding of the impact
of photometric errors on targeting, as well as redshift evolution
and intrinsic diversity in the CMASS galaxy population. Again, the
important result for this work is that a plausible extension of our
halo occupation modelling can improve the fit, but the constraint on
fσ 8 shifts only slightly.

Next we consider the impact of varying the galaxy intrahalo
velocities through the parameters γ IHV and γ cenv defined in Sec-
tion 6.3. Their impact on the ξ̂0,2 observable is shown in Fig. 18,
holding the HOD parameters fixed to the best-fitting values for
γ HV = γ IHV = 1.0 and γ cenv = 0. Increasing the intrahalo velocity
dispersion lowers the number of pairs at small s separations, while
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Halo Occupation Distribution (HOD)

§1. Introduction 7

✦ How it works: 
       1) assume a functional form P(Ngal|Mhalo) for central and satellite HODs  
       2) determine the HOD parameters to reproduce  
           or 3D correlation function or gal-gal lensing 
       3) randomly down sample to reproduce dn/dz 

✦ The most popular method to link galaxies with halos. Berlind & Weinberg (2002) etc

4 Saito et al.

3.1. The CMASS Two-Point Correlation Function

In this paper we use the DR10 projected two-point cor-
relation function, wp, and the monopole and quadrupole

of the correlation function, ξ̂ℓ, and the associated covari-
ance matrix determined by R14. We only give a brief
summary of how these measurements were performed
and we refer the reader to R14 for additional details. The
two-dimensional redshift-space correlation function ξ(s)
is measured using the Landy-Szalay estimator Landy &
Szalay (1993):

ξ(s) =
DD(∆s)− 2DR(∆s) +RR(∆s)

RR(∆s)
, (3)

where DD, DR, and RR are the data-data, data-
random, and random-random pairs in a given bin [s −
∆s/2, s+∆s/2]. The randoms account for the survey ge-
ometry and for the completeness factor which depends on
angular position and a radial selection function, dn/dz.
The correlation function is integrated over the line-of-
sight separation to obtain the projected correlation func-
tion Davis & Peebles (1983),

wp(rp) = 2

∫ rπ,max

0
drπ ξ(rp, rπ), (4)

where the three-dimensional pair separation s in redshift
space is split into a component transverse (rp) and paral-
lel (rπ) to the line-of-sight direction. The integral is per-
formed to rπ,max = 80Mpc/h and wp is measured from
0.194 Mpc/h to 25.98 Mpc/h with 18 equally spaced log-
arithmic bins. The advantage of using the projected cor-
relation function is that it is less sensitive than ξ(s) to the
effects of galaxy peculiar velocities. Note that, however,
we do account for the RSD effect (van den Bosch et al.
2013) in our modeling through the velocity of subhalos
(see next section). The projected two-point correlation
function is measured separately for the NGC and the
SGC and these measurements are combined using a sim-
ple average, weighted by the number of CMASS galaxies
in each hemisphere.
The wp measurement from R14 does not use the opti-

mal weights (the so-called “FKP” weights), or the sys-
tematic weights. The systematic weights affect large
scales and hence are not relevant for our small-scale
measurement. Also, this approach enables a more fair
comparison with our measurement of the galaxy stellar
mass function which does not use any weighting scheme.
Weights are applied, however, to account for redshift fail-
ures and for fiber collisions. Fiber collisions are par-
ticularly important for small scale clustering measure-
ments with BOSS – the fiber-collison scale in BOSS is
62 arcsecond which corresponds to a comoving scale of
∼ 0.45Mpc/h at z ∼ 0.57. To complicate matters, the
BOSS tiling strategy also introduces a correlation be-
tween fiber collisions and the density field. R14 studied
the impact of fiber collisions for the CMASS sample us-
ing tiled mock catalogs. They adopted a radial depen-
dent correction scheme in which an angular upweight-
ing method is adopted at rp < 1.09Mpc/h and a near-
est neighbor (NN) weighting scheme is adopted at larger
scales. Finally, the correlation function is debiased for
residual fiber-collision effects using the tiled mock cata-
logs.

The covariance matrix for wp, Cwp,boot, is derived from
5,000,000 realizations drawn from 200 bootstrap regions
which are roughly equal in size and shape. An addi-
tional 10% uncertainty due to the angular upweighting
method and the debiasing procedure are propagated into
the diagonal element of the covariance matrix. As a re-
sult, the measurement error on wp increases below rp =
1.09Mpc/h. Finally, the inverse covariance matrix is cor-
rected following Hartlap et al. (2007). With nboot = 200
and nbin = 18, this leads to a 0.904 correction to the final
inverse covariance matrix, C−1

wp,meas = 0.904C−1
wp,boot

.
In addition to wp, we will also use the monopole

and quadrupole of the correlation function which con-
tain information about the peculiar velocities of galax-
ies. Again, following R14, we adopt the pseudo multipole
correlation function defined by

ξ̂ℓ(s) = (2ℓ+ 1)

∫ µmax(s)

0
dµ ξ(s, µ)Lℓ(µ), (5)

where s2 = r2p + r2π, µ = rπ/s, and Lℓ(µ) is the ℓ-th
order Legendre polynomial. The integration over the az-
imuthal angle µ is performed up to µmax(s) ≡ 0.534/s
in order to minimize the impact of fiber collisions on the
small-scale measurements. We refer the reader to R14
for further details.

3.2. The Total Stellar Mass Function at z = 0.55

As shown in Leauthaud et al. (in prep), the CMASS
sample is only stellar mass complete at the very high
mass end and in a narrow redshift range. To perform
abundance matching, however, we need to measure the
total SMF as well as the fraction of CMASS galaxies as
a function of stellar mass and redshift. Indeed, for abun-
dance matching a complete galaxy sample is necessary
when rank ordering galaxies versus halos.
Bundy et al. (in prep) present an estimate of the to-

tal SMF at z ∼ 0.5 by using the s82-mgc catalog which
extends ∼ 2 magnitudes fainter than the SDSS single
epoch imaging data (Reis et al. 2012; Jiang et al. 2014).
In order to compute the total SMF, Bundy et al. (in
prep) use a combination of spectroscopic redshifts, sup-
plemented with photometric redshifts (photo-z’s) when a
spectroscopic redshift is not available. We adopt a simi-
lar approach and compute the total SMF from the s82-
mgc at log10(M∗/M⊙) > 10.5 over 0.43 < z < 0.70. Our
analysis assumes that the total SMF does not vary over
this redshift range. The result is shown in Figure 1. Er-
ror bars on SMF represent the square root of the diagonal
component of the covariance matrix which is estimated
from the data using 214 nearly-equal area bootstrap re-
gions.
The left panel of Figure 1 shows a comparison between

our SMF with results from COSMOS (Leauthaud et al.
2011) and PRIMUS (Moustakas et al. 2013) at similar
redshifts. As can be seen in Figure 1, because of the large
area covered by Stripe 82, the high mass end of the total
SMF is tightly constrained at log10(M∗/M⊙) > 11.3 over
0.43 < z < 0.70 while COSMOS and PRIMUS constrain
the low mass end. The comparison with COSMOS and
PRIMUS suggests that the s82-mgc is roughly complete
to log10(M∗/M⊙) ∼ 11.2.
To perform abundance matching, we need to evaluate

the total SMF over the entire mass range covered by the
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Figure 17. The best-fitting model using the ‘MedRes0’ box, fixing γ IHV = 1 and γ cenv = 0 compared to our measurements for wp, ξ̂0,2, and ξ0, 2 (bottom first
column of Table 4). In the second two panels ξ̂2 and ξ2 measurements are indicated with an X, and the model predictions with green curves instead of blue,
since ξ0 and ξ2 cross on small scales. The varying parameters took best-fitting values fσ 8 = 0.452, Mmin = 1013.011 h−1 M⊙, Mcut = 1013.159 h−1 M⊙, M1 =
1014.068 h−1 M⊙, α = 0.89, σlog10 M = 0.358. This HOD has n̄HOD = 4.23 × 10−4 (h−1 Mpc)−3 and fsat = 10.4 per cent. The best-fitting χ2 values are listed
in the first lower column in Table 4. This best-fitting model is derived by fitting only the first nine bins of wp and ξ̂0,2, but also provides a good fit to ξ0, 2, for
which χ2 = 20.9 for 20 measurement bins. Compared to the best fit with γ HV = 1 (fσ 8 = 0.472), the fit to the quadrupole on large scales is improved. Our
last 1.5 bins overlap with the smallest bins in the large-scale RSD analysis in Reid et al. (2012) and Samushia et al. (2013) and our best-fitting fσ 8 values are
nearly identical.

between the two independent measurements is 1.9σ , which we take
to be reasonable agreement since we have not included a mod-
elling systematics error budget. Despite the dominance of satellite
galaxies on the observed anisotropies (Fig. 13), there is still ample
information on the rate of structure growth on these smaller scales
where the clustering signal is strong and well measured, resulting
in a factor of 2.5 reduction in uncertainty on fσ 8 compared with
our DR11 large-scale RSD analysis. In Fig. 17 we show the the-
oretical prediction from the best-fitting model using the MedRes0
box. In this model, fσ 8 = 0.452 and we have held γ IHV = 1 and
γ cenv = 0 fixed. Compared to the best-fitting model with γ HV = 1
(fσ 8 = 0.472) in Fig. 14, the amplitude of ξ 2 on large scales pro-
vides a better fit to the data. These are the same scales dominating
the Samushia et al. (2013) large-scale RSD measurement of fσ 8; the
last ∼1.5 bins overlap between the analyses. The best-fitting models
as a function of fσ 8 have nearly identical behaviour in the first three
bins s < 3 h−1 Mpc, and divide on larger scales, indicating that the
constraint on fσ 8 is driven by the relative amplitudes of ξ̂0 and ξ̂2.
Fig. 17 also shows that even though the model was fit to wp(rσ <

2 h−1 Mpc) and ξ̂0,2, it provides a good fit to wp out to 25 h−1 Mpc
(χ2 = 12.4 for 18 bins), and correctly models scales below the fibre
collision radius, so that ξ 0, 2 is also fit (χ2 = 20.9 for 20 bins).

7.6 Robustness of the fσ 8 constraint to model extensions

The basic redshift-independent HOD model we are using to fit
the CMASS clustering assumes that the observed galaxies are a
subsample of objects defined by those HOD parameters. We enforce
only a broad prior on n̄HOD from the observed CMASS selection
function n̄(z). However, both intrinsic stochasticity in the stellar
mass–halo mass relation and photometric errors in the imaging
catalogue will broaden the distribution of halo masses hosting the
CMASS sample. In order to test our sensitivity to the allowed host
halo mass scatter, we refit our measurements with the n̄HOD prior
shifted to higher values: 4.25 < 104n̄HOD(h−1 Mpc)3 < 4.75. The
results of fits that fix or vary fσ 8 are labelled in Table 4 as ‘high
n̄HOD’. This choice is similar to relaxing our assumption that Ncen(M)
in equation (17) approaches one at large halo masses. Indeed, we

find that this region of HOD parameter space provides a better fit
to the observed clustering (&χ2 ∼ 4). There are small (expected)
shifts in the HOD parameters with the higher n̄HOD prior; most
importantly for our conclusions in this work, the constraint on fσ 8

shifts by only ∼0.5σ . If we completely remove the n̄ prior, the
HOD is limited to 104n̄HOD(h−1 Mpc)3 < 6 as σlog10 M approaches
0, which is an unphysical limit of noisy target selection producing
a precise mass cut in central galaxy host mass. Given our HOD
parametrization, models with higher number density are unable to
generate sufficiently large clustering. Even in this unrealistic case,
the fσ 8 shifts upward compared to our fiducial value by only 1σ .

Both the colour selection and photometric errors in the imaging
used for target selection could result in haloes where the central
galaxy does not pass our target selection cuts, while one or more
satellite galaxies in that halo do pass. To test the impact of such
cases (labelled ‘cen/sat’ test in Table 4), we consider the drastic
case where 20 per cent of centrals in massive haloes are not CMASS
selected galaxies, implemented in our model by simply multiplying
Ncen(M) by 0.8. In contrast to the rest of our analyses, in this test
we do not require a central galaxy in order for a particular halo to
host a satellite galaxy, thus lowering the contribution of ‘one-halo’
central-satellite pairs at fixed HOD parameters. This model provides
a much better fit than our fiducial HOD assumptions (&χ2 = 10.2).
The satellite fraction is larger, n̄HOD in the model moves closer to
the typical n̄ in the sample, and the satellite occupation distribution
steepens. In future work, we hope to explore such model extensions
more generally in concert with a better understanding of the impact
of photometric errors on targeting, as well as redshift evolution
and intrinsic diversity in the CMASS galaxy population. Again, the
important result for this work is that a plausible extension of our
halo occupation modelling can improve the fit, but the constraint on
fσ 8 shifts only slightly.

Next we consider the impact of varying the galaxy intrahalo
velocities through the parameters γ IHV and γ cenv defined in Sec-
tion 6.3. Their impact on the ξ̂0,2 observable is shown in Fig. 18,
holding the HOD parameters fixed to the best-fitting values for
γ HV = γ IHV = 1.0 and γ cenv = 0. Increasing the intrahalo velocity
dispersion lowers the number of pairs at small s separations, while
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Subhalo Abundance Matching (SHAM)

§1. Introduction 8

✦ The Subhalo Abundance Matching (SHAM) 
   “a brighter galaxy tends to be hosted by a more massive (sub)halo”  
 
   

e.g. Kravtsov et al. (2004) etc

Reddick et al. (2013)
✦ Typical mass history of subhalos

The Astrophysical Journal, 771:30 (32pp), 2013 July 1 Reddick et al.

properties used in the literature. For completeness, we consider
a range of possible choices for the halo properties, and evaluate
their consistency with data.

1. M0. This is the simplest form of abundance matching, us-
ing only the masses of halos (or subhalos) at the present
time. Note that the mass of a subhalo is not measured
out to the subhalo’s virial radius; the subhalos identified
by Rockstar include all particles that are bound to the
subhalo (see Behroozi et al. 2013b for further details). Be-
cause the subhalos’ dark matter is more readily stripped
than the galaxies hosted at their centers, the M0 approach
generally underestimates satellite stellar masses (or lumi-
nosities) (Behroozi et al. 2013a).

2. Macc: the mass of halos at accretion, or infall. For (distinct)
halos, this is the mass at the present time, the same as M0.
For subhalos, this is the mass of the halo when it crosses the
virial radius of its host, and is generally greater than M0.
This boosts the stellar mass of satellites relative to centrals
of the same M0.

3. Mpeak: the maximum mass that the halo (or subhalo) has
ever had in its merger history. This mass is nearly the same
as M0 for isolated halos, but may be significantly greater
for subhalos than either their present mass or their mass
at infall, as some fraction of halos will be stripped prior
to accretion. Behroozi et al. (2013a) have found that most
subhalos start being stripped at ∼ 3 Rvir, regardless of host
mass.

4. M0,peak. For isolated halos, this is equal to M0; for subhalos,
it is equal to Mpeak.

5. vmax. Similar to M0, vmax is the maximum circular velocity
of a halo (or subhalo) at the present time. This model
generally suffers from the same difficulties as M0, having
too few satellite galaxies with a given stellar mass.

6. vacc. As with to Macc, vacc is the maximum circular velocity
of a halo at the present time (equivalent to vmax for isolated
galaxies), or at the time of infall. As with M0, this boosts
the stellar mass of satellites over that when using vmax,
increasing the satellite fraction at a given stellar mass.

7. vpeak. Similar to Mpeak, vpeak is the highest circular velocity a
halo has had over its entire merger history. This is generally
slightly greater than vmax or vacc for isolated halos and
significantly greater than either vmax or vacc for subhalos.

8. v0,peak. Similar to M0,peak, v0,peak assigns the halos their
present maximum circular velocity, and the subhalos their
peak circular velocity. Because v0,peak has the largest
difference between (distinct) halos and subhalos, this is
the model with the most massive satellite galaxies, and
consequently the highest satellite fractions.

A comparison of how the properties we discuss here change for
a single halo can be seen in Figure 1.

Additionally, there is a significant difference between the
vmax- and M0-based matching. In particular, a direct comparison
between vpeak and Mpeak shows that at fixed Mpeak, subhalos
tend to have slightly higher peak vmax (by as much as ∼7%; see
Figure 2). This may be due to a combination of two factors. One
is that less concentrated subhalos may be more easily disrupted,
and less likely to survive to be included in the sample. An
alternative is halo assembly bias (e.g., Wechsler 2001; Gao
& White 2007; Wechsler et al. 2006). In this case, smaller
halos that formed earlier and in lower-density regions, prior to
accretion, tend to have higher concentrations. This alternative
is plausible, as it has been demonstrated in Guo et al. (2011)
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Figure 1. Top: evolution of various halo properties with scalefactor a, for a
single central galaxy, whose host halo has a mass of 3.7 × 1013 at z = 0.
Note that the distinct halo has no mass loss, so M0 = Macc = Mpeak = M0,peak.
Further, vmax = vacc = v0,peak by definition. Only when vmax drops significantly
following a merger (due to the drop in concentration) does vpeak deviate from
vmax. Bottom: the same plot, but for a galaxy which is a satellite at z = 0,
with a present mass of 1.2 × 1012 in a host of mass 3.1 × 1013. The satellite
is accreted at around a = 0.85. Prior to this time, it is a central halo with
the same general properties as in the top plot. After accretion, however, vacc is
fixed, and v0,peak = vpeak. Because the halo starts being stripped here as well,
M0 is no longer the same as the other mass measures; the rest, however, remain
identical. The jumps at a = 0.95 are associated with a merger event between
this particular subhalo and another subhalo.
(A color version of this figure is available in the online journal.)

and Rodrı́guez-Puebla et al. (2012) that satellite galaxies tend
to have slightly more stellar mass than central galaxies with the
same (sub)halo mass. This difference is most significant in less
massive host halos. A test using a lower-resolution simulation
(the Consuelo simulation discussed in Appendix B) recovers the
same difference in vpeak between halos and subhalos, suggesting
that this difference is not likely due to resolution issues.

The impact of changing the abundance matching parameter is
discussed in Section 5.1. Conroy et al. (2006) considered the use
of vmax and vacc, concluding that vacc was able to reproduce the
two-point correlation function, but vmax was not. Most related
studies have used one of these two properties.

To perform abundance matching, we use the SMF of the rel-
evant galaxy sample as input. Because the conditional mass and
luminosity functions are sensitive to this input, for consistency
with the group catalog, we use the exact SMF of galaxies in the
corresponding volume-limited sample to perform the abundance

4

✦ works very well in hydro sim.

host

sub

6 Chaves-Montero et al.

Figure 2. Relation between Mstar of EAGLE galaxies and SHAM
flavours for the corresponding DMO subhaloes. The grey scale rep-
resents the number of subhaloes per pixel, which ranges from 1
(light grey) to 100 (black). Blue and red contours mark the regions
containing 68% and 95% of the distribution, respectively.

Table 3. Parameters of the functions that fit the mean, µ, and
standard deviation, σ, of the model for P (log10 Mstar| log10 Vi).

σ = a+ b log10 Vi µ = a+ b tan−1(c+ d log10 Vi)
a b a b c d

Vmax 0.60 -0.20 7.03 5.52 -1.84 1.12
Vinfall 0.53 -0.16 7.01 5.52 -1.84 1.12
Vpeak 0.55 -0.16 7.70 5.42 -1.89 1.05
Vrelax 0.59 -0.20 7.14 5.55 -1.86 1.10

We now take a first look at the performance of each SHAM
flavour. Fig. 2 shows the relation between each of the four
properties described above for DMO subhaloes, as indicated
by the legend, and Mstar of their galaxy counterpart in EA-
GLE (see §2.3). All panels show a tight correlation, which
supports the main assumption of SHAM, that the relation
between stellar mass and SHAM parameters should be mono-
tonic. However, the scatter in the relation is different in each
panel because of the effects discussed in this section: Vmax

shows the largest and Vrelax the smallest dispersion. In the
next sections we will quantify the performance of each SHAM
flavour in detail.

3.2 Implementation

The first step to implement the four flavours of SHAM is to
compute P (log10 Mstar| log10 Vi): the probability that a sub-
halo hosts a galaxy of mass Mstar given a certain value of the
SHAM flavour Vi. We compute this quantity as follows:

1) We select subhalo-galaxy pairs from the matched cata-
logues (see §2.3) with log10(Mstar[M⊙]) > 7 and divide them

Figure 3. Standard deviation (top panel) and mean (bottom
panel) of the Gaussians used to fit PDFs for log10 Mstar[M⊙]. For
clarity, we have shifted the σ (µ) of Vmax, Vinfall, and Vpeak by
+0.3, +0.2, and +0.1 (+3, +2, and +1), respectively. The best fit-
ting functions are shown by coloured lines, and the values of the
respective parameters are given in Table 3.

according to log10 Vi in bins of 0.05 dex. We discard bins with
fewer than 100 objects.
2) For each log10 Vi bin, we compute the distribution of

log10 Mstar and fit it by a Gaussian function, G, with mean
µ and dispersion σ.
3) We fit a linear function (σ = a+ b log10 Vi) to σ(log10 Vi)

and an arctangent [µ = a + b tan−1(c + d log10 Vi)] to
µ(log10 Vi). The values of the best-fit parameters are given
in Table 3 and the quality of the fit can be judged from Fig.
3.
4) Using these functions, we model P (log10 Mstar| log10 Vi)

as G[µ(log10 Vi),σ(log10 Vi)], where G is a normally dis-
tributed random variable.

Our second step is to assign a value of Mstar to every sub-
halo in DMO (not only those with an EAGLE counterpart)
by randomly sampling P (log10 Mstar| log10 Vi). This creates a
catalogue that captures the appropiate stochastic relation be-
tween Mstar and the parameter Vi. If the relation for EAGLE
galaxies were also stochastic with respect to the underlying
density field, then we would expect these catalogues to have
the same clustering properties as EAGLE.

We note we have verified that the resulting stellar mass
function agrees closely with that of the EAGLE simulation.
However, to ensure identical mass functions and thus to make
subsequent comparisons more direct, we assign to SHAM
galaxies the value of Mstar of the EAGLE galaxy at the same
rank order position. Hereafter, we will refer generically to the
catalogues created in this way as “SHAM galaxies” and to the

c⃝ 0000 RAS, MNRAS 000, 000–000

EAGLE    Chaves-Montero et al. (2015)



Stellar-to-Halo Mass Relation (SHMR)

§1. Introduction 9

✦ A simple model

What Shapes the Luminosity Function of Galaxies? 5

consistent with constraints from Big Bang nucleosynthe-
sis (O’Meara et al. 2001). We assume a ΛCDM universe
with mean matter density Ω0 = 0.3, cosmological constant
term ΩΛ = 0.7, Hubble constant2 H0 = 70km s−1 Mpc−1

and linear fluctuation amplitude on spheres of radius 8h−1

Mpc, σ8 = 0.9. Of these parameters, the uncertainty in the
value of σ8 has most impact on the model results. While
several studies support a value of σ8 ∼ 0.9 (e.g., Bacon et
al. (2002), Hoekstra et al. (2002) [gravitational lensing];
Eke, Cole & Frenk (1996), Vianna et al. (2002) [cluster
abundance]; Spergel et al. (2003) [cosmic microwave back-
ground (CMB)]; Sievers et al. (2003) [Sunyaev-Zeldovich
effect]), other recent analyses have suggested lower val-
ues, σ8 ∼ 0.7 (e.g., Peacock (2003) [large scale structure];
Melchiori et al. (2002) [CMB]; Jarvis et al. (2003) [grav-
itational lensing]; Allen et al. (2003), Smith et al. (2003)
[cluster abundance]). A discussion of recent results may
be found in Wang et al. (2003). Except where specified, we
show models based on σ8 = 0.9; however, (as we shall see)
taking the lower value, σ8 = 0.7, considerably eases the
energy budget and/or reduces the conduction efficiency re-
quired to match the galaxy luminosity function. Through-
out, we use the halo mass function derived from N-body
simulations by Jenkins et al. (2001)3, instead of the Press-
Schechter mass function used by Cole et al. (2000).

Fig. 1.— The K-band luminosity function of galaxies. The points
show the observational determinations of Cole et al. (2001, circles),
Kochanek et al. (2001, squares) and Huang et al. (2002, z < 0.1,
stars). Lines show model results. Model 1 (dashed line) shows the
result of converting the dark matter halo mass function into a galaxy
luminosity function by assuming a fixed mass-to-light ratio chosen
to match the knee of the luminosity function. Model 2 (dotted line)
shows the result from galform when no feedback, photoionization
suppression, galaxy merging or conduction are included. Models 3
and 4 (long dashed and solid lines respectively) show the effects of
adding photoionization and then galaxy merging.

We compare our model with recent determinations of

the K-band luminosity function assuming a Kennicutt stel-
lar initial mass function (Kennicutt 1983). In order to
facilitate comparison between models, we have kept the
IMF fixed, and assumed a negligible fraction of brown
dwarf stars4. We choose the K-band in order to mini-
mize the sensitivity of our results to recent star formation
and to dust obscuration. The model of Cole et al. (2000)
includes a detailed and fully self-consistent calculation of
dust extinction which is used in this work. We find, how-
ever, that dust-obscuration has a negligible effect on our
results for the K-band luminosity function (typically shift-
ing the bright end faintwards by less than one tenth of a
magnitude.) For the observational comparison, we use the
local K-band luminosity functions measured by Cole et
al. (2001) and Kochanek et al. (2001) (both based on the
2MASS survey) and the local (z < 0.1) luminosity function
derived from the much deeper K-band survey of Huang et
al. (2002). The analysis by Huang et al. suggests a faint-
end slope (αK = −1.37 ± 0.10), steeper than the values
found by Cole et al (αK = −0.93) and by Kochaneck et al.
(αK = −1.09). These latter two are also in good agreement
with the faint end slope of the z-band luminosity function
measured by Blanton et al. (αz = −1.08) from the SDSS
survey. The z-band data should also be little affected by
residual star formation and dust extinction, but have a
deeper surface brightness limit. These discrepancies indi-
cate that there remain significant systematic uncertainties
in current measurements of the faint end of the K-band
luminosity function, perhaps due to luminosity from low-
surface brightness regions of galaxies being missed as re-
cently suggested by Andreon (2002).

3.1. A Model with constant mass-to-light ratio

In Fig. 1 we show the simplest possible model of the
luminosity function which we call Model 1 (shown as the
dashed line). In this model, the mass function of dark
matter halos (Jenkins et al. 2001) has been converted into
a luminosity function simply by assuming a fixed mass-to-
light ratio (M/LK = 11M⊙/LK,⊙), chosen so as to match
the knee of the observed luminosity function. As is well
known, this produces a luminosity function which is much
steeper at the faint end than is observed, and also fails to
cut off at bright magnitudes (the halo mass function does
possess a cut-off, but it occurs at much higher mass and
lower abundance than shown in the plot).

3.2. Model including Cooling only

White & Rees (1978) argued that the difference between
the halo mass and the galaxy luminosity functions is due
to the dependence of the gas cooling time on halo mass and
to feedback processes. We use the galform semi-analytic
model to follow gas cooling and star formation in a merging
hierarchy of dark matter halos in the ΛCDM cosmology. In
order to illustrate the simplest possible model first, we do
not include photoionization suppression, feedback, galaxy
merging or conduction. The result is Model 2 (shown as
a dotted line in Fig. 1). It clearly displays the “overcool-

2 Here and below h denotes the Hubble constant in units of 100km s−1 Mpc−1

3 Note that we use the Jenkins et al. (2001) mass function to compute the abundances of halos at z = 0, but retain the Press-Schechter
approximation when computing halo merger trees. An improved calculation would use a self-consistent computation of halo merging histories.
4 We set Υ = 1 in the notation of Cole et al. (2000)
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Figure 10. The best-fit M⋆ − Mh relationship for central galaxies, shown in the black shaded area (total-error based 68% confidence
limits), compared with a number of results from the literature at similar redshifts. The results shown here represent the mean stellar
mass at fixed halo mass or halo-mass proxy (X-ray temperature or satellite kinematics), ⟨M⋆|Mh⟩, but plotted Mh as function of M⋆ to
ease the comparison with the literature. We perform appropriate halo mass conversions and IMF stellar mass corrections when required.
The length of the grey arrow in the bottom right corner shows the shift (∼ 0.2 dex) measured from the direct comparison between stellar
masses used in Leauthaud et al. (2012) and George et al. (2011), compared to those in Ilbert et al. (2010) which were estimated in a
similar way to this study. The error bar on the bottom-right corner indicates the typical systematic uncertainty arising from the model.

among widely-used ΛCDM models, the fine-tuning of our
dust extinction law modelling, and potential biases in the
photometry/calibration. We recall that this list of system-
atic uncertainties is not exhaustive and, for example, ignores
the choice of SPS models, which may be responsible for even
larger systematic effects. An estimate of the systematic er-
rors from the model, as detailed in Section 4.5, is also shown
in the bottom-right corner.

Behroozi et al. (2013), shown as the light-blue shaded
area, put constraints on the M⋆ −Mh relationship by popu-
lating dark matter halos in simulations and comparing abun-
dances using observed stellar mass functions from a number
of surveys. They characterised the uncertainties affecting
stellar mass estimates by accounting for a number of system-
atic errors. In particular, unlike in our systematic errors, the
authors had to include uncertainties arising from the choice
of the IMF and the SPS galaxy templates, necessary when
combining the stellar mass functions from several works us-
ing different stellar mass measurement methods. Here we
consider their results at z ∼ 1. A significant difference with
our model resides in the assumption that satellite galaxies
in larger halos are seen as central galaxies in sub-halos. To
circumvent the difficulty of accurately predicting a sub-halo

mass function (e.g. complications from tidal stripping), the
galaxies in sub-halos at the time of interest are matched to
their progenitors at the time of merging onto the central
galaxy halo, under the assumption that the M⋆−Mh evolu-
tion at a given stellar mass is identical whether the host halo
is isolated or inside a larger halo. In comparison, our model
is a “snapshot” of the galaxy halo occupation at a given
time, where the satellite distribution is mainly constrained
by galaxy clustering.

The results from Leauthaud et al. (2012) in COSMOS
are shown in brown and green at redshifts z ∼ 0.6 and
z ∼ 0.9, respectively. We observe a small discrepancy which,
compared to our results, is unlikely to be explained by dif-
ferences in the modelling of the HOD (since the model is
essentially identical), nor the sample variance as confidence
limits do not overlap. A difference in stellar mass estimates
on the other hand is more likely to be at the origin of the
discrepancy. To check this hypothesis, we have compared
the stellar mass estimates from Ilbert et al. (2010), which
were measured in a similar way to this study, with those
used in Leauthaud et al. (2012) with the method described
in Bundy et al. (2006). We measured an offset of ∼ 0.2 dex,
illustrated in Fig. 10 as the grey arrow. Part of the difference
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Figure 10. SHMR evolution. Left panel: fit to our SHMR results. We fit our estimated SHMR (the colored circles) with the z ∼ 0
SHMR function (the gray solid curve) of Behroozi et al. (2013) varying the pivot mass, Mpivot, and the SHMR amplitude at the pivot
mass, SHMRpivot. Green curve represents the best-fit SHMR function of z ∼ 5. Blue, orange, and red solid (dashed) curves describe the
best-fit SHMR function of z ∼ 4, 6, and 7, respectively, in the Mpivot-fixed (SHMRpivot-fixed) case. We only plot curves in the region
where the data exist. The details of the fitting are presented in Section 6.2. Right panel: error contour of Mpivot and SHMRpivot. Green
contour represents the error contour of Mpivot and SHMRpivot at z ∼ 5. Three lines in the contour denote the 1.0, 1.5 and 2.0σ confidence
levels from the center to the outsides, respectively. The green cross in the contours represents the best-fit values of Mpivot and SHMRpivot

at z ∼ 5. Gray cross shows the values of Mpivot and SHMRpivot at z ∼ 0 of Behroozi et al. (2013).

Figure 11. SHMR as a function of the circular velocity at z ∼ 4,
5, 6, and 7. Blue, green, orange, and red circles represent the
SHMR of our subsample of z ∼ 4, 5, 6, and 7, respectively. Gray
solid curve is the SHMR of Behroozi et al. (2013) at z ∼ 0 as a
function of the circular velocity.

Harikane, SS (2015)
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consistent with constraints from Big Bang nucleosynthe-
sis (O’Meara et al. 2001). We assume a ΛCDM universe
with mean matter density Ω0 = 0.3, cosmological constant
term ΩΛ = 0.7, Hubble constant2 H0 = 70km s−1 Mpc−1

and linear fluctuation amplitude on spheres of radius 8h−1

Mpc, σ8 = 0.9. Of these parameters, the uncertainty in the
value of σ8 has most impact on the model results. While
several studies support a value of σ8 ∼ 0.9 (e.g., Bacon et
al. (2002), Hoekstra et al. (2002) [gravitational lensing];
Eke, Cole & Frenk (1996), Vianna et al. (2002) [cluster
abundance]; Spergel et al. (2003) [cosmic microwave back-
ground (CMB)]; Sievers et al. (2003) [Sunyaev-Zeldovich
effect]), other recent analyses have suggested lower val-
ues, σ8 ∼ 0.7 (e.g., Peacock (2003) [large scale structure];
Melchiori et al. (2002) [CMB]; Jarvis et al. (2003) [grav-
itational lensing]; Allen et al. (2003), Smith et al. (2003)
[cluster abundance]). A discussion of recent results may
be found in Wang et al. (2003). Except where specified, we
show models based on σ8 = 0.9; however, (as we shall see)
taking the lower value, σ8 = 0.7, considerably eases the
energy budget and/or reduces the conduction efficiency re-
quired to match the galaxy luminosity function. Through-
out, we use the halo mass function derived from N-body
simulations by Jenkins et al. (2001)3, instead of the Press-
Schechter mass function used by Cole et al. (2000).

Fig. 1.— The K-band luminosity function of galaxies. The points
show the observational determinations of Cole et al. (2001, circles),
Kochanek et al. (2001, squares) and Huang et al. (2002, z < 0.1,
stars). Lines show model results. Model 1 (dashed line) shows the
result of converting the dark matter halo mass function into a galaxy
luminosity function by assuming a fixed mass-to-light ratio chosen
to match the knee of the luminosity function. Model 2 (dotted line)
shows the result from galform when no feedback, photoionization
suppression, galaxy merging or conduction are included. Models 3
and 4 (long dashed and solid lines respectively) show the effects of
adding photoionization and then galaxy merging.

We compare our model with recent determinations of

the K-band luminosity function assuming a Kennicutt stel-
lar initial mass function (Kennicutt 1983). In order to
facilitate comparison between models, we have kept the
IMF fixed, and assumed a negligible fraction of brown
dwarf stars4. We choose the K-band in order to mini-
mize the sensitivity of our results to recent star formation
and to dust obscuration. The model of Cole et al. (2000)
includes a detailed and fully self-consistent calculation of
dust extinction which is used in this work. We find, how-
ever, that dust-obscuration has a negligible effect on our
results for the K-band luminosity function (typically shift-
ing the bright end faintwards by less than one tenth of a
magnitude.) For the observational comparison, we use the
local K-band luminosity functions measured by Cole et
al. (2001) and Kochanek et al. (2001) (both based on the
2MASS survey) and the local (z < 0.1) luminosity function
derived from the much deeper K-band survey of Huang et
al. (2002). The analysis by Huang et al. suggests a faint-
end slope (αK = −1.37 ± 0.10), steeper than the values
found by Cole et al (αK = −0.93) and by Kochaneck et al.
(αK = −1.09). These latter two are also in good agreement
with the faint end slope of the z-band luminosity function
measured by Blanton et al. (αz = −1.08) from the SDSS
survey. The z-band data should also be little affected by
residual star formation and dust extinction, but have a
deeper surface brightness limit. These discrepancies indi-
cate that there remain significant systematic uncertainties
in current measurements of the faint end of the K-band
luminosity function, perhaps due to luminosity from low-
surface brightness regions of galaxies being missed as re-
cently suggested by Andreon (2002).

3.1. A Model with constant mass-to-light ratio

In Fig. 1 we show the simplest possible model of the
luminosity function which we call Model 1 (shown as the
dashed line). In this model, the mass function of dark
matter halos (Jenkins et al. 2001) has been converted into
a luminosity function simply by assuming a fixed mass-to-
light ratio (M/LK = 11M⊙/LK,⊙), chosen so as to match
the knee of the observed luminosity function. As is well
known, this produces a luminosity function which is much
steeper at the faint end than is observed, and also fails to
cut off at bright magnitudes (the halo mass function does
possess a cut-off, but it occurs at much higher mass and
lower abundance than shown in the plot).

3.2. Model including Cooling only

White & Rees (1978) argued that the difference between
the halo mass and the galaxy luminosity functions is due
to the dependence of the gas cooling time on halo mass and
to feedback processes. We use the galform semi-analytic
model to follow gas cooling and star formation in a merging
hierarchy of dark matter halos in the ΛCDM cosmology. In
order to illustrate the simplest possible model first, we do
not include photoionization suppression, feedback, galaxy
merging or conduction. The result is Model 2 (shown as
a dotted line in Fig. 1). It clearly displays the “overcool-

2 Here and below h denotes the Hubble constant in units of 100km s−1 Mpc−1

3 Note that we use the Jenkins et al. (2001) mass function to compute the abundances of halos at z = 0, but retain the Press-Schechter
approximation when computing halo merger trees. An improved calculation would use a self-consistent computation of halo merging histories.
4 We set Υ = 1 in the notation of Cole et al. (2000)
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Figure 10. The best-fit M⋆ − Mh relationship for central galaxies, shown in the black shaded area (total-error based 68% confidence
limits), compared with a number of results from the literature at similar redshifts. The results shown here represent the mean stellar
mass at fixed halo mass or halo-mass proxy (X-ray temperature or satellite kinematics), ⟨M⋆|Mh⟩, but plotted Mh as function of M⋆ to
ease the comparison with the literature. We perform appropriate halo mass conversions and IMF stellar mass corrections when required.
The length of the grey arrow in the bottom right corner shows the shift (∼ 0.2 dex) measured from the direct comparison between stellar
masses used in Leauthaud et al. (2012) and George et al. (2011), compared to those in Ilbert et al. (2010) which were estimated in a
similar way to this study. The error bar on the bottom-right corner indicates the typical systematic uncertainty arising from the model.

among widely-used ΛCDM models, the fine-tuning of our
dust extinction law modelling, and potential biases in the
photometry/calibration. We recall that this list of system-
atic uncertainties is not exhaustive and, for example, ignores
the choice of SPS models, which may be responsible for even
larger systematic effects. An estimate of the systematic er-
rors from the model, as detailed in Section 4.5, is also shown
in the bottom-right corner.

Behroozi et al. (2013), shown as the light-blue shaded
area, put constraints on the M⋆ −Mh relationship by popu-
lating dark matter halos in simulations and comparing abun-
dances using observed stellar mass functions from a number
of surveys. They characterised the uncertainties affecting
stellar mass estimates by accounting for a number of system-
atic errors. In particular, unlike in our systematic errors, the
authors had to include uncertainties arising from the choice
of the IMF and the SPS galaxy templates, necessary when
combining the stellar mass functions from several works us-
ing different stellar mass measurement methods. Here we
consider their results at z ∼ 1. A significant difference with
our model resides in the assumption that satellite galaxies
in larger halos are seen as central galaxies in sub-halos. To
circumvent the difficulty of accurately predicting a sub-halo

mass function (e.g. complications from tidal stripping), the
galaxies in sub-halos at the time of interest are matched to
their progenitors at the time of merging onto the central
galaxy halo, under the assumption that the M⋆−Mh evolu-
tion at a given stellar mass is identical whether the host halo
is isolated or inside a larger halo. In comparison, our model
is a “snapshot” of the galaxy halo occupation at a given
time, where the satellite distribution is mainly constrained
by galaxy clustering.

The results from Leauthaud et al. (2012) in COSMOS
are shown in brown and green at redshifts z ∼ 0.6 and
z ∼ 0.9, respectively. We observe a small discrepancy which,
compared to our results, is unlikely to be explained by dif-
ferences in the modelling of the HOD (since the model is
essentially identical), nor the sample variance as confidence
limits do not overlap. A difference in stellar mass estimates
on the other hand is more likely to be at the origin of the
discrepancy. To check this hypothesis, we have compared
the stellar mass estimates from Ilbert et al. (2010), which
were measured in a similar way to this study, with those
used in Leauthaud et al. (2012) with the method described
in Bundy et al. (2006). We measured an offset of ∼ 0.2 dex,
illustrated in Fig. 10 as the grey arrow. Part of the difference
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Figure 10. SHMR evolution. Left panel: fit to our SHMR results. We fit our estimated SHMR (the colored circles) with the z ∼ 0
SHMR function (the gray solid curve) of Behroozi et al. (2013) varying the pivot mass, Mpivot, and the SHMR amplitude at the pivot
mass, SHMRpivot. Green curve represents the best-fit SHMR function of z ∼ 5. Blue, orange, and red solid (dashed) curves describe the
best-fit SHMR function of z ∼ 4, 6, and 7, respectively, in the Mpivot-fixed (SHMRpivot-fixed) case. We only plot curves in the region
where the data exist. The details of the fitting are presented in Section 6.2. Right panel: error contour of Mpivot and SHMRpivot. Green
contour represents the error contour of Mpivot and SHMRpivot at z ∼ 5. Three lines in the contour denote the 1.0, 1.5 and 2.0σ confidence
levels from the center to the outsides, respectively. The green cross in the contours represents the best-fit values of Mpivot and SHMRpivot

at z ∼ 5. Gray cross shows the values of Mpivot and SHMRpivot at z ∼ 0 of Behroozi et al. (2013).

Figure 11. SHMR as a function of the circular velocity at z ∼ 4,
5, 6, and 7. Blue, green, orange, and red circles represent the
SHMR of our subsample of z ∼ 4, 5, 6, and 7, respectively. Gray
solid curve is the SHMR of Behroozi et al. (2013) at z ∼ 0 as a
function of the circular velocity.

Harikane, SS (2015)
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The BOSS CMASS sample
✦ The Baryon Oscillation Spectroscopic Survey (BOSS) 
    - a part of SDSS-III (2009-2014)  
    - Two main cosmological samples:  
       LOWZ (z~0.32) & CMASS (z~0.57)

✦ CMASS : “Constant Stellar Mass” sample 

   - redshift range: 0.43 < z < 0.70 

   - DR12: 836,347 galaxies over 10,252 deg2  

   - designed to be complete at   

   - not all dead and red 

         - ~25% has a SF disk 

         - ~37% belongs to an intrinsically blue cloud

Maraston et al. (2013)

Eisenstein et al. (2011)

Masters et al. (2011)
SF disks

Montero-Dorta et al. (2014)

BAO in SDSS-III BOSS galaxies 3

III data release (DR12). The DR10 data set, comprised of obser-68

vations through June 2012, is already public (Ahn et al. 2013).69

We provide the DR10 large scale structure samples, including the70

masks, weights, and random catalogs needed for clustering anal-71

yses, through the SDSS-III Science Archive Server. To facilitate72

community comparisons to our results, in this paper we also present73

several of our key analyses for the DR10 subset of our data sample.74

Five companion papers present extensions to the methodol-75

ogy, testing, or data sets beyond those applied previously to the76

DR9 data:77

(i) Ross et al. (2013) split the DR10 CMASS sample into red78

and blue galaxies, showing that consistent cosmological measure-79

ments result from both data sets.80

(ii) Vargas-Magana et al. (2013) investigates the different pos-81

sible systematics in the anisotropic fitting methodologies, showing82

that we achieve unbiased results with fiducial fitting methodology.83

(iii) Manera et al. (2013b) describes the production of mock cat-84

alogues, used here to determine errors and test our analysis meth-85

ods.86

(iv) Percival et al. (2013) presents a method to propagate errors87

in the covariance matrices determined from the mocks through to88

errors on the final measurements.89

(v) Tojeiro et al. (2014) presents measurements made at z =90

0.32 from the low-redshift “LOWZ” BOSS sample of galaxies91

which we now include in our constraints.92

We also have produced a series of companion papers present-93

ing complementary cosmological measurements from the DR1094

and DR11 data:95

(i) Beutler et al. (2013) presents a fit to the CMASS power spec-96

trum monopole and quadrupole, measuring Redshift-Space Distor-97

tions (RSD).98

(ii) Samushia et al. (2013) fits the CMASS correlation function99

monopole and quadrupole, measuring Redshift-Space Distortions100

(RSD) using a streaming model.101

(iii) Chuang et al. (2013b) fits CMASS correlation function102

monopole and quadrupole using qausi-linear scales (e.g. above 50103

Mpc/h) to extract single-probe measurements. For LOWZ sample,104

they include smaller scales with Finger of God modeling.105

(iv) Sánchez et al. (2013b) fits CMASS correlation function106

wedges with a renormalised perturbation theory model.107

The layout of this paper is as follows. We introduce the data108

and the catalogue in the next section. The catalogue construction109

is similar to that described in Anderson et al. (2012) for DR9,110

and so we focus primarily on the differences and improvements in111

Section 3. We present the analysis methods for our isotropic and112

anisotropic measurements in Sections 4 and 5, respectively. We113

then present the isotropic results in Section 6 and the anisotropic114

results in Section 7. Our systematic error assessment and final dis-115

tance measurements are presented in Section 8 and these measure-116

ments are placed in a cosmological context in Section 9. We con-117

clude in Section 10.118

Throughout the paper we assume a fiducial ⇤CDM+GR, flat119

cosmological model with ⌦m = 0.274, h = 0.7, ⌦bh
2

= 0.0224,120

ns = 0.95 and �
8

= 0.8, matching that used in Anderson et al.121

(2012, 2013). Note that this model is different from the current122

best-fit cosmology; however these parameters allow us to translate123

angles and redshifts into distances and provide a reference against124

which we measure distances. The BAO measurement allows us to125

constrain changes in the distance scale relative to that predicted by126

this fiducial model.127

2 THE DATA128

2.1 SDSS-III BOSS129

We use data included in data releases 10 (DR10) and 11 (DR11)130

of the Sloan Digital Sky Survey (SDSS; York et al. 2000). To-131

gether, SDSS I, II (Abazajian et al. 2009), and III (Eisenstein et132

al. 2011) used a drift-scanning mosaic CCD camera (Gunn et al.133

1998) to image over one third of the sky (14 055 square degrees)134

in five photometric bandpasses (Fukugita et al. 1996; Smith et al.135

2002; Doi et al. 2010) to a limiting magnitude of r ' 22.5 us-136

ing the dedicated 2.5-m Sloan Telescope (Gunn et al. 2006) located137

at Apache Point Observatory in New Mexico. The imaging data138

were processed through a series of pipelines that perform astromet-139

ric calibration (Pier et al. 2003), photometric reduction (Lupton et140

al. 2001), and photometric calibration. All of the imaging was re-141

processed as part of SDSS Data Release 8 (Aihara et al. 2011).142

BOSS is designed to obtain spectra and redshifts for 1.35 mil-143

lion galaxies over an extragalactic footprint covering 10 000 square144

degrees. These galaxies are selected from the SDSS DR8 imaging145

and are being observed together with 160 000 quasars and approxi-146

mately 100 000 ancillary targets. The targets are assigned to tiles of147

diameter 3� using a tiling algorithm that is adaptive to the density148

of targets on the sky (Blanton et al. 2003). Spectra are obtained us-149

ing the double-armed BOSS spectrographs (Smee et al. 2013). Each150

observation is performed in a series of 900-second exposures, in-151

tegrating until a minimum signal-to-noise ratio is achieved for the152

faint galaxy targets. This ensures a homogeneous data set with a153

high redshift completeness of more than 97 per cent over the full154

survey footprint. Redshifts are extracted from the spectra using the155

methods described in Bolton et al. (2012). A summary of the sur-156

vey design appears in Eisenstein et al. (2011), and a full description157

is provided in Dawson et al. (2012).158

2.2 Galaxy Catalogues159

BOSS selects two classes of galaxies to be targeted for spec-160

troscopy using SDSS DR8 imaging. The ‘LOWZ’ algorithm is de-161

signed to select red galaxies at z < 0.45 from the SDSS DR8162
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Figure 2. Histograms of the galaxy number density as a function of redshift
for LOWZ (red) and CMASS (green) samples we analyse. We also display
the number density of the SDSS-II DR7 LRG sample in order to illustrate
the increase in sample size for BOSS at z < 0.43.
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The BOSS CMASS sample
✦ The Baryon Oscillation Spectroscopic Survey (BOSS) 
    - a part of SDSS-III (2009-2014)  
    - Two main cosmological samples:  
       LOWZ (z~0.32) & CMASS (z~0.57)

✦ CMASS : “Constant Stellar Mass” sample 

   - redshift range: 0.43 < z < 0.70 

   - DR12: 836,347 galaxies over 10,252 deg2  

   - designed to be complete at   

   - not all dead and red 

         - ~25% has a SF disk 

         - ~37% belongs to an intrinsically blue cloud

Maraston et al. (2013)

Eisenstein et al. (2011)

Masters et al. (2011)
SF disks

Montero-Dorta et al. (2014)

BAO in SDSS-III BOSS galaxies 3
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CMASS DR11 (DR12) 
#: 690,827 (777,202) 

Veff: 2.31 (2.74) [(Gpc/h)3]
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- SDSS Co-Adds photometric catalog (~2mag deeper) over 139.4 deg2 

- Combined with UKIDSS NIR bands, obtained more robust M* estimates
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Fig. 14.— Comparison of public BOSS M∗ estimates from Maraston et al. (2013) and Chen et al. (2012) to those presented here (and
labeled “near-IR”). Every panel plots the difference in logM∗ against near-IR M∗ in the left column, and against redshift in the right
column. The 3σ-clipped averages (light grey circles) and 1σ standard deviation (gold lines) of the difference distributions are over-plotted.
Shaded contours with levels separated by 0.3 dex increases in data density are displayed. The comparison is restricted to logM∗/M⊙ > 11.2
for the right-hand panels. Overall normalization differences at the 0.1 dex level are expected. Of greater importance are possible systematic
trends that may confuse evolutionary interpretations. Differences in M∗ estimates display little or no systematic trends with M∗, but
biases, likely resulting from a number of factors, are more apparent as a function of redshift. See text for discussion.
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low z (high z) is dominated by color cut (luminosity cut). 
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S82-MGC SMF

    S82-MGC: best constrain high-mass end,                                    
　　　　        complete at                               

    CMASS ≠ Constant Mass!! redshift-dependent completeness

SS, Leauthaud+ (2015)6 Saito et al.

Fig. 1.— (Left) The total SMF from Stripe 82 (black squares) measured from s82-mcg (139.4 deg2) and the SMF measured using only
CMASS galaxies (magenta squares). Other SMFs determined from smaller area surveys at similar redshifts are also shown. Red, blue, and
green circles show results from PRIMUS (5.5 deg2) at 0.4 < z < 0.5, 0.5 < z < 0.65, and 0.65 < z < 0.8, respectively. Cyan triangles show
one wide redshift bin from the COSMOS survey (1.64 deg2). Our best-fitting double Schechter function for total SMF (see Section 6.1
later) is shown as a solid black curve. (Right) SMFs as a function of redshift measured using only the CMASS sample. As a reference, we
also show the total SMF from the s82-mgc at 0.43 < z < 0.70 and log10(M∗/M⊙) > 10.5. Note that the s82-mgc is complete to roughly
log10(M∗/M⊙) > 11.2. As shown in Leauthaud et al. (in prep), CMASS is only complete in terms of stellar mass at the highest masses
and in a relatively narrow redshift range.

we find a difference in the real-space correlation function
at fixed number density, n ≃ 1.58×10−4(h/Mpc)3, at the
1 - 2 % level at large scales. The largest differences (at
the level of 5%) are seen at the 1-halo to 2-halo regime at
r ! 1Mpc/h (see Appendix. A). This level of evolution
is below our measurement errors but these effects will
need to be taken into account in future work, especially
when the S/N of the measurements increases (currently
we are using DR10 measurements).
We also perform two tests concerning the impact of the

resolution of MDR1 on our results. First, we test if the
subhalo catalog resolves the mass scale required for our
abundance matching. Based on White et al. (2011) and
R14, we estimate that abundance matching for CMASS
will require subhalos with Vpeak ≥ 200 km/s. Our tests
demonstrate that MDR1 resolves halos down toVpeak ∼
150 km/s.
Second, we examine the impact of resolution effects on

the radial profiles of subhalos. Our estimates suggest
that subhalo radial profiles become incomplete at 0.1-
0.7Mpc/h (and depend on the ratio between the peak
velocity of hosts and subhalos). The smallest scale in
our wp measurement is ≈ 0.2Mpc/h and is close to this
incompleteness limit. The impact of resolution on our
results is at least partly counteracted by the boost to the
errors of our measured wp by systematic fiber-collision
correction uncertainties on these scales. We conclude
that the resolution of MDR1 is likely sufficient for our
purpose, but that recently-completed higher resolution
simulations such as Skillman et al. (2014) or Ishiyama
et al. (2014) would be preferable and will be adopted in
subsequent work.

5. METHODOLOGY

Our goal is to find a model of the CMASS-halo connec-
tion which can simultaneously explain the SMF and the
two-point correlation function and which also accounts

for stellar mass completeness of CMASS. This section
explains the details of our methodology. In this paper
we only explore models that reproduce the projected two-
point correlation function of the full CMASS sample over
the redshift range of 0.43 < z < 0.7. In future work we
will explore how well our models match the clustering
of sub-samples (e.g., dividing CMASS by color and red-
shift).

5.1. Overview of Methodology and Models

We begin with a broad overview of our global method-
ology and the two classes of models that we will explore
in this paper. The details of our approach are then pro-
vided in the later half of this section.
Our approach is based on the SHAM framework for

connecting galaxies and dark matter halos (see Section
5.2). Within the context of SHAM, we will then explore
two broad classes of models that relate galaxy color to
halo properties. The first model that we explore is a
“stochastic model” in which at fixed stellar mass, galaxy
color in high mass halos in simply a random process that
does not correlate with halo properties. We will refer
to this model as the “AbM” model. After abundance
matching our mock catalog, we tag CMASS galaxies by
randomly down-sampling the full mock galaxy catalog in
such a way that the mock CMASS SMFs reproduce the
ones measured in Section 3.3. The down-sampling pro-
cedure is described in Section 5.4. Unless an additional
correlation between this CMASS flag and halo properties
is explicitly introduced, this procedure makes the implicit
assumption that at fixed stellar mass, CMASS galaxies
are a random sample of the overall population. However,
Leauthaud et al. (in prep) show that at fixed stellar
mass, CMASS is not a random sample of the overall pop-
ulation in terms of galaxy color. Hence, the abundance
matched catalog that we obtain after the down-sampling
procedure will only correctly represent the true relation
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1 - 2 % level at large scales. The largest differences (at
the level of 5%) are seen at the 1-halo to 2-halo regime at
r ! 1Mpc/h (see Appendix. A). This level of evolution
is below our measurement errors but these effects will
need to be taken into account in future work, especially
when the S/N of the measurements increases (currently
we are using DR10 measurements).
We also perform two tests concerning the impact of the

resolution of MDR1 on our results. First, we test if the
subhalo catalog resolves the mass scale required for our
abundance matching. Based on White et al. (2011) and
R14, we estimate that abundance matching for CMASS
will require subhalos with Vpeak ≥ 200 km/s. Our tests
demonstrate that MDR1 resolves halos down toVpeak ∼
150 km/s.
Second, we examine the impact of resolution effects on

the radial profiles of subhalos. Our estimates suggest
that subhalo radial profiles become incomplete at 0.1-
0.7Mpc/h (and depend on the ratio between the peak
velocity of hosts and subhalos). The smallest scale in
our wp measurement is ≈ 0.2Mpc/h and is close to this
incompleteness limit. The impact of resolution on our
results is at least partly counteracted by the boost to the
errors of our measured wp by systematic fiber-collision
correction uncertainties on these scales. We conclude
that the resolution of MDR1 is likely sufficient for our
purpose, but that recently-completed higher resolution
simulations such as Skillman et al. (2014) or Ishiyama
et al. (2014) would be preferable and will be adopted in
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5. METHODOLOGY

Our goal is to find a model of the CMASS-halo connec-
tion which can simultaneously explain the SMF and the
two-point correlation function and which also accounts

for stellar mass completeness of CMASS. This section
explains the details of our methodology. In this paper
we only explore models that reproduce the projected two-
point correlation function of the full CMASS sample over
the redshift range of 0.43 < z < 0.7. In future work we
will explore how well our models match the clustering
of sub-samples (e.g., dividing CMASS by color and red-
shift).

5.1. Overview of Methodology and Models

We begin with a broad overview of our global method-
ology and the two classes of models that we will explore
in this paper. The details of our approach are then pro-
vided in the later half of this section.
Our approach is based on the SHAM framework for

connecting galaxies and dark matter halos (see Section
5.2). Within the context of SHAM, we will then explore
two broad classes of models that relate galaxy color to
halo properties. The first model that we explore is a
“stochastic model” in which at fixed stellar mass, galaxy
color in high mass halos in simply a random process that
does not correlate with halo properties. We will refer
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matching our mock catalog, we tag CMASS galaxies by
randomly down-sampling the full mock galaxy catalog in
such a way that the mock CMASS SMFs reproduce the
ones measured in Section 3.3. The down-sampling pro-
cedure is described in Section 5.4. Unless an additional
correlation between this CMASS flag and halo properties
is explicitly introduced, this procedure makes the implicit
assumption that at fixed stellar mass, CMASS galaxies
are a random sample of the overall population. However,
Leauthaud et al. (in prep) show that at fixed stellar
mass, CMASS is not a random sample of the overall pop-
ulation in terms of galaxy color. Hence, the abundance
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Fig. 1.— (Left) The total SMF from Stripe 82 (black squares) measured from the 139.4 deg2 s82-mcg catalog and the SMF measured
using only CMASS galaxies (magenta squares). Other SMFs determined from smaller area surveys at similar redshifts are also shown.
Red, blue, and green circles show results from PRIMUS (5.5 deg2) at 0.4 < z < 0.5, 0.5 < z < 0.65, and 0.65 < z < 0.8, respectively. Cyan
triangles show one wide redshift bin from the COSMOS survey (1.64 deg2). As a comparison, our best-fitting double Schechter function
in the AbM model (see Section 6.1 later) is shown as a solid black curve to highlight the incompleteness of the S82-MGC SMF. (Right)
SMFs as a function of redshift measured using only the CMASS sample. As a reference, we also show the total SMF from the s82-mgc at
0.43 < z < 0.70 and M∗ [M⊙] > 10.5 dex. Note that the s82-mgc is complete to roughly M∗ [M⊙] > 11.2 dex. As shown in Leauthaud et
al. (in prep), CMASS is only complete in terms of stellar mass at the highest masses and in a relatively narrow redshift range.

to the fiber-collision correction (see previous section). In
future work, especially when the S/N of the measure-
ments increase (currently we are using DR10 measure-
ments), these effects will need to be taken into account.
We perform two tests concerning the impact of the

resolution of MDR1 on our results. Based on White
et al. (2011) and also R14, we estimate that abun-
dance matching for CMASS will require subhalos with
Vpeak ≥ 200 km/s. Figure 13 shows the histogram of
subhalos as a function of Vpeak. This histogram starts to
deviate from a power law at Vpeak ∼ 200 km/s and has a
clear turnover at Vpeak ∼ 150 km/s. Figure 13 shows that
MDR1 has a sufficient resolution for CMASS, although a
higher resolution would be preferable.
However, Figure 13 does not guarantee that the reso-

lution is good enough to trust our clustering predictions
down to arbitrarily small scales. Our clustering signal
is dominated by central-satellite pairs in the 1-halo term
regime, implying that it is important to study the com-
pleteness of subhalos as a function of distance to their
host-hosts, Rsub. Because the true radial profiles of sub-
halos are still poorly known, it is difficult to precisely
characterize the radius at which incompleteness effects
become important. With this caveat in mind, Behroozi
et al. (2013b) define the radius at which subhalo detec-
tions are incomplete as the radius where the logarithmic
slope of the profile becomes larger than -1.5 (or -1.7).
This cut-off is motivated by the density profiles of ob-
served subhalos in the maxBCG cluster catalog (Tinker
et al. 2011). Figure 14 shows the radial profiles of sub-
halos for different ratios of Vpeak, µsub ≡ V sub

peak/V
host
peak ,

and for three different bins in host halo mass (but di-
vided by Vpeak). In general, this radial profile becomes
gradually shallower at smaller Rsub due to the fact that
density contrast between the parent halo and subhalos
decreases in the inner regions of halos and subhalos be-
come more difficult to detect. Using the Behroozi et al.

(2013b) criterion, we estimate that subhalo detections
become incomplete at 0.1-0.7Mpc/h, depending on µsub
and Mhost, as shown in Figure 15. Note that the small-
est scale in our wp measurement is ≈ 0.2Mpc/h and is
indeed close to the incompleteness limit. We can defi-
nitely improve this situation by using higher resolution
simulations. However, we expect that the impact of the
resolution on our results should be relatively small, since
the errors of our measured wp on these scales are boosted
by systematic uncertainties in the fiber collision correc-
tion. We conclude that the resolution of MDR1 is suf-
ficient for our purpose but higher resolution simulations
such as Skillman et al. (2014) or Ishiyama et al. (2014)
would be preferable and will be adopted in subsequent
work.

5. METHODOLOGY

Our goal is to find a model of the CMASS-halo connec-
tion which can simultaneously explain the SMF and the
two-point correlation function and which also accounts
for stellar mass completeness of CMASS. This section ex-
plains the details of our methodology. Note that in this
paper we only explore models that reproduce the pro-
jected two-point correlation function of the full CMASS
sample over the redshift range of 0.43 < z < 0.7. In
future work we will explore how well our models match
the clustering of sub-samples (e.g., dividing CMASS by
color and redshift).

5.1. Overview of Methodology and Models

We begin with a broad overview of our global method-
ology and the two classes of models that we will explore
in this paper. The details of our approach are then pro-
vided in the later half of this section.
Our approach is based on the subhalo abundance

matching (SHAM) framework for connecting galaxies
and dark matter halos (see Section 5.2). Within the con-
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Fig. 1.— (Left) The total SMF from Stripe 82 (black squares) measured from the 139.4 deg2 s82-mcg catalog and the SMF measured
using only CMASS galaxies (magenta squares). Other SMFs determined from smaller area surveys at similar redshifts are also shown.
Red, blue, and green circles show results from PRIMUS (5.5 deg2) at 0.4 < z < 0.5, 0.5 < z < 0.65, and 0.65 < z < 0.8, respectively. Cyan
triangles show one wide redshift bin from the COSMOS survey (1.64 deg2). As a comparison, our best-fitting double Schechter function
in the AbM model (see Section 6.1 later) is shown as a solid black curve to highlight the incompleteness of the S82-MGC SMF. (Right)
SMFs as a function of redshift measured using only the CMASS sample. As a reference, we also show the total SMF from the s82-mgc at
0.43 < z < 0.70 and M∗ [M⊙] > 10.5 dex. Note that the s82-mgc is complete to roughly M∗ [M⊙] > 11.2 dex. As shown in Leauthaud et
al. (in prep), CMASS is only complete in terms of stellar mass at the highest masses and in a relatively narrow redshift range.

to the fiber-collision correction (see previous section). In
future work, especially when the S/N of the measure-
ments increase (currently we are using DR10 measure-
ments), these effects will need to be taken into account.
We perform two tests concerning the impact of the

resolution of MDR1 on our results. Based on White
et al. (2011) and also R14, we estimate that abun-
dance matching for CMASS will require subhalos with
Vpeak ≥ 200 km/s. Figure 13 shows the histogram of
subhalos as a function of Vpeak. This histogram starts to
deviate from a power law at Vpeak ∼ 200 km/s and has a
clear turnover at Vpeak ∼ 150 km/s. Figure 13 shows that
MDR1 has a sufficient resolution for CMASS, although a
higher resolution would be preferable.
However, Figure 13 does not guarantee that the reso-

lution is good enough to trust our clustering predictions
down to arbitrarily small scales. Our clustering signal
is dominated by central-satellite pairs in the 1-halo term
regime, implying that it is important to study the com-
pleteness of subhalos as a function of distance to their
host-hosts, Rsub. Because the true radial profiles of sub-
halos are still poorly known, it is difficult to precisely
characterize the radius at which incompleteness effects
become important. With this caveat in mind, Behroozi
et al. (2013b) define the radius at which subhalo detec-
tions are incomplete as the radius where the logarithmic
slope of the profile becomes larger than -1.5 (or -1.7).
This cut-off is motivated by the density profiles of ob-
served subhalos in the maxBCG cluster catalog (Tinker
et al. 2011). Figure 14 shows the radial profiles of sub-
halos for different ratios of Vpeak, µsub ≡ V sub

peak/V
host
peak ,

and for three different bins in host halo mass (but di-
vided by Vpeak). In general, this radial profile becomes
gradually shallower at smaller Rsub due to the fact that
density contrast between the parent halo and subhalos
decreases in the inner regions of halos and subhalos be-
come more difficult to detect. Using the Behroozi et al.

(2013b) criterion, we estimate that subhalo detections
become incomplete at 0.1-0.7Mpc/h, depending on µsub
and Mhost, as shown in Figure 15. Note that the small-
est scale in our wp measurement is ≈ 0.2Mpc/h and is
indeed close to the incompleteness limit. We can defi-
nitely improve this situation by using higher resolution
simulations. However, we expect that the impact of the
resolution on our results should be relatively small, since
the errors of our measured wp on these scales are boosted
by systematic uncertainties in the fiber collision correc-
tion. We conclude that the resolution of MDR1 is suf-
ficient for our purpose but higher resolution simulations
such as Skillman et al. (2014) or Ishiyama et al. (2014)
would be preferable and will be adopted in subsequent
work.

5. METHODOLOGY

Our goal is to find a model of the CMASS-halo connec-
tion which can simultaneously explain the SMF and the
two-point correlation function and which also accounts
for stellar mass completeness of CMASS. This section ex-
plains the details of our methodology. Note that in this
paper we only explore models that reproduce the pro-
jected two-point correlation function of the full CMASS
sample over the redshift range of 0.43 < z < 0.7. In
future work we will explore how well our models match
the clustering of sub-samples (e.g., dividing CMASS by
color and redshift).

5.1. Overview of Methodology and Models

We begin with a broad overview of our global method-
ology and the two classes of models that we will explore
in this paper. The details of our approach are then pro-
vided in the later half of this section.
Our approach is based on the subhalo abundance

matching (SHAM) framework for connecting galaxies
and dark matter halos (see Section 5.2). Within the con-
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Fig. 1.— (Left) The total SMF from Stripe 82 (black squares) measured from the 139.4 deg2 s82-mcg catalog and the SMF measured
using only CMASS galaxies (magenta squares). Other SMFs determined from smaller area surveys at similar redshifts are also shown.
Red, blue, and green circles show results from PRIMUS (5.5 deg2) at 0.4 < z < 0.5, 0.5 < z < 0.65, and 0.65 < z < 0.8, respectively. Cyan
triangles show one wide redshift bin from the COSMOS survey (1.64 deg2). As a comparison, our best-fitting double Schechter function
in the AbM model (see Section 6.1 later) is shown as a solid black curve to highlight the incompleteness of the S82-MGC SMF. (Right)
SMFs as a function of redshift measured using only the CMASS sample. As a reference, we also show the total SMF from the s82-mgc at
0.43 < z < 0.70 and M∗ [M⊙] > 10.5 dex. Note that the s82-mgc is complete to roughly M∗ [M⊙] > 11.2 dex. As shown in Leauthaud et
al. (in prep), CMASS is only complete in terms of stellar mass at the highest masses and in a relatively narrow redshift range.

to the fiber-collision correction (see previous section). In
future work, especially when the S/N of the measure-
ments increase (currently we are using DR10 measure-
ments), these effects will need to be taken into account.
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dance matching for CMASS will require subhalos with
Vpeak ≥ 200 km/s. Figure 13 shows the histogram of
subhalos as a function of Vpeak. This histogram starts to
deviate from a power law at Vpeak ∼ 200 km/s and has a
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higher resolution would be preferable.
However, Figure 13 does not guarantee that the reso-

lution is good enough to trust our clustering predictions
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regime, implying that it is important to study the com-
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and Mhost, as shown in Figure 15. Note that the small-
est scale in our wp measurement is ≈ 0.2Mpc/h and is
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nitely improve this situation by using higher resolution
simulations. However, we expect that the impact of the
resolution on our results should be relatively small, since
the errors of our measured wp on these scales are boosted
by systematic uncertainties in the fiber collision correc-
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ficient for our purpose but higher resolution simulations
such as Skillman et al. (2014) or Ishiyama et al. (2014)
would be preferable and will be adopted in subsequent
work.
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Our goal is to find a model of the CMASS-halo connec-
tion which can simultaneously explain the SMF and the
two-point correlation function and which also accounts
for stellar mass completeness of CMASS. This section ex-
plains the details of our methodology. Note that in this
paper we only explore models that reproduce the pro-
jected two-point correlation function of the full CMASS
sample over the redshift range of 0.43 < z < 0.7. In
future work we will explore how well our models match
the clustering of sub-samples (e.g., dividing CMASS by
color and redshift).

5.1. Overview of Methodology and Models

We begin with a broad overview of our global method-
ology and the two classes of models that we will explore
in this paper. The details of our approach are then pro-
vided in the later half of this section.
Our approach is based on the subhalo abundance

matching (SHAM) framework for connecting galaxies
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can simultaneously explain SMF & wpCMASS SHAM 13

Fig. 5.— Left): best fit to the s82-mgc SMF for the AbM model (solid black line). The dotted black line corresponds to the SMF
deconvolved for scatter. The black dashed curved shows the (fixed) φ2 term in our double Schecter function. Black squares correspond
to the measured SMF from the s82-mgc. (Right): our best fit to wp for the AbM model (solid red line). The green line shows the
result of abundance matching against Mpeak instead of Vpeak. Dashed lines display the contribution to wp from central-central pairs.
Numbers in parenthesis indicate satellite fractions (11.1% for Vpeak and 9.5% for Mpeak). The goodness of fit for the AgM model is
∆χ2 = (4.55 + 11.43)/(26 − 3) = 0.694.

Fig. 6.— Halo mass histograms as a function of redshift from our
AbM (solid lines) and AgM (dashed lines) mock catalogs. Collapse
mass at z = 0.534 is indicated by a black solid vertical line. Clearly,
CMASS galaxies populate halos with masses firmly above collapse
mass. Also note that the mean halo mass of CMASS in our mocks
varies by a factor of 3.5 from low to high redshift.

Zentner et al. (2014). In this paper, we have studied
two distinct models: standard abundance matching and
a simplified form of age matching, abbreviated by AbM
and AgM, respectively. We have demonstrated that both
models can reproduce the galaxy SMF as well as wp, sug-
gesting that there are fundamental degeneracies among
traditional HOD model, AbM, and AgM models, in mod-
eling the SMF and wp. This naturally leads to two in-
teresting and inter-related questions.

1. How well do these models predict other statistics
derived from the data?

2. Are there other statistics which can distinguish be-
tween these two distinct models?

Fig. 7.— Fractional contribution to zstarve as a function of Vpeak

at z = 0.534 for host (square) and sub (circle) halos. The zchar
term dominates at the high mass end whereas the zform term dom-
inates at the low mass end.

Instead of considering just the projected correlation
function, we turn our attention to the multipoles of the
full 2D correlation function. Figure 12 shows the pseudo
multipoles (see Section 3) for our best-fitting AbM and
AgM models. The left panel of Figure 12 demonstrates
that both models fail dramatically to reproduce the pseudo
multipoles even though both models provide a satisfac-
tory description of wp. In the following section, we will
use the redshift dependent clustering of CMASS to ar-
gue that in addition to stellar mass, galaxy color must
play an important role in determining the clustering of
CMASS galaxies and that the failure of our model in re-
producing the pseudo-multipoles must be a consequence
of these effects.
In conclusion, our paper provides a clear cautionary ex-

ample of the limitation of inferring the galaxy-halo con-
nection from the projected correlation function alone. It

explain dN/dz by design
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In order to predict the number of mock galaxies as a
function of mass and redshift, we construct bins in stel-
lar mass from 10.6 to 12.3 dex with ∆ logM∗ = 0.05.
We have checked that our prediction is stable with
∆ logM∗ = 0.1. In the mock catalog, we randomly tag
NCMASS(M∗, z) galaxies with a CMASS flag. For a small
number of bins, NCMASS

sim (M∗, z) exceeds the number pre-
dicted by the total SMF (simply due to sample variance).
In this case, we simply set NCMASS = N tot. Following
this procedure, every galaxy in our mock catalog is now
assigned a stellar mass, a redshift, and a flag that indi-
cates mock CMASS galaxies. By design, mock CMASS
galaxies have stellar mass distributions that match the
ones measured in Section 3.3.
Figure 4 presents a comparison between the redshift

distribution of CMASS galaxies from our best-fitting
mock catalog with the redshift distribution of CMASS
galaxies in the s82-mgc and from the full BOSS DR12
SGC. Our mock reproduces the CMASS dn/dz from the
s82-mgc catalog and is consistent with dn/dz from the
BOSS DR12 SGC. The amplitude differences between
the dn/dz from our mock and the DR12 dn/dz are due
to sample variance. In our current methodology, the sam-
ple variance introduced by matching the CMASS SMFs
from Stripe 82 is not taken into account which is a lim-
itation of our current approach. This reflects a trade-
off made to take advantage of the higher quality stellar
mass estimates from the s82-mgc, but doing so, our cur-
rent analysis is also limited by the sample variance from
Stripe 82.

5.5. Predicting the CMASS Two-Point Correlation
Function

We now have a mock catalog that contains galaxies
with three dimensional positions and with a flag that
indicates CMASS galaxies. The next step is to compute
the predicted the CMASS two-point correlation function.
wp,theory is computed from the mock following the exact
same procedure as for the BOSS DR10 data. To account
for the finite volume of the simulation, we compute a co-
variance matrix for wp,theory (referred to as Cwp,theory),
which is estimated via jack-knife by dividing the (X,Y )-
plane into 256 equal regions. For the small scales of con-
cern in this paper, jack-knife errors outperform bootstrap
errors (P. Norberg, private communication, Arnalte-Mur
& Norberg et al., in prep).
The fitting for wp is performed with

χ2
wp

=
∑

i,j

∆wp(rp,i;φ1,M0,σ)C
−1
wp,total,ij

∆wp(rp,j ;φ1,M0,σ),

(10)
where ∆wp(rp,i;φ1,M0,σ) = wp,meas(rp,i) −
wp,theory(rp,i;φ1,M0,σ), and the total covariance matrix
includes uncertainties in both measurement and our
theory estimates, i.e., Cwp,total = Cwp,meas +Cwp,theory.

6. RESULTS

6.1. Abundance Matching

We now perform a joint fit to the SMF and to wp.
The left panel of Figure 5 presents our best-fit to the
SMF using a double Schechter function and abundance-
matching against Vpeak. The best-fit parameters for

Fig. 3.— Illustrative figure of the color-rank distributions for
CMASS and non-CMASS galaxies. The Xcol “colors” of non-
CMASS galaxies are drawn from a normal distribution with unit
variance and zero mean (shown by the solid blue line). The Xcol
“colors” of CMASS galaxies are drawn from a normal distribution
with unit variance and with a mean value equal to µCMASS. When
µCMASS = 0.599 (dashed red line), CMASS and non-CMASS
galaxies have overlapping color distributions but CMASS is red-
der on average. When µCMASS = 10 (solid red line), all CMASS
galaxies are redder than non-CMASS galaxies (this situation corre-
sponds to the extreme age-matching case explored in Section 6.2).
Our best-fitting value for µCMASS is 0.599 and corresponds to the
distribution shown by the dashed red line.

Fig. 4.— Comparison between the CMASS dn/dz from our fidu-
cial mock catalog (red histograms), the measured dn/dz from the
s82-mgc (blue histograms), and the measured dn/dz from the full
BOSS DR12 SGC (white histograms, Reid et al. in prep). Errors
on the dn/dz for the s82-mgc are estimated via bootstrap. For the
DR12 SGC dn/dz, redshift failures and fiber-collided galaxies are
included using a nearest-neighbor weighting scheme (see Reid et
al. in prep). By construction, our models reproduce the redshift
distribution of CMASS galaxies from the s82-mgc catalog which
is in turn consistent with the DR12 SGC CMASS redshift distri-
bution. The number density from the fiducial R14 model is shown
as a horizontal solid black line. In the R14 model, the CMASS
dn/dz is reproduced by randomly down-sampling a fixed redshift
independent HOD.

the double Schecter function are: (φ1, log10 M0,σ) =
(1.86+0.21

−0.61 × 10−3, 10.89+0.05
−0.04, 0.105

+0.024
−0.032) with χ2

SMF =
4.55. Errors are reported with a 68% confidence level.
We find excellent fits to both the SMF and wp with
two specific points worth highlighting. First, the am-

Result
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Fig. 9.— The HODs measured from our abundance-matched mock catalog in our joint fit to SMF and wp. As a reference, the result from
the HOD fitting in Reid et al. (2014) is shown in black lines (central for solid and satellite for dashed). The percentage values indicate
the fraction of CMASS galaxies at given redshift bin, i.e., number of mock CMASS galaxies at this redshift bin divided by number of total
mock CMASS galaxies over 0.43 < z < 0.7.

Fig. 10.— The satellite fraction of our mock CMASS galaxies
as a function of redshift. As a comparison, the result from R14 is
shown as a black line with its 1σ error (gray region).

in high mass halos must be linked to other properties
besides halo peak velocity and we suggest that assembly
bias effects may play a role in determining the clustering
properties of this sample.
Our current implementation of the AgM model also

fails to reproduce the pseudo-multipoles. However, un-
like in the case of the AbM model in which redshift de-
pendence of the color cuts are unimportant, we know that
our AgM model will be sensitive to these effects which
we have treated in a simplistic fashion. Hence, in a forth-
coming paper, we will explore the true color distribution
as a function of redshift in more detail and investigate if a
more realistic AgM model can be fitted to the multipole.
This approach should provide with powerful constraints
on the physical mechanisms that drives galaxy color in
massive halos.
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APPENDIX

TESTS OF THE SUBHALO CATALOG

In this subsection, we discuss potential issues in the
subhalo catalog, focusing in particular on the time evo-
lution of subhalo clustering and completeness issues due
to the resolution of the simulation.
We begin by testing if a single redshift output is suffi-

cient to model CMASS over the redshift range 0.45 <
z < 0.7. We rank order subhalos by Vpeak and se-
lect the top N subhalos with a number density of n ≃
1.58 × 10−4(h/Mpc)3. This roughly corresponds to the
number density of galaxies with M∗ ! 11.0 dex. Fig-
ure 12 shows the three-dimensional correlation function
of subhalos in real space as a function of separation at
three different redshift outputs and at fixed number den-
sity n. The correlation function varies by at most 5%
compared to z = 0.534 over the CMASS redshift range.
The fractional difference at large scales, r ! 3Mpc/h, is
1 - 2 %. The largest differences (at the level of 5%) are
seen at the transition regime from the 2-halo to 1-halo
term, r " 1Mpc/h, where the errors on our observa-
tional clustering signal are increased by uncertainties due
to the fiber-collision correction (see previous section). In
future work, especially when the S/N of the measure-
ments increase (currently we are using DR10 measure-
ments), these effects will need to be taken into account.
We perform two tests concerning the impact of the

resolution of MDR1 on our results. Based on White
et al. (2011) and also R14, we estimate that abun-
dance matching for CMASS will require subhalos with
Vpeak ≥ 200 km/s. Figure 13 shows the histogram of
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Fig. 9.— The HODs measured from our abundance-matched mock catalog in our joint fit to SMF and wp. As a reference, the result from
the HOD fitting in Reid et al. (2014) is shown in black lines (central for solid and satellite for dashed). The percentage values indicate
the fraction of CMASS galaxies at given redshift bin, i.e., number of mock CMASS galaxies at this redshift bin divided by number of total
mock CMASS galaxies over 0.43 < z < 0.7.
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dance matching for CMASS will require subhalos with
Vpeak ≥ 200 km/s. Figure 13 shows the histogram of
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Fig. 4.— Our best fit to the SMF (left) and to wp ((right). The goodness of fit is ∆χ2 = (4.55+11.43)/(26−3) = 0.694. The best fitting
parameters are (φ1, log10 M0,σ) = (1.86× 10−3, 10.89, 0.105). Note that we fix the parameters that govern the low mass end of the SMF
(α1,φ2,α2) = (−0.46, 3.0× 10−4,−1.58). (Left): best-fitting double Schechter function (dotted) convolved with log-normal scatter (solid)
compared to the measured SMF (black squares). The (fixed) φ2 term is shown as a dashed curve. (Right): comparison of our best-fit (red
line) with wp. The blue line shows the result of abundance matching against Mpeak instead of Vpeak. As a reference, contribution from
central-central pairs is shown as dashed lines. Numbers in parenthesis indicate the satellite fractions (11.1% for Vpeak and 9.5% for Mpeak).

Fig. 5.— Halo mass histogram from the abundance-matched
CMASS mock galaxies at low (0.425 < z < 0.465), median
(0.545 < z < 0.585), and high (0.665 < z < 0.705) redshift (solid
blue, red and green bars, respectively). For reference, the collapse
mass at the MDR1’s output redshift, log Mcol(z = 0.534) = 11.73,
is indicated by a black solid vertical line. Dashed bars shows his-
tograms for the age-matching case (µCMASS = 0.5).

central galaxies does not approach unity due to incom-
pleteness in the SMF at high mass end (see the magenta
curve in the right panel of Figure 1). In the middle red-
shift range at z = 0.565 where the CMASS dn/dz has a
peak, the HODs between our and R14 cases looks more
similar than the low redshift one, but there is still a dis-
crepancy in the shape of ⟨Ncen⟩ especially at low mass
end. In the highest redshift bin, z = 0.685, the mean oc-
cupation of satellites is lower than R14 simply because of
the stellar mass incompleteness at M∗ [M⊙] ! 11.6 dex
(see the orange curve in the right panel of Figure 1).
THE HOD DOWNSAMPLING WILL BE ADDED

LATER. Our model predicts an evolution the mean halo
mass of CMASS as a function of redshift. More specif-

Fig. 6.— The fractional contribution to zstarve as a function
of Vpeak at z = 0.534 for host (square) and sub (circle) halos.
Our high-mass end is dominated by zchar, while zform has major
contribution at low mass regime as is consistent with Hearin et al.
(2013a).

ically, our models predict that, at z = 0.445, 0.565 and
0.685, the mean halo mass of central CMASS galaxies in
units of [M⊙/h] is 13.12 (13.15), 13.34 (13.35), and 13.66
(13.68) dex for the abundance-matched (age-matched)
cases, respectively. This variation is driven by the fact
that mean stellar mass of the sample varies with redshift
as clearly seen in the right panel of Figure 1. These val-
ues are compared with the HOD result, 13.52 dex, which
is higher (lower) than our results at low (high) redshift.
In addition, our models predict that the CMASS satel-
lite fraction varies with redshift roughly from 12% to
9%, as shown in Figure 10. While this might seem like
a small and negligible variation, the fiducial HOD from
R14 constrains the satellite fraction to 6.8 percent. It is
interesting to see that the value inferred from the single
HOD fit in R14 is consistent with our values at z ∼ 0.6
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Fig. 9.— The HODs measured from our abundance-matched mock catalog in our joint fit to SMF and wp. As a reference, the result from
the HOD fitting in Reid et al. (2014) is shown in black lines (central for solid and satellite for dashed). The percentage values indicate
the fraction of CMASS galaxies at given redshift bin, i.e., number of mock CMASS galaxies at this redshift bin divided by number of total
mock CMASS galaxies over 0.43 < z < 0.7.

Fig. 10.— The satellite fraction of our mock CMASS galaxies
as a function of redshift. As a comparison, the result from R14 is
shown as a black line with its 1σ error (gray region).

in high mass halos must be linked to other properties
besides halo peak velocity and we suggest that assembly
bias effects may play a role in determining the clustering
properties of this sample.
Our current implementation of the AgM model also

fails to reproduce the pseudo-multipoles. However, un-
like in the case of the AbM model in which redshift de-
pendence of the color cuts are unimportant, we know that
our AgM model will be sensitive to these effects which
we have treated in a simplistic fashion. Hence, in a forth-
coming paper, we will explore the true color distribution
as a function of redshift in more detail and investigate if a
more realistic AgM model can be fitted to the multipole.
This approach should provide with powerful constraints
on the physical mechanisms that drives galaxy color in
massive halos.
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lect the top N subhalos with a number density of n ≃
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ure 12 shows the three-dimensional correlation function
of subhalos in real space as a function of separation at
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sity n. The correlation function varies by at most 5%
compared to z = 0.534 over the CMASS redshift range.
The fractional difference at large scales, r ! 3Mpc/h, is
1 - 2 %. The largest differences (at the level of 5%) are
seen at the transition regime from the 2-halo to 1-halo
term, r " 1Mpc/h, where the errors on our observa-
tional clustering signal are increased by uncertainties due
to the fiber-collision correction (see previous section). In
future work, especially when the S/N of the measure-
ments increase (currently we are using DR10 measure-
ments), these effects will need to be taken into account.
We perform two tests concerning the impact of the

resolution of MDR1 on our results. Based on White
et al. (2011) and also R14, we estimate that abun-
dance matching for CMASS will require subhalos with
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Fig. 4.— Our best fit to the SMF (left) and to wp ((right). The goodness of fit is ∆χ2 = (4.55+11.43)/(26−3) = 0.694. The best fitting
parameters are (φ1, log10 M0,σ) = (1.86× 10−3, 10.89, 0.105). Note that we fix the parameters that govern the low mass end of the SMF
(α1,φ2,α2) = (−0.46, 3.0× 10−4,−1.58). (Left): best-fitting double Schechter function (dotted) convolved with log-normal scatter (solid)
compared to the measured SMF (black squares). The (fixed) φ2 term is shown as a dashed curve. (Right): comparison of our best-fit (red
line) with wp. The blue line shows the result of abundance matching against Mpeak instead of Vpeak. As a reference, contribution from
central-central pairs is shown as dashed lines. Numbers in parenthesis indicate the satellite fractions (11.1% for Vpeak and 9.5% for Mpeak).

Fig. 5.— Halo mass histogram from the abundance-matched
CMASS mock galaxies at low (0.425 < z < 0.465), median
(0.545 < z < 0.585), and high (0.665 < z < 0.705) redshift (solid
blue, red and green bars, respectively). For reference, the collapse
mass at the MDR1’s output redshift, log Mcol(z = 0.534) = 11.73,
is indicated by a black solid vertical line. Dashed bars shows his-
tograms for the age-matching case (µCMASS = 0.5).

central galaxies does not approach unity due to incom-
pleteness in the SMF at high mass end (see the magenta
curve in the right panel of Figure 1). In the middle red-
shift range at z = 0.565 where the CMASS dn/dz has a
peak, the HODs between our and R14 cases looks more
similar than the low redshift one, but there is still a dis-
crepancy in the shape of ⟨Ncen⟩ especially at low mass
end. In the highest redshift bin, z = 0.685, the mean oc-
cupation of satellites is lower than R14 simply because of
the stellar mass incompleteness at M∗ [M⊙] ! 11.6 dex
(see the orange curve in the right panel of Figure 1).
THE HOD DOWNSAMPLING WILL BE ADDED

LATER. Our model predicts an evolution the mean halo
mass of CMASS as a function of redshift. More specif-

Fig. 6.— The fractional contribution to zstarve as a function
of Vpeak at z = 0.534 for host (square) and sub (circle) halos.
Our high-mass end is dominated by zchar, while zform has major
contribution at low mass regime as is consistent with Hearin et al.
(2013a).

ically, our models predict that, at z = 0.445, 0.565 and
0.685, the mean halo mass of central CMASS galaxies in
units of [M⊙/h] is 13.12 (13.15), 13.34 (13.35), and 13.66
(13.68) dex for the abundance-matched (age-matched)
cases, respectively. This variation is driven by the fact
that mean stellar mass of the sample varies with redshift
as clearly seen in the right panel of Figure 1. These val-
ues are compared with the HOD result, 13.52 dex, which
is higher (lower) than our results at low (high) redshift.
In addition, our models predict that the CMASS satel-
lite fraction varies with redshift roughly from 12% to
9%, as shown in Figure 10. While this might seem like
a small and negligible variation, the fiducial HOD from
R14 constrains the satellite fraction to 6.8 percent. It is
interesting to see that the value inferred from the single
HOD fit in R14 is consistent with our values at z ∼ 0.6
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shown as a black line with its 1σ error (gray region).

in high mass halos must be linked to other properties
besides halo peak velocity and we suggest that assembly
bias effects may play a role in determining the clustering
properties of this sample.
Our current implementation of the AgM model also

fails to reproduce the pseudo-multipoles. However, un-
like in the case of the AbM model in which redshift de-
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9%, as shown in Figure 10. While this might seem like
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Fig. 10.— The satellite fraction of our mock CMASS galaxies
as a function of redshift. As a comparison, the result from R14 is
shown as a black line with its 1σ error (gray region).
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Our current implementation of the AgM model also

fails to reproduce the pseudo-multipoles. However, un-
like in the case of the AbM model in which redshift de-
pendence of the color cuts are unimportant, we know that
our AgM model will be sensitive to these effects which
we have treated in a simplistic fashion. Hence, in a forth-
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Fig. 4.— Our best fit to the SMF (left) and to wp ((right). The goodness of fit is ∆χ2 = (4.55+11.43)/(26−3) = 0.694. The best fitting
parameters are (φ1, log10 M0,σ) = (1.86× 10−3, 10.89, 0.105). Note that we fix the parameters that govern the low mass end of the SMF
(α1,φ2,α2) = (−0.46, 3.0× 10−4,−1.58). (Left): best-fitting double Schechter function (dotted) convolved with log-normal scatter (solid)
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line) with wp. The blue line shows the result of abundance matching against Mpeak instead of Vpeak. As a reference, contribution from
central-central pairs is shown as dashed lines. Numbers in parenthesis indicate the satellite fractions (11.1% for Vpeak and 9.5% for Mpeak).

Fig. 5.— Halo mass histogram from the abundance-matched
CMASS mock galaxies at low (0.425 < z < 0.465), median
(0.545 < z < 0.585), and high (0.665 < z < 0.705) redshift (solid
blue, red and green bars, respectively). For reference, the collapse
mass at the MDR1’s output redshift, log Mcol(z = 0.534) = 11.73,
is indicated by a black solid vertical line. Dashed bars shows his-
tograms for the age-matching case (µCMASS = 0.5).

central galaxies does not approach unity due to incom-
pleteness in the SMF at high mass end (see the magenta
curve in the right panel of Figure 1). In the middle red-
shift range at z = 0.565 where the CMASS dn/dz has a
peak, the HODs between our and R14 cases looks more
similar than the low redshift one, but there is still a dis-
crepancy in the shape of ⟨Ncen⟩ especially at low mass
end. In the highest redshift bin, z = 0.685, the mean oc-
cupation of satellites is lower than R14 simply because of
the stellar mass incompleteness at M∗ [M⊙] ! 11.6 dex
(see the orange curve in the right panel of Figure 1).
THE HOD DOWNSAMPLING WILL BE ADDED

LATER. Our model predicts an evolution the mean halo
mass of CMASS as a function of redshift. More specif-

Fig. 6.— The fractional contribution to zstarve as a function
of Vpeak at z = 0.534 for host (square) and sub (circle) halos.
Our high-mass end is dominated by zchar, while zform has major
contribution at low mass regime as is consistent with Hearin et al.
(2013a).

ically, our models predict that, at z = 0.445, 0.565 and
0.685, the mean halo mass of central CMASS galaxies in
units of [M⊙/h] is 13.12 (13.15), 13.34 (13.35), and 13.66
(13.68) dex for the abundance-matched (age-matched)
cases, respectively. This variation is driven by the fact
that mean stellar mass of the sample varies with redshift
as clearly seen in the right panel of Figure 1. These val-
ues are compared with the HOD result, 13.52 dex, which
is higher (lower) than our results at low (high) redshift.
In addition, our models predict that the CMASS satel-
lite fraction varies with redshift roughly from 12% to
9%, as shown in Figure 10. While this might seem like
a small and negligible variation, the fiducial HOD from
R14 constrains the satellite fraction to 6.8 percent. It is
interesting to see that the value inferred from the single
HOD fit in R14 is consistent with our values at z ∼ 0.6

HOD

SS, Leauthaud+ (2015)
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But …fails for 3D Clustering Signal
✦ The measurements show NO redshift evolution

Monopole Quadrupole

✦ Our “Stochastic Color” model

SS, Leauthaud+ (2015)
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Redshift- & Color-dependence

SS, Leauthaud+, in prep
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Failure of “Stochastic Color” model
✦ “Stochastic Color” model is highly ruled out by the data  
    - CMASS SMFs show a higher         at higher redshift  
    - therefore,           also evolves with time 
    - However, data shows NO redshift evolution

✦ Next step:  
    - There must be an effect which can compensate the evolution  
    - At fixed stellar mass, introduce correlation galaxy color with  
        ＊ halo formation epoch (or age)  
        ＊ halo recent merger  
        ＊ local density (or environment) 
    - Goal: explain DR12                               & lensing
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Conditional SHAM: Age Matching
✦ At fixed stellar mass, “a redder galaxy tends to be hosted by an older halo”

Hearin et al. (2013)

✦ The effect of assembly bias depends on definition of formation timeCMASS SHAM 13

Fig. 7.— Impact of age matching (AgM) on wp in the extreme
case where CMASS galaxies are completely red (µCMASS = 10).
Rank ordering is performed versus zform (blue), zstarve (green) and
zchar (cyan). For comparison, we also show the best-fit from the
AbM result (red), where the correlation between CMASS color and
subhalo age is completely stochastic. Note that this is just an ex-
periment to study the impact of AgM at massive end. Dashed lines
show the contribution to wp from central-central pairs. Numbers
in parenthesis indicate satellite fractions.

but that not at lower redshifts.
In conclusion, our work suggest that CMASS is a com-

plex sample for which the HODs are likely to vary with
redshift in a non-trivial manner. A single HOD fit to
the overall wp broadly agrees with the predictions from
our model at the median redshift of the sample. How-
ever, at lower and higher redshifts, our model predicts
that HODs are not simple down-sampled versions of the
HOD at the peak of the dn/dz.

7.2. A Cautionary Tale of Modeling Small Scale
Statistics

Many past studies have used a combination of galaxy
abundances and the projected galaxy two-point correla-
tion function in order to constrain the galaxy-halo con-
nection (e.g., Leauthaud, Coupon, Yin Li 2015). How-
ever, just because SHAM or HOD models can repro-
duce these observables does not necessarily imply that
the models accurately capture the true underlying galaxy
halo connection. In other terms, just because the model
provides a good fit to the data does not necessarily im-
ply that the model is correct. A clear illustration of this
in the context of mock galaxy samples with strong as-
sembly bias is discussed in Zentner et al. (2014). In this
paper, we have studied two distinct models: standard
abundance matching and age matching, abbreviated by
AbM and AgM, respectively. We have shown that both
models can reproduce the galaxy SMF as well as wp, sug-
gesting that there are fundamental degeneracies among
traditional HOD model, the AbM and the AgM models
in explaining only the SMF and wp. This naturally leads
us to two interesting and inter-related questions.

1. How well do these models predict other statistics
derived from the data?

2. Are there other statistics which can distinguish be-
tween these two distinct models?

Instead of considering just the projected correlation
function, we turn our attention to the multipoles of the
full 2D correlation function. Figure 11 shows the pseudo
multipoles (see Section 3) for our best-fitting AbM and
AgM models. The left panel of Figure 11 demonstrates
that both models fail dramatically to reproduce the pseudo
multipoles even though both models provide a satisfac-
tory description of wp. There are two main reasons
why our models may fail to reproduce the multipoles:
1) both models may not be capturing the true under-
lying connection between galaxy mass, halo mass, and
galaxy color or 2), there may be additional effects that
come into play that affect the pseudo-multipoles more
strongly than wp. Indeed, one important way in which
the pseudo-multipoles and wp differ is that the pseudo-
multipoles are more sensitive to galaxy velocities (see e.g.
Reid et al. 2014; Guo et al. 2014). We will now argue
that 1) is in fact the most likely scenario.
There are three main ways in which we could imagine

adjusting these models in order to simultaneously fit the
pseudo-multipoles in addition to wp: 1) the velocities of
satellites may differ from those of subhalos, 2) the central
galaxy may have an extra velocity dispersion compared
to the velocity of the halo core, and 3) a different cos-
mology (i.e., different fσ8). The impact of these three
effects on the pseudo-multipoles have already been ex-
plored by R14. The middle and right panels of Figure
11 compares the monopole and the quadrupole predicted
by the AbM model to the best-fitting model in HOD in
R14 and to measured values from BOSS DR10. We also
show variations around the R14 fiducial model for these
three distinct velocity effects. Blue lines show the case
when the mean infall velocity of halo core, which is pro-
portional to fσ8, is varied. Green lines demonstrate the
Finger-of-God effect owing to the velocity bias in satellite
galaxies where γIHV is defined by the ratio of the velocity
dispersion in satellite galaxy to that in dark matter par-
ticles. Cyan line illustrates the impact of the additional
velocity dispersion in central galaxies. The amount of
these variations are motivated by constraints from the
observations or hydrodynamical simulations. As can be
seen in these panels, these variations are much smaller
than the difference between the DR10 data and the AbM
model, implying that just adjusting velocity components
in our AbM mock is unlikely to reproduce the measure-
ment.
In conclusion, we argue that both of our models are

probably failing to capture the true underlying connec-
tion between halo mass, galaxy mass, and galaxy color.
Hence, our paper provides a clear cautionary example
of the limitation of inferring the galaxy-halo connection
from the projected correlation function alone. It is also
clear from Figure 11 that the pseudo-multipoles contain
additional information not captured by wp and that these
may represent a powerful and under-utilized tool to pro-
vide additional constraints on the galaxy-halo connec-
tion. These aspects will be explored in greater detail in
a forthcoming paper.

7.3. What Determines Color in the Most Massive
Galaxies?

One of the main goals of this paper is to under-
stand the connection between halo properties and the
colors of very massive galaxies. As shown in Figure 5,

✦ 3 components in zstarve  

     - zform: (sub)halo’s concentration  
   - zchar: when a (sub)halo get mass of 1012 Msun 
   - zacc: when a subhalo accreted onto its host halo 

c.f., Miyatake et al. (2015)

bi-modality?
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What is Peculiar Velocity of Galaxies?
✦ Difference b/w our SHAM model & HOD (Reid et al. 2014) 
    1) velocity of central 
        Rockstar: core velocity defined within [0-0.1] rvir  

        SO halos: core velocity defined within [0-0.33] rvir 

            c.f.) Guo et al. (2014): defined within [0-0.22] rvir + velocity bias 
 

    2) velocity of satellites 
        SHAM: the same as central 
        Reid et al. (2014): velocity of DM

488 B. A. Reid et al.

Figure 10. The rms velocities as a function of halo mass for the two central
velocity definitions (‘DENS’ in red and ‘COMV’ in green), as well as their
difference (blue). The solid lines are derived from the HiRes simulation
while dashed lines are from the MedRes simulation. The difference between
those vectors has a magnitude consistent with [0.3 ± 0.02]σ vir, shown by
the cyan curves.

galaxies, and the intrahalo velocity component for satellite galaxies
is defined with respect to this halo velocity. The first choice is
to simply average the velocities of all the halo members, denoted
vCOMV, for centre-of-mass velocity. The dispersion of halo member

velocities around the centre-of-mass velocity is

σvir = 2.79 h−1 Mpc
(

M

1013h−1M⊙

)0.331

, (16)

fit to haloes in the HiRes box; the HiRes and MedRes disper-
sions agree within 2 per cent with this relation, the LowRes box
within 5 per cent. The three are in per cent level agreement above
1014h−1M⊙. Therefore, within the range accessible to this study,
the intrahalo velocity dispersions are independent of both cosmol-
ogy and simulation resolution within a few per cent, at fixed SO
halo mass. The green curves in Fig. 10 show that the rms centre-of-
mass halo velocity σ COMV is remarkably independent of halo mass
(within 2 per cent of 3.57 h−1 Mpc for 1012 − 15h−1M⊙ haloes in
the HiRes box). The MedRes σ COMV is lower by a factor of 1.016,
in reasonable agreement with the linear theory expectation of 1.021
given the ratio of the values of fσ 8 for the two boxes.

The second central velocity definition, vDENS, was defined pre-
cisely in Section 2.4, and the sensitivity to this definition is explored
in more detail in Appendix B. Note that in both catalogues we use
that same density peak to define the halo centre, where we place the
‘central’ galaxy, so positions in the two halo catalogues we com-
pare are identical; only the ‘central’ galaxy velocities are different.
Fig. 10 shows that the magnitude of vDENS rises with halo mass. If
we consider the difference vector vCOMV − vDENS, we get the blue
curves in Fig. 10. We see that |vCOMV − vDENS| depends on mass
in the same way as the halo virial velocity (equation 16), but the
magnitude is smaller by a factor of 0.3.

Fig. 11 illustrates these velocity vectors in the local environment
of the largest halo in the HiRes simulation, which has Mhalo = 1.3 ×
1015 h−1 M⊙. The real space coordinates have been shifted to place
the halo at the (0,0) and projected into the plane defined by vDENS

(blue) and vCOMV (magenta). In the left-hand panel, we take a |"z|<

Figure 11. Left: a |"z| < 4 h−1 Mpc slice through the HiRes simulation box, centred on the largest halo in the box with M = 1.3 × 1015 h−1 M⊙. The green
(red) dots indicate the positions of haloes of mass M > 1012 (1013) h−1 M⊙, where all positions have been projected into the plane determined by the vectors
vDENS (blue) and vCOMV (magenta). The black arrows indicate the velocity of each halo (in distance units) relative to vCOMV, so that the central halo centre of
mass is at rest. Right: a zoomed-in version of the left-hand panel with the log of the matter density overplotted along with the central halo virial radius rvir =
2.7 h−1 Mpc. The matter velocity field is overplotted in black alongside the haloes; the velocity vectors in this panel were scaled down by a factor of 20 for
visualization purposes. The central cyan vector shows vDENS − vCOMV, scaled down by a factor of only 2 (so expanded by a factor of 10 compared to the other
vectors). The inward flow from the upper-left corner pushes vCOMV along the +êx compared with vDENS. The clear correlation between the density field and
central galaxy velocity will be imprinted differently on ξ̂0,2 than if vDENS−vCOMV were randomly oriented.

MNRAS 444, 476–502 (2014)
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Figure 14. In order to isolate the effect of the central galaxy velocity defini-
tions, we fix HOD parameters in this plot to the best fit values using vDENS
(fourth upper column in Table 4) and plot the theoretical predictions for
the fiducial choice vDENS (blue), the halo center-of-mass velocity vCOMV
(green), and vCOMV with additional Gaussian dispersion at 0.3�vir (i.e., set-
ting �cenv = 0.3; shown in red). In the other two cases, �cenv = 0. In all three
theoretical curves, �IHV = 1 and f�8 = 0.472 is held fixed. We show two
sets of errors: the larger ones are the square root of the diagonal elements of
the covariance matrix. There are strong covariances between the bins, and
the smaller error bars attempt to demonstrate their impact. The small errors
show the change required in a single bin to change �2 by 1, when the data
and theory are in perfect agreement in all other bins. Though changes be-
tween the vDENS and vCOMV + �cenv = 0.3 appear relatively small, fits with
the full covariance matrix disfavor the latter choice by ��2 = 13; see upper
columns four through six in Table 4.

separation between the central halo and halos falling in along the
corresponding filament. We saw similar levels of �2 differences in
the HiRes box compared with the MedRes box when performing
the same test. These possibilities are certainly not the only choices
for assigning velocities to galaxies and neglect all “gastrophysical”
effects; however, the investigations in Behroozi, Wechsler, & Wu
(2013) do indicate that our vDENS has similar properties to a more
detailed phase-space based halo finding algorithm.

7.3 Goodness of fit

For our fiducial choice using vDENS and the MedRes0 box for the
underlying halo catalog, and introducing no free HOD velocity pa-
rameters, we find �2 = 36.8 for 27 data points and 5 free HOD
parameters; a larger �2 is expected only 2.5% of the time. This
high �2 could be an indication of insufficiencies of our model, non-
Gaussianity of our errors, a preference for different cosmological
parameters compared with our simulation parameters, or simply
bad luck. For further insight, we attempt to fit MedRes and HiRes
without the theoretical error contribution to the covariance matrix.
If our theoretical predictions were based on single catalog realiza-
tions rather than an average over all possible HOD realizations for
a fixed halo catalog, we would expect the contribution from the
measurement and MedRes theory errors to be comparable because

they cover comparable volumes. We find �2 = 75 (�2 = 60) to
be compared with the fourth (second) columns in Table 4 for the
MedRes0 (HiRes) halo catalogs. That is, our fiducial model seems
adequate, within at least a factor of ⇠ p2 of the measurement er-
rors. The fact that using the HiRes halo catalog, which covers only
an eighth of the MedRes box volume, returns a better �2 in this case
must indicate that changes to the observables allowed by our theo-
retical uncertainties can be mostly absorbed by tweaking the HOD
parameters. If that were not the case, we would have expected a
much larger contribution from the higher theoretical uncertainty of
the HiRes box to �2. The slight difference could also indicate a
preference of the data for the higher-resolution halo catalog. In any
case, these tests do not indicate the existence of systematic mod-
eling errors at the level of our total quoted uncertainty. Of course,
just because the model can fit the data does not demonstrate that
the resulting parameter fits are unbiased.

7.4 Properties of the Halo Occupation Distribution

Figure 15 shows the halo occupation distribution at the fiducial
cosmologies of our HiRes and MedRes boxes (corresponding to
upper columns two and four in Table 4). We enforce a hard prior
on 0.1 6 ↵ 6 2 which does affect the constraints from the HiRes
box. Table 4 shows that the HOD parameters are quite stable as we
explore different parameter spaces and model assumptions, with
the exception of the “high n̄HOD” and “cen/sat test” cases detailed
in the next section. Within the fiducial n̄HOD prior discussed in
Sec. 6.2, the data prefer the largest allowed values of n̄HOD; the
best fit value is near the hard prior upper boundary. Under the
fiducial n̄HOD prior, the fraction of galaxies that are satellites is
strongly constrained: 10.2 ± 0.7 per-cent. The data show a strong
preference for a non-zero Mcut at a value of ⇠ 2Mmin, which could
plausibly be produced by a 1:1 merger of halos of mass Mmin. The
distribution of galaxies across halo mass is relatively symmetric
as a function of log10 M (right panel of Fig. 15), which makes
the median (1.7 ⇥ 1013 h�1 M�) and mean (3.3 ⇥ 1013 h�1 M�)
host halo masses quite different. For satellite galaxies, the median
(mean) host halo mass is 6 (9) ⇥ 1013 h�1 M�.

The mean host halo mass is most closely related to the
expected amplitude of the galaxy-galaxy lensing signal. The
amplitude of clustering of CMASS galaxies on scales substantially
larger than a typical host halo virial radius constrains the product
of a linear bias factor b and the overall amplitude of matter
fluctuations �8(ze↵) at the effective redshift of the galaxy sample.
The observed b�8 for the CMASS galaxy sample places it in a
halo mass regime where halo bias depends steeply on mass; b(M)
is overlaid in the right panel of Fig. 15. To test the robustness of
the mean halo mass prediction within the context of our HOD
model, we allowed a freely varying spline function to describe
dncen/dlnM, constrained by a minimum n̄HOD set by the observed
n̄(z) and constrained to reproduce the observed b�8. Adding this
freedom to the HOD only introduced uncertainty in the mean
central galaxy halo mass at the ⇠ 10% level.

The high-mass slope ↵ of the satellite HOD is not well-
constrained in our fits, and in particular, our ↵ >= 0.1 prior affects
the constraints in the HiRes case. However, the satellite galaxy
distributions in the right panel of Fig. 15 are similar, and the
corresponding intra-halo velocity dispersion is well-constrained by
our measurements; see Sec. 7.9.

c� 0000 RAS, MNRAS 000, 1–1
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What is Peculiar Velocity of Galaxies?
✦ Difference b/w our SHAM model & HOD (Reid et al. 2014) 
    1) velocity of central 
        Rockstar: core velocity defined within [0-0.1] rvir  

        SO halos: core velocity defined within [0-0.33] rvir 

            c.f.) Guo et al. (2014): defined within [0-0.22] rvir + velocity bias 
 

    2) velocity of satellites 
        SHAM: the same as central 
        Reid et al. (2014): velocity of DM
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Figure 10. The rms velocities as a function of halo mass for the two central
velocity definitions (‘DENS’ in red and ‘COMV’ in green), as well as their
difference (blue). The solid lines are derived from the HiRes simulation
while dashed lines are from the MedRes simulation. The difference between
those vectors has a magnitude consistent with [0.3 ± 0.02]σ vir, shown by
the cyan curves.

galaxies, and the intrahalo velocity component for satellite galaxies
is defined with respect to this halo velocity. The first choice is
to simply average the velocities of all the halo members, denoted
vCOMV, for centre-of-mass velocity. The dispersion of halo member

velocities around the centre-of-mass velocity is

σvir = 2.79 h−1 Mpc
(

M

1013h−1M⊙

)0.331

, (16)

fit to haloes in the HiRes box; the HiRes and MedRes disper-
sions agree within 2 per cent with this relation, the LowRes box
within 5 per cent. The three are in per cent level agreement above
1014h−1M⊙. Therefore, within the range accessible to this study,
the intrahalo velocity dispersions are independent of both cosmol-
ogy and simulation resolution within a few per cent, at fixed SO
halo mass. The green curves in Fig. 10 show that the rms centre-of-
mass halo velocity σ COMV is remarkably independent of halo mass
(within 2 per cent of 3.57 h−1 Mpc for 1012 − 15h−1M⊙ haloes in
the HiRes box). The MedRes σ COMV is lower by a factor of 1.016,
in reasonable agreement with the linear theory expectation of 1.021
given the ratio of the values of fσ 8 for the two boxes.

The second central velocity definition, vDENS, was defined pre-
cisely in Section 2.4, and the sensitivity to this definition is explored
in more detail in Appendix B. Note that in both catalogues we use
that same density peak to define the halo centre, where we place the
‘central’ galaxy, so positions in the two halo catalogues we com-
pare are identical; only the ‘central’ galaxy velocities are different.
Fig. 10 shows that the magnitude of vDENS rises with halo mass. If
we consider the difference vector vCOMV − vDENS, we get the blue
curves in Fig. 10. We see that |vCOMV − vDENS| depends on mass
in the same way as the halo virial velocity (equation 16), but the
magnitude is smaller by a factor of 0.3.

Fig. 11 illustrates these velocity vectors in the local environment
of the largest halo in the HiRes simulation, which has Mhalo = 1.3 ×
1015 h−1 M⊙. The real space coordinates have been shifted to place
the halo at the (0,0) and projected into the plane defined by vDENS

(blue) and vCOMV (magenta). In the left-hand panel, we take a |"z|<

Figure 11. Left: a |"z| < 4 h−1 Mpc slice through the HiRes simulation box, centred on the largest halo in the box with M = 1.3 × 1015 h−1 M⊙. The green
(red) dots indicate the positions of haloes of mass M > 1012 (1013) h−1 M⊙, where all positions have been projected into the plane determined by the vectors
vDENS (blue) and vCOMV (magenta). The black arrows indicate the velocity of each halo (in distance units) relative to vCOMV, so that the central halo centre of
mass is at rest. Right: a zoomed-in version of the left-hand panel with the log of the matter density overplotted along with the central halo virial radius rvir =
2.7 h−1 Mpc. The matter velocity field is overplotted in black alongside the haloes; the velocity vectors in this panel were scaled down by a factor of 20 for
visualization purposes. The central cyan vector shows vDENS − vCOMV, scaled down by a factor of only 2 (so expanded by a factor of 10 compared to the other
vectors). The inward flow from the upper-left corner pushes vCOMV along the +êx compared with vDENS. The clear correlation between the density field and
central galaxy velocity will be imprinted differently on ξ̂0,2 than if vDENS−vCOMV were randomly oriented.
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Figure 14. In order to isolate the effect of the central galaxy velocity defini-
tions, we fix HOD parameters in this plot to the best fit values using vDENS
(fourth upper column in Table 4) and plot the theoretical predictions for
the fiducial choice vDENS (blue), the halo center-of-mass velocity vCOMV
(green), and vCOMV with additional Gaussian dispersion at 0.3�vir (i.e., set-
ting �cenv = 0.3; shown in red). In the other two cases, �cenv = 0. In all three
theoretical curves, �IHV = 1 and f�8 = 0.472 is held fixed. We show two
sets of errors: the larger ones are the square root of the diagonal elements of
the covariance matrix. There are strong covariances between the bins, and
the smaller error bars attempt to demonstrate their impact. The small errors
show the change required in a single bin to change �2 by 1, when the data
and theory are in perfect agreement in all other bins. Though changes be-
tween the vDENS and vCOMV + �cenv = 0.3 appear relatively small, fits with
the full covariance matrix disfavor the latter choice by ��2 = 13; see upper
columns four through six in Table 4.

separation between the central halo and halos falling in along the
corresponding filament. We saw similar levels of �2 differences in
the HiRes box compared with the MedRes box when performing
the same test. These possibilities are certainly not the only choices
for assigning velocities to galaxies and neglect all “gastrophysical”
effects; however, the investigations in Behroozi, Wechsler, & Wu
(2013) do indicate that our vDENS has similar properties to a more
detailed phase-space based halo finding algorithm.

7.3 Goodness of fit

For our fiducial choice using vDENS and the MedRes0 box for the
underlying halo catalog, and introducing no free HOD velocity pa-
rameters, we find �2 = 36.8 for 27 data points and 5 free HOD
parameters; a larger �2 is expected only 2.5% of the time. This
high �2 could be an indication of insufficiencies of our model, non-
Gaussianity of our errors, a preference for different cosmological
parameters compared with our simulation parameters, or simply
bad luck. For further insight, we attempt to fit MedRes and HiRes
without the theoretical error contribution to the covariance matrix.
If our theoretical predictions were based on single catalog realiza-
tions rather than an average over all possible HOD realizations for
a fixed halo catalog, we would expect the contribution from the
measurement and MedRes theory errors to be comparable because

they cover comparable volumes. We find �2 = 75 (�2 = 60) to
be compared with the fourth (second) columns in Table 4 for the
MedRes0 (HiRes) halo catalogs. That is, our fiducial model seems
adequate, within at least a factor of ⇠ p2 of the measurement er-
rors. The fact that using the HiRes halo catalog, which covers only
an eighth of the MedRes box volume, returns a better �2 in this case
must indicate that changes to the observables allowed by our theo-
retical uncertainties can be mostly absorbed by tweaking the HOD
parameters. If that were not the case, we would have expected a
much larger contribution from the higher theoretical uncertainty of
the HiRes box to �2. The slight difference could also indicate a
preference of the data for the higher-resolution halo catalog. In any
case, these tests do not indicate the existence of systematic mod-
eling errors at the level of our total quoted uncertainty. Of course,
just because the model can fit the data does not demonstrate that
the resulting parameter fits are unbiased.

7.4 Properties of the Halo Occupation Distribution

Figure 15 shows the halo occupation distribution at the fiducial
cosmologies of our HiRes and MedRes boxes (corresponding to
upper columns two and four in Table 4). We enforce a hard prior
on 0.1 6 ↵ 6 2 which does affect the constraints from the HiRes
box. Table 4 shows that the HOD parameters are quite stable as we
explore different parameter spaces and model assumptions, with
the exception of the “high n̄HOD” and “cen/sat test” cases detailed
in the next section. Within the fiducial n̄HOD prior discussed in
Sec. 6.2, the data prefer the largest allowed values of n̄HOD; the
best fit value is near the hard prior upper boundary. Under the
fiducial n̄HOD prior, the fraction of galaxies that are satellites is
strongly constrained: 10.2 ± 0.7 per-cent. The data show a strong
preference for a non-zero Mcut at a value of ⇠ 2Mmin, which could
plausibly be produced by a 1:1 merger of halos of mass Mmin. The
distribution of galaxies across halo mass is relatively symmetric
as a function of log10 M (right panel of Fig. 15), which makes
the median (1.7 ⇥ 1013 h�1 M�) and mean (3.3 ⇥ 1013 h�1 M�)
host halo masses quite different. For satellite galaxies, the median
(mean) host halo mass is 6 (9) ⇥ 1013 h�1 M�.

The mean host halo mass is most closely related to the
expected amplitude of the galaxy-galaxy lensing signal. The
amplitude of clustering of CMASS galaxies on scales substantially
larger than a typical host halo virial radius constrains the product
of a linear bias factor b and the overall amplitude of matter
fluctuations �8(ze↵) at the effective redshift of the galaxy sample.
The observed b�8 for the CMASS galaxy sample places it in a
halo mass regime where halo bias depends steeply on mass; b(M)
is overlaid in the right panel of Fig. 15. To test the robustness of
the mean halo mass prediction within the context of our HOD
model, we allowed a freely varying spline function to describe
dncen/dlnM, constrained by a minimum n̄HOD set by the observed
n̄(z) and constrained to reproduce the observed b�8. Adding this
freedom to the HOD only introduced uncertainty in the mean
central galaxy halo mass at the ⇠ 10% level.

The high-mass slope ↵ of the satellite HOD is not well-
constrained in our fits, and in particular, our ↵ >= 0.1 prior affects
the constraints in the HiRes case. However, the satellite galaxy
distributions in the right panel of Fig. 15 are similar, and the
corresponding intra-halo velocity dispersion is well-constrained by
our measurements; see Sec. 7.9.
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Figure 11. Left: A |�z| < 4 h�1 Mpc slice through the HiRes simulation box, centered on the largest halo in the box with M = 1.3 ⇥ 1015 h�1 M�. Green (red)
dots indicate the positions of halos of mass M > 1012 (1013) h�1 M�, where all positions have been projected into the plane determined by the vectors vDENS
(blue) and vCOMV (magenta). The black arrows indicate the velocity of each halo (in distance units) relative to vCOMV, so that the central halo center of mass is
at rest. Right: A zoomed-in version of the left panel with the log of the matter density over-plotted along with the central halo virial radius rvir = 2.7 h�1 Mpc.
The matter velocity field is over-plotted in black alongside the halos; the velocity vectors in this panel were scaled down by a factor of 20 for visualization
purposes. The central cyan vector shows vDENS � vCOMV, scaled down by a factor of only two (so expanded by a factor of 10 compared to the other vectors).
The inward flow from the upper left corner pushes vCOMV along the +êx compared with vDENS. The clear correlation between the density field and central
galaxy velocity will be imprinted differently on ⇠̂0,2 than if vDENS - vCOMV were randomly oriented.

Figure 10. The rms velocities as a function of halo mass for the two central
velocity definitions (“DENS” in red and “COMV” in green), as well as their
difference (blue). Solid lines are derived from the HiRes simulation while
dashed lines are from the MedRes simulation. The difference between those
vectors has a magnitude consistent with [0.3±0.02]�vir, shown by the cyan
curves.

and the intrahalo velocity component for satellite galaxies is de-
fined with respect to this halo velocity. The first choice is to simply
average the velocities of all the halo members, denoted vCOMV, for
center-of-mass velocity. The dispersion of halo member velocities
around the center-of-mass velocity is

�vir = 2.79h�1 Mpc
 

M
1013h�1 M�

!0.331

, (16)

fit to halos in the HiRes box; the HiRes and MedRes dispersions
agree within 2% with this relation, the LowRes box within 5%. The
three are in per-cent level agreement above 1014h�1 M�. Therefore,
within the range accessible to this study, the intrahalo velocity dis-
persions are independent of both cosmology and simulation resolu-
tion within a few per-cent, at fixed SO halo mass. The green curves
in Fig. 10 show that the rms center-of-mass halo velocity �COMV is
remarkably independent of halo mass (within 2% of 3.57 h�1 Mpc
for 1012�15h�1 M� halos in the HiRes box). The MedRes �COMV is
lower by a factor of 1.016, in reasonable agreement with the linear
theory expectation of 1.021 given the ratio of the values of f�8 for
the two boxes.

The second central velocity definition, vDENS, was defined pre-
cisely in Sec. 2.4, and the sensitivity to this definition was explored
in more detail in Appendix B. Note that in both catalogs we use
that same density peak to define the halo center, where we place
the “central” galaxy, so positions in the two halo catalogs we com-
pare are identical; only the “central” galaxy velocities are different.
Fig. 10 shows that the magnitude of vDENS rises with halo mass. If
we consider the difference vector vCOMV � vDENS, we get the blue
curves in Fig. 10. We see that |vCOMV � vDENS| depends on mass in
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✦ Negligible in cen-cen pairs

✦ cen-sat pairs?
Galaxy Clustering Modelling with Simulations 5

Figure 1. Decomposition of the projected galaxy 2PCF wp and redshift-space 2PCF multipoles ξ0, ξ2, and ξ4 into the various one-halo and two-halo
components (one-halo cen-sat, one-halo sat-sat, two-halo cen-cen, two-halo cen-sat, and two-halo sat-sat). The circles are measurements from 100 mock
galaxy catalogs constructed by populating galaxies into dark matter halos in the simulation, according to the set of fiducial HOD parameters. The curves are
calculations with the method introduced in this paper. See text for more details.

3 AN EXAMPLE APPLICATION AND THE
REDSHIFT-SPACE 2PCF DECOMPOSITION

The method developed here has been successfully applied to model
projected and redshift-space 2PCFs of SDSS and SDSS-III galax-
ies on small to intermediate scales (e.g. Guo et al. 2015a,b,c) and
to compare HOD and SHAM models (Guo et al. in prep.). As the
method is built on the basis of decomposition of galaxy 2PCFs,
here we provide an example to illustrate the different 2PCF com-
ponents. In particular, we show the components for the redshift-
space 3D 2PCF and the manifestation of redshift-space distortions
in each component to have a better understanding of the redshift-
space 2PCFs within the HOD framework. In addition, we also in-
vestigate how redshift-space 2PCFs help with HOD constraints,
including the inference of the galaxy velocity distribution inside
haloes.

The example adopts HOD parameters for the sample of
z ∼ 0.5 CMASS galaxies in the the SDSS-III Baryon Oscillation
Spectroscopic Survey (BOSS; Dawson et al. 2013). With spherical
overdensity haloes and halo particles from the z = 0.53 output of
the MultiDark simulation (MDR1; Prada et al. 2012; Riebe et al.
2013), we create tables for halo properties, including halo number
density n̄ (i.e. halo mass function), projected 2PCF wp, redshift-
space 2PCF monopole ξ0, quadrupole ξ2, and hexadecapole ξ4.
We choose the position of the potential minimum as the centre of
each halo for putting the central galaxy and halo particles as trac-
ers of satellites. Each of wp and ξ0/2/4 has five components (one-
halo cen-sat, one-halo sat-sat, two-halo cen-cen, two-halo cen-sat,
and two-halo sat-sat). To generate the wp(rp) tables, we measure
ξ(rp, rπ) for each component and for each combination of halo
mass bins and sum over the rπ direction, where rp and rπ are the
pair separations in the directions perpendicular and parallel to the

c⃝ 0000 RAS, MNRAS 000, 000–000

Galaxy Clustering Modelling with Simulations 5

Figure 1. Decomposition of the projected galaxy 2PCF wp and redshift-space 2PCF multipoles ξ0, ξ2, and ξ4 into the various one-halo and two-halo
components (one-halo cen-sat, one-halo sat-sat, two-halo cen-cen, two-halo cen-sat, and two-halo sat-sat). The circles are measurements from 100 mock
galaxy catalogs constructed by populating galaxies into dark matter halos in the simulation, according to the set of fiducial HOD parameters. The curves are
calculations with the method introduced in this paper. See text for more details.

3 AN EXAMPLE APPLICATION AND THE
REDSHIFT-SPACE 2PCF DECOMPOSITION

The method developed here has been successfully applied to model
projected and redshift-space 2PCFs of SDSS and SDSS-III galax-
ies on small to intermediate scales (e.g. Guo et al. 2015a,b,c) and
to compare HOD and SHAM models (Guo et al. in prep.). As the
method is built on the basis of decomposition of galaxy 2PCFs,
here we provide an example to illustrate the different 2PCF com-
ponents. In particular, we show the components for the redshift-
space 3D 2PCF and the manifestation of redshift-space distortions
in each component to have a better understanding of the redshift-
space 2PCFs within the HOD framework. In addition, we also in-
vestigate how redshift-space 2PCFs help with HOD constraints,
including the inference of the galaxy velocity distribution inside
haloes.

The example adopts HOD parameters for the sample of
z ∼ 0.5 CMASS galaxies in the the SDSS-III Baryon Oscillation
Spectroscopic Survey (BOSS; Dawson et al. 2013). With spherical
overdensity haloes and halo particles from the z = 0.53 output of
the MultiDark simulation (MDR1; Prada et al. 2012; Riebe et al.
2013), we create tables for halo properties, including halo number
density n̄ (i.e. halo mass function), projected 2PCF wp, redshift-
space 2PCF monopole ξ0, quadrupole ξ2, and hexadecapole ξ4.
We choose the position of the potential minimum as the centre of
each halo for putting the central galaxy and halo particles as trac-
ers of satellites. Each of wp and ξ0/2/4 has five components (one-
halo cen-sat, one-halo sat-sat, two-halo cen-cen, two-halo cen-sat,
and two-halo sat-sat). To generate the wp(rp) tables, we measure
ξ(rp, rπ) for each component and for each combination of halo
mass bins and sum over the rπ direction, where rp and rπ are the
pair separations in the directions perpendicular and parallel to the
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Zheng & Guo (2015) ✦ subhalo infall

4 Hikage

Figure 3. Distribution function of the line-of-sight velocity vlos distribution of satellites for three different ranges of halo mass from 1014h−1M⊙ to
8 × 1014h−1M⊙. Satellites are represented with DM particles (left), light subhalos (center) and heavy subhalos (right). Reference lines are a Gaussian
distribution of the 1D velocity dispersion (dashed) and the velocity model including both the infall and random motion in the equation (4) (solid).

Figure 4. Comparison of Fingers-of-God damping function D(k∥)
(eq.[10]) when the infall motion or the random motion is dominated. For
comparison, we plot the Lorentzian form of Fingers-of-God damping. The
velocity dispersion σv,sat/aH(a) is set to be 5h−1Mpc.

4.2 Fingers-of-God effect on redshift-space power spectrum

Satellite motion inside halos generates non-linear redshift-space
distortion, often referred as the Fingers-of-God (FoG) effect. The
FoG effect on the multipole components of redshift-space power
spectrum is formulated based on the halo model (e.g., Hikage et al.
2013; Hikage & Yamamoto 2013). The FoG damping due to the in-
ternal satellite motion of the halo with massM is given by Fourier
transforming the line-of-sight velocity distribution of satellites:

D(k∥;M) =

∫

dvfv(v;M) exp(−ik̃∥v)

≃ exp

[

−
k̃2
∥(σ

2
v,sat − ⟨vinf⟩2 /3)

2

]

sin(k̃∥ ⟨vinf⟩)
k̃∥ ⟨vinf⟩

, (10)

where k̃ = k∥/aH(a) and k∥ is the line-of-sight component of
the wavevector k. In the second line, we use an approximation that
σv,inf ≃ σv,tan. Figure 4 compares the FoG damping function in
different cases. When the mean infall velocity is negligibly small,

Figure 5. Simulated mock LRG power spectra Pl with the halo model de-
scription. Satellites are represented by massive subhalos (average ratio of
the subhalo mass to the host halo mass is 0.06) and the satellite fraction is
about 6.4%. For comparison, we plot the power spectra where the velocity
of satellite subhalos is rotated randomly.

the FoG damping is a simple Gaussian form. When the infall ve-
locity is dominated, the velocity distribution is top-hat like and its
Fourier-transform becomes sinc function. This behaves quite dif-
ferently from the commonly used Gaussian or Lorentzian form of
FoG damping and changes the small-scale feature of redshift-space
clustering.

Figure 5 shows the multipole power spectra k2Pl(k) (l =
0, 2, 4 from left to right) of simulated samples assuming HOD of
LRGs. Satellites in the samples are represented by massive subha-
los, which is a good assumption because LRGs are massive galaxies
and then their host subhalos should be massive. The average ratio
of the subhalo mass to the host halo mass is 6.4 %. In this sam-
ple, the mean infall velocity is comparable to the Virial velocity
of satellite-hosting halos and the value of each velocity component
of satellites are as follows: ⟨vinf⟩ = 0.79σvir; σv,inf = 0.95σvir;
σv,tan = 0.86σvir . In order to see the effect of coherent infall mo-
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Summary
✦ A realistic model of the CMASS-Halo connection is essential

✦ The CMASS SMFs in S82MGC varies as a function of z,  
    therefore a simple SHAM (‘Stochastic Color’) model is ruled out

✦ Hope is a conditional SHAM such as age matching by introducing  
    correlation b/w galaxy color & halo formation epoch

✦ However, there are caveats at massive end: 
    - no unique definition of “halo age”  
    - ambiguity to define “velocity” of subhalo (or galaxy)

Stay Tuned!


