Modeling small-scale 3D clustering of the BOSS CMASS galaxies

東京大学 カブリ数物連携宇宙研究機構

SS, Leauthaud, Hearin+, submitted to ApJ, arXiv:1509.00482.
Leauthaud, Bundy, SS+, submitted to MNRAS, arXiv:1507.04752.
Bundy, Leauthaud, SS+, submitted to ApJS, arXiv:1509.01276.
SS, Leauthaud, Hearin+, in prep.
Campbell, SS, Hearin+, in prep.

第4回観測的宇宙論ワークショップ@京都大学基礎物理学研究所

2015年11月20日(金)

Galaxies in the Large-Scale Structure

[Textbook: Mo, van den Bosch, White (2010)] How galaxies spatially gather? = 3D Galaxy Clustering

LARGE Scale O(10-100Mpc) trace the DM distribution - ruled by Gravity

Small Scale O(0.1-1Mpc) galaxy distribution within a virial radii of a DM halo - Gravity + Baryon physics

Galaxies in the Large-Scale Structure

[Textbook: Mo, van den Bosch, White (2010)] How galaxies spatially gather? = **3D Galaxy Clustering**

LARGE Scale O(10-100Mpc) trace the DM distribution - ruled by Gravity

Small Scale O(0.1-1Mpc) galaxy distribution within a virial radii of a DM halo - Gravity + Baryon physics

Galaxies in the Large-Scale Structure

[Textbook: Mo, van den Bosch, White (2010)] How galaxies spatially gather? = **3D Galaxy Clustering**

LARGE Scale O(10-100Mpc) trace the DM distribution - ruled by Gravity

Small Scale O(0.1-1Mpc) galaxy distribution within a virial radii of a DM halo - Gravity + Baryon physics

Measurable Statistics

- ◆ 2-point statistics: require more sample than 1pt
 - $\xi(\mathbf{s})$: 3D 2pt correlation function $dP_{12} = \bar{n}^2 [1 + \xi(\mathbf{x_1} \mathbf{x_2})] dV_1 dV_2$
 - $\Delta\Sigma(r_{\rm p})$: galaxy-galaxy lensing

For convenience,

projected correlation function $w_p(r_p) = 2 \int_{c}^{r_{\pi,\max}} dr_{\pi} \,\xi(r_p, r_{\pi})$

multipole $\xi_{\ell}(s) = \frac{2\ell+1}{2} \int_{-1}^{1} d\mu \,\xi(s,\mu) \mathcal{L}_{\ell}(\mu)$ $s^2 = r_{\rm p}^2 + r_{\pi}^2, \ \mu = \frac{r_{\pi}}{r_{\pi}}$

line-of-sight direction $r_{\pi} \left[\mathrm{Mpc}/h \right]$ 0.2 -20 $r_{\rm p} \left[{
m Mpc}/h \right]$ Reid+ (2014) Zehavi+ (2011) $w_p(r_p)$ $(h^{-1}$ Mpc) 100 10 0.1 10 $r_{\rm p} (h^{-1} {\rm Mpc})$

Measurable Statistics

- ✦ 1-point statistics: statistically easy to measure!
 - dN/dz: redshift distribution
 - $\phi(M_*)$: Stellar Mass Function: typically ~0.1-0.2dex uncertainty

Galaxy-Halo Connection

✦ Impossible to perform hydro simulations in a cosmological volume

- state-of-the-art *Illustris* L_{box}=70 Mpc/h c.f.: BOSS V_{survey} ~3(Gpc/h)³ Nelson+ (2015)
- phenomenological way to connect observed gals to halos in N-body
- *important even in cosmology* to construct a "realistic" mock catalog

♦ 3 major effective models for galaxy-halo connection

- Semi-Analytic Model (SAM)
- Halo Occupation Distribution (HOD)
- Subhalo Abundance Matching (SHAM)

Semi-Analytic Model

Introduce baryon physics in halo merging history

but MANY free parameters: e.g., Benson (2012, 2014), Lu et al. (2014) etc

§1. Introduction

Mo, van den Bosch, White (2010) ₆

◆ The most popular method to link galaxies with halos. Berlind & Weinberg (2002) etc

✦ How it works:

1) assume a functional form $P(N_{gal}|M_{halo})$ for central and satellite HODs

2) determine the HOD parameters to reproduce

or 3D correlation function or gal-gal lensing 3) randomly down sample to reproduce dn/dz

$$w_p(r_p) = 2 \int_0^{r_{\pi,\max}} dr_{\pi} \,\xi(r_p, r_{\pi})$$

Subhalo Abundance Matching (SHAM)

◆ The Subhalo Abundance Matching (SHAM) e.g. Kravtsov et al. (2004) etc

"a brighter galaxy tends to be hosted by a more massive (sub)halo"

 $n_{\rm gal}(>M_*) = n_{\rm halo}(>V_{\rm peak})$

Stellar-to-Halo Mass Relation (SHMR)

♦ A simple model

♦ observation (+HOD/SHAM)

Stellar-to-Halo Mass Relation (SHMR)

♦ A simple model

♦ observation (+HOD/SHAM)

The BOSS CMASS sample

The Baryon Oscillation Spectroscopic Survey (BOSS)

- a part of SDSS-III (2009-2014) Eisenstein et al. (2011)
- Two main cosmological samples:

LOWZ (z~0.32) & CMASS (z~0.57)

CMASS : "Constant Stellar Mass" sample

- redshift range: **0.43 < z < 0.70**
- DR12: 836,347 galaxies over 10,252 deg²
- designed to be complete at $\log(M_*/M_{\odot})\gtrsim 11.3\,$ Maraston et al. (2013)
- not all dead and red
 - ~25% has a SF disk Masters et al. (2011)
 - ~37% belongs to an intrinsically blue cloud Montero-Dorta et al. (2014)

The BOSS CMASS sample

The Baryon Oscillation Spectroscopic Survey (BOSS)

- a part of SDSS-III (2009-2014) Eisenstein et al. (2011)
- Two main cosmological samples:

LOWZ (z~0.32) & CMASS (z~0.57)

CMASS : "Constant Stellar Mass" sample

- redshift range: **0.43 < z < 0.70**
- DR12: 836,347 galaxies over 10,252 deg²
- designed to be complete at $\log(M_*/M_{\odot})\gtrsim 11.3\,$ Maraston et al. (2013)
- not all dead and red
 - ~25% has a SF disk Masters et al. (2011)
 - ~37% belongs to an intrinsically blue cloud Montero-Dorta et al. (2014)

Stripe82 Massive Galaxy Catalog (S82MGC)

Bundy, Leauthaud, SS+ (2015)

- SDSS Co-Adds photometric catalog (~2mag deeper) over 139.4 deg²
- Combined with UKIDSS NIR bands, obtained more robust M^{*} estimates

Jenny Greene

Princeton University

Professor

www.massivegalaxies.com

The main publications of the massive galaxy project working group can be found here.

PEOPLE

Alexie Leauthaud

Asst. Professor

The CMASS Selection Function

low z (high z) is dominated by color cut (luminosity cut).

S82-MGC: best constrain high-mass end, $\log(M_*/M_{\odot}) \gtrsim 11.5$ complete at $\log(M_*/M_{\odot}) \gtrsim 11.3$

CMASS ≠ Constant Mass!! redshift-dependent completeness

SS, Leauthaud+ (2015)

S82-MGC: best constrain high-mass end, $\log(M_*/M_{\odot}) \gtrsim 11.5$ complete at $\log(M_*/M_{\odot}) \gtrsim 11.3$

CMASS ≠ Constant Mass!! *redshift-dependent* completeness

1 (Gpc/h)³ Multidark N-body Simulation

halo

gal

1 (Gpc/h)³ Multidark N-body Simulation,

halo

gal

1 (Gpc/h)³ Multidark N-body Simulation,

halo

gal

1 (Gpc/h)³ Multidark N-body Simulation,

halo

gal

Step 2: Redshift dependence of stellar-mass completeness

explain dN/dz by design

But ... fails for 3D Clustering Signal

✦ The measurements show NO redshift evolution

SS, Leauthaud+ (2015)

♦ Our "Stochastic Color" model

Redshift- & Color-dependence

_

Failure of "Stochastic Color" model

- - CMASS SMFs show a higher \overline{M}_* at higher redshift
 - therefore, $\overline{M}_{\rm halo}$ also evolves with time
 - However, data shows NO redshift evolution
- ✦ Next step:
 - There must be an effect which can compensate the evolution
 - At fixed stellar mass, introduce correlation galaxy color with
 * halo formation epoch (or age)

* halo recent merger

* local density (or environment)

- Goal: explain DR12 $\,\hat{\xi}_\ell(s;color,z)$ & lensing

Conditional SHAM: Age Matching

✦ At fixed stellar mass, "a *redder* galaxy tends to be hosted by an *older* halo"

 $P(M_*|V_{\text{peak}}) \rightarrow P(M_*, color|V_{\text{peak}}, z_{\text{starve}})$ Hearin et al. (2013)

♦ 3 components in z_{starve}

- zform: (sub)halo's concentration c.f., Miyatake et al. (2015)
- z_{char} : when a (sub)halo get mass of $10^{12} M_{sun}$
- zacc: when a subhalo accreted onto its host halo
- ✦ The effect of assembly bias depends on definition of formation time

What is Peculiar Velocity of Galaxies?

✦ Difference b/w our SHAM model & HOD (Reid et al. 2014)

1) velocity of central

Rockstar: core velocity defined within [0-0.1] rvir

SO halos: core velocity defined within [0-0.33] rvir

c.f.) Guo et al. (2014): defined within [0-0.22] rvir + velocity bias

2) velocity of satellites SHAM: the same as central Reid et al. (2014): velocity of DM

What is Peculiar Velocity of Galaxies?

✦ Difference b/w our SHAM model & HOD (Reid et al. 2014)

1) velocity of central

Rockstar: core velocity defined within [0-0.1] rvir

SO halos: core velocity defined within [0-0.33] rvir

c.f.) Guo et al. (2014): defined within [0-0.22] rvir + velocity bias

 $\mathbf{v}_{\mathrm{DENS}} \setminus \mathbf{v}_{\mathrm{COMV}}$

-2 - 1 - 0 - 1 - 0 - 1 - 2

v_{DENS}-**v**_{COMV}

3 4

Impact of velocity definition

Summary

♦ A realistic model of the CMASS-Halo connection is essential

- The CMASS SMFs in S82MGC varies as a function of z, therefore a simple SHAM ('Stochastic Color') model is ruled out
- Hope is a conditional SHAM such as age matching by introducing correlation b/w galaxy color & halo formation epoch
- ✦ However, there are caveats at massive end:
 - no unique definition of "halo age"
 - ambiguity to define "velocity" of subhalo (or galaxy)

