Kinetic SZ 効果 ^{を通じた} _{宇宙論的} モーメンタム場

の理論モデルの構築

第四回観測論的宇宙論ワークショップ@京都大学 (11/18-20, 2015)

Naonori Sugiyama

Kavli IPMU (Yoshida lab.; CREST) Collaborators : T.Okumura and D.N.Spergel

Galaxy Number density

Temperature fluctuations

Gravitational potential

WMAP homepage

Galaxy Number density

Temperature fluctuations

Gravitational potential

Galaxy Number density

<u>CMB</u>

Temperature fluctuations

Gravitational potential

Importance of Velocity Information

Sensitive to gravity theories.

3D Galaxy Distributions

Baryon Acoustic Oscillation (BAO)

Eisenstein et al. (2005)

Redshift Space Distortions (RSD)

Alison L. Coil (2012)

Through RSD, the peculiar velocity correlation function can be measured.

Kinetic SZ effect

Observable

Density Correlation Function

Observable

kSZ Correlation Function

First Detection of kSZ

$$\hat{p}_{\rm kSZ}(r) = -\frac{\sum_{i < j} (\delta T_i - \delta T_j) c_{i,j}}{\sum_{i < j} c_{i,j}^2}$$

Hand et al. (2012) [See also Plank2015]

[Princeton University's Homepage]

Theoretical Modering of Momentum Field

Motivation

・観測量の説明

・ kSZ パワースペクトルの予言

- ・kSZ 高次モーメンタムの予言
- Multi-pole 展開

Theory vs. N-body

	Gravity	Resolusion	Box	Realization	Speed
Theory	Perturbation	Infinity	Infinity (Ideally)	Infinity	Fast
N-body	Full	Finite	Finite	Finite	Slow

Theoretical Prediction: Linear Theory

線形理論では,

速度場と密度場の相関のみが残る。

Theoretical Prediction: Linear Theory

Theoretical Prediction: N-body simulation

$$\sum_{i,j} \ [\hat{n} \cdot \vec{v_i} - \hat{n} \cdot \vec{v_j}] \ \delta_{\rm D} \ (\ \vec{r} - (\ \vec{x_i} - \vec{x_j} \) \)$$

Redshift Space Distortion

Coordinate transformation of particle positions

$$\vec{s} = \vec{x} + \frac{\hat{n} \cdot \vec{v}(\vec{x})}{aH} \hat{n},$$

Coordinate transformation of correlation function

$$\sum_{i,j} \left[\hat{n} \cdot \vec{v_i} - \hat{n} \cdot \vec{v_j} \right] \delta_{\mathrm{D}} \left(\vec{r} - (\vec{x_i} - \vec{x_j}) - \left(\frac{\hat{n} \cdot \vec{v_i}}{aH} - \frac{\hat{n} \cdot \vec{v_j}}{aH} \right) \hat{n} \right)$$

Simulation Result

Theoretical modering: Non-linear Theory

$$\langle \hat{n} \cdot \vec{p} , \rho \rangle = \bar{\rho}^2 \langle \hat{n} \cdot \vec{v} , \delta \rangle + \bar{\rho}^2 \langle \hat{n} \cdot \vec{v} \delta , \delta \rangle$$

RSD 込みの3点相関が必要。

Theoretical modering: Non-linear Theory

$$\langle \ \hat{n} \cdot \vec{p} \ , \ \rho \ \rangle = \bar{\rho}^2 \langle \ \hat{n} \cdot \vec{v} \ , \ \delta \ \rangle$$

$$+ \bar{\rho}^2 \langle \ \hat{n} \cdot \vec{v} \ \delta \ , \ \delta \ \rangle$$

より簡単な計算方法を提案。

Theoretical modering: Non-Linear Theory

$$\hat{\xi}(r) = \frac{V}{N_{\rm p}^2} \sum_{i,j} \frac{\left[\hat{n} \cdot \vec{v_i} - \hat{n} \cdot \vec{v_j}\right] \delta_{\rm D} \left(\vec{r} - (\vec{x_i} - \vec{x_j}) - \left(\frac{\hat{n} \cdot \vec{v_i}}{aH} - \frac{\hat{n} \cdot \vec{v_j}}{aH}\right) \hat{n}\right)$$

Fourier transformation

$$\hat{P}(k) = \frac{V}{N_{\rm p}^2} \sum_{i,j} \frac{\left[\hat{n} \cdot \vec{v_i} - \hat{n} \cdot \vec{v_j}\right] e^{-i\vec{k} \cdot (\vec{x_i} - \vec{x_j}) - i\vec{k} \cdot \left(\frac{\hat{n} \cdot \vec{v_i}}{aH} - \frac{\hat{n} \cdot \vec{v_j}}{aH}\right) \hat{n}}$$

Theoretical modering: Non-Linear Theory

Momentum Power Spectrum

$$\hat{P}_{\mathbf{p}}^{(n)}(\vec{k}) = \left(i\frac{aH}{\vec{k}\cdot\hat{n}}\right)^{n} \left[\frac{d^{n}}{d^{n}\gamma}\hat{P}_{\mathbf{p}}^{(0)}(\vec{k};\gamma)\right]\Big|_{\gamma=1}$$

Density Power Spectrum (Generating Function)

$$\hat{P}_{\rm p}^{(0)}\left(\vec{k};\gamma\right) \equiv \frac{V}{N_{\rm p}^2} \sum_{i,j} \left[e^{-i\vec{k}\cdot\vec{x}_{ij} - i\gamma\frac{\vec{k}\cdot\hat{n}}{aH}(\hat{n}\cdot\vec{v}_i - \hat{n}\cdot\vec{v}_j)} \right]$$

Theoretical modering: Non-linear Theory

Main result

$$\hat{P}_{\mathbf{p}}^{(n)}(\vec{k},\hat{n}) = \left(i\frac{aHf}{\vec{k}\cdot\hat{n}}\right)^{n}\frac{\partial^{n}}{\partial^{n}f}\hat{P}_{\mathbf{m}}(D,f,\vec{k},\hat{n}).$$

From

$$\vec{v} \propto f = rac{d \ln D}{d \ln a}$$
 for $f = \Omega_{\rm m}^{0.5}$

モーメントパワースペクトルの理論予言は, 密度パワースペクトルから求まる。

Theoretical modering: Non-linear Theory

Main result

$$\hat{P}_{\mathrm{p}}^{(n)}(\vec{k},\hat{n}) = \left(i\frac{aHf}{\vec{k}\cdot\hat{n}}\right)^{n}\frac{\partial^{n}}{\partial^{n}f}\hat{P}_{\mathrm{m}}(D,f,\vec{k},\hat{n}).$$

- ・摂動展開とは関係なく、一般的に成り立つ。
- ・どんな摂動論やfitting formula にも成り立つ。
- ・ハローでも成立する。
- ・密度パワースペクトル理論の妥当性のチェックにも使えるかも

Power Spectrum

パワースペクトルを計算する際には, 必ず空間積分が生じる。

パワースペクトルを分解すると。。。

$$= \int d^{3}q e^{-i\vec{k}\cdot(\vec{q}_{1}-\vec{q}_{2})} \left\langle 1 + \left(-i\vec{k}\cdot\left(\vec{\Psi}(\vec{q}_{1})-\vec{\Psi}(\vec{q}_{2})\right)\right) + \frac{1}{2}\left(-i\vec{k}\cdot\left(\vec{\Psi}(\vec{q}_{1})-\vec{\Psi}(\vec{q}_{2})\right)^{2} + \dots\right)\right\rangle$$

$$= \Gamma^{(1)}(k)P_{\text{lin}}(k) + \frac{1}{2}\int \frac{d^{3}k_{1}}{(2\pi)^{3}}\int \frac{d^{3}k_{2}}{(2\pi)^{3}} (2\pi)^{3}\delta_{\text{D}}\left(\vec{k}-\vec{k}_{1}-\vec{k}_{2}\right)\left[\Gamma^{(2)}(\vec{k}_{1},\vec{k}_{2})\right]^{2}P_{\text{lin}}(k_{1})P_{\text{lin}}(k_{2}) + \dots$$

重力とは関係なく, パワースペクトルを計算するために, <mark>無限のモードカップリング積分が必要。</mark>

Power Spectrum

$$\begin{split} P(\vec{k}) &= \left\langle \frac{V}{N_{\rm p}^2} \sum_{i,j} e^{-i\vec{k}\cdot(\vec{x}_i - \vec{x}_j)} \right\rangle \\ &= \int d^3 q e^{-i\vec{k}\cdot(\vec{q}_1 - \vec{q}_2)} \left\langle e^{-i\vec{k}\cdot\left(\vec{\Psi}(\vec{q}_1) - \vec{\Psi}(\vec{q}_2)\right)} \right\rangle \quad \text{, where} \quad \vec{q} = \vec{q}_1 - \vec{q}_2 \end{split}$$

計算方法:

- ・可能な限りパワースペクトルを展開せずに, 空間積分を直接計算する。
- Displacement Vector を摂動展開する。

Power Spectrum

$$\begin{split} P(\vec{k}) &= \left\langle \frac{V}{N_{\rm p}^2} \sum_{i,j} e^{-i\vec{k}\cdot(\vec{x}_i - \vec{x}_j)} \right\rangle \\ &= \int d^3 q e^{-i\vec{k}\cdot(\vec{q}_1 - \vec{q}_2)} \left\langle e^{-i\vec{k}\cdot\left(\vec{\Psi}(\vec{q}_1) - \vec{\Psi}(\vec{q}_2)\right)} \right\rangle \quad \text{, where} \quad \vec{q} = \vec{q}_1 - \vec{q}_2 \end{split}$$

Analogy to δN formalism

Curvature Perturbation

$$N\left(\bar{\rho}, \bar{\varphi}^a_*\right) + \zeta(\vec{x}) = N\left(\bar{\rho}, \varphi^a_*(\vec{x})\right)$$

通常はスカラー場で展開するところを。。。

$$N\left(\bar{
ho}, \bar{arphi}^a_*
ight) + \zeta(\vec{x}) = \int rac{dlpha}{2\pi} \left[e^{ilpha arphi_*(\vec{x})}
ight] N\left[ar{
ho}, lpha
ight]$$

無限のモードカップリングが計算可能?

Perturbation Theory

Full

N-body

Perturbation Theory

Full

N-body

Density Power Spectrum in

Gamma-Expansion method

(Wiener Hermite expansion (Sugiyama and Futamase), iPT, or etc.)

Momentum Correlation Function

Momentum Power Spectrum

Momentum Correlation Function

Momentum Power Spectrum

Perturbation Theory

Full

N-body

vs. SPT

Third Order PT

Momentum Correlation Function

Momentum Power Spectrum

Higher order of Momentum Field

$$\hat{\xi}(r) = \frac{V}{N_{\rm p}^2} \sum_{i,j} \frac{[\hat{n} \cdot \vec{v}_i - \hat{n} \cdot \vec{v}_j]^2}{[\hat{n} \cdot \vec{v}_i - \hat{n} \cdot \vec{v}_j]^2} \delta_{\rm D} \left(\vec{r} - (\vec{x}_i - \vec{x}_j) - \left(\frac{\hat{n} \cdot \vec{v}_i}{aH} - \frac{\hat{n} \cdot \vec{v}_j}{aH}\right) \hat{n}\right)$$

Linear Theory
$$\langle \hat{n} \cdot \vec{v}, \hat{n} \cdot \vec{v} \rangle$$

Halo Bias Free

Higher order of Momentum Field

Momentum Correlation Function

Momentum Power Spectrum

Summary

$$\hat{P}_{\mathbf{p}}^{(n)}(\vec{k},\hat{n}) = \left(i\frac{aHf}{\vec{k}\cdot\hat{n}}\right)^{n}\frac{\partial^{n}}{\partial^{n}f}\hat{P}_{\mathbf{m}}(D,f,\vec{k},\hat{n}).$$

Future Work

- Covariance matrix (computing)
- Halo (computing)
- Measurement of kSZ power spectrum

Extra Slides

Fisher Analysis

$$\frac{\partial P_{\rm s}^{(n)}(\vec{k})}{\partial \ln f} = n P_{\rm s}^{(n)}(\vec{k}) + \left(i\frac{aH}{\vec{k}\cdot\hat{n}}\right)^{-1} P_{\rm s}^{(n+1)}(\vec{k})$$

Measurable in simulations

Covariance Matrix

$$\operatorname{Cov}\left(\hat{P}_{\ell_{1}}^{(n_{1})}(k_{1}),\hat{P}_{\ell_{2}}^{(n_{2})}(k_{2})\right) = \frac{\delta_{k_{1},k_{2}}^{(\mathrm{K})}}{N_{\mathrm{mode}}(k_{1})}C_{\ell_{1}\ell_{2}}^{(n_{1})(n_{2})}(k_{1}) + T_{\ell_{1}\ell_{2}}^{(n_{1})(n_{2})}(k_{1},k_{2})$$

Gaussian term non-Gaussian term

Gaussian term

$$\begin{aligned} C_{\ell_1\ell_2}^{(1)(1)}(k) &= \left[1+(-1)^{\ell_2+1}\right] \frac{(2\ell_1+1)\left(2\ell_2+1\right)}{2} \int d\mu \mathcal{L}_{\ell_1}(\mu) \mathcal{L}_{\ell_2}(\mu) \\ &\times \left[-2P^{(0)(0)}(\vec{k})P^{(1)(1)}(\vec{k})+2P^{(1)(0)}(\vec{k})P^{(1)(0)}(\vec{k})\right]. \end{aligned}$$

Gaussian limit でも複雑なスケール依存性を持つ。 (単純にpower の2乗ではない。)

Gaussian vs. non-Gaussian

1st order Momentum Field <δ v> : Dipole

2nd order Momentum Field <v v> : Monopole Bias free

運動方程式の非線形性

 $\frac{d^2 \vec{x}_i}{dt^2} \propto \sum_j \frac{\vec{x}_i - \vec{x}_j}{|\vec{x}_i - \vec{x}_j|^3}$

Eulerian vs. Lagrangian Perturbation Theory

Eulerian PT

$$\begin{split} \rho &= \mathcal{O}\left(1\right) + \mathcal{O}\left(\delta_{\mathrm{L}}\right) + \mathcal{O}\left(\delta_{\mathrm{L}}^{2}\right) + \dots, \\ \vec{v} &= \mathcal{O}\left(\delta_{\mathrm{L}}\right) + \mathcal{O}\left(\delta_{\mathrm{L}}^{2}\right) + \dots \end{split}$$

Lagrangian PT

$$\begin{split} \rho &= & \text{Full}, \\ \vec{\Psi} &= & \dot{\vec{\Psi}} = \vec{v} = \mathcal{O}\left(\delta_{\text{L}}\right) + \mathcal{O}\left(\delta_{\text{L}}^2\right) + \dots \end{split}$$

展開するものが違う。

Eulerian vs. Lagrangian Perturbation Theory

Improved Eulerian PT

Resummation of Lagrangian PT

Perturbation Theory

Perturbation Theory

Density Power Spectrum in

Gamma-Expansion method

(Wiener Hermite expansion (Sugiyama and Futamase), iPT, or etc.)

