The Missing Satellite Problem Outside of the Local Group

Masayuki Tanaka, Masashi Chiba, Yutaka Komiyama Mikito Tanaka, Sakurako Okamoto, Takashi Okamoto

A possible small-scale flaw in LCDM

Moore et al. 1999

Sawala et al. 2014

Hyper Suprime-Cam

- Fully commissined.
- 5 broad-band filters: grizy
- Lots of narrow-band filters
- 1.5 deg phi field of view
- Very good image quality

MilkyWay (Licquia et al. 2015): MB=-20.8 +- 0.4 mag Mv=21.5 +- 0.4 mag M*=6x10^10Msun

> NGC779 : d=21.6 Mpc (Tully-Fisher; Sorce+ 2014) Seeing: 0.53 arcsec in g-band, ~0.7 arcsec in I-band Exp. = 30min each B=11.7mag (MB=-20.1), V=11.1mag (MV=-20.7) M*=5.0e10 Msun, M_DM=1.9e+12 Msun, r200=248.6 kpc or 37.6 arcmin

(a) The wide field of view of HSC(b) the light collecting power of Subaru

NGC2950 : d=22.7 Mpc (Tully-Fisher; Theureau+ 2007) Seeing: 0.48 arcsec in g-band, ~1.0 arcsec in i-band Exp. = 30min each B=11.6mag (MB=-20.3), V=10.9mag (MV=-20.9) M*=5.8e10 Msun, M_DM=2.3e+12 Msun, r200=268 kpc or 42.7 arcmin

Not just missing satellite problems, but more...

0

• Stellar tidal streams: a probe of galaxy-scale assembly (Duc et al. 2015, MNRAS)

- Spatial alignment of dwarf galaxies: another potential challenge to LCDM (Ibata et al. 2013, Nature)
- Gaps in stellar streams: potential probe of subhalo mass function (Carlberg 2012, ApJ)

Project #69: tidal streams around nearby galaxies

Objects with tidal features
Objects with no obvious tidal features

If I interpret the plots very naively, a merger rate is higher for more massive galaxies, which is qualitatively consistent with what we expect in LCDM.

Tanaka et al. in prep...

Masks and junks

We will mask (approximate) virial radii of near-field background galaxies later.

Dwarf galaxy selection

Dwarf candidates (~100 objects per HSC field of view) are visually inspected.

Simulations: detection completeness and flux biases

- 1. Assume dwarf galaxies have an exponential profile
- 2. Add artificial sources with a range of sizes and magnitudes to the real image
- 3. Detect objects
- 4. Apply masks
- 5. Match the input and output catalogs
- 6. Repeat the above procedure
- 7. Measure the detection completeness and biases in measured fluxes
- 8. Statistically correct for the incompleteness and flux bias

Simulations: detection completeness and flux biases

Detection completeness

Dwarf galaxies in the Local Group

Preliminary results – cumulative luminosity function

Simulations are from Okamoto (2013, MNRAS, 428, 718).

Preliminary results – cumulative luminosity function

Simulations are from Okamoto (2013, MNRAS, 428, 718).

Preliminary results – size-luminosity relation:

Dwarf galaxies in the Local Group
Dwarf galaxies around N779 + N2950

Preliminary results – spatial distribution

Hm...

- Look at the g-i color of the dwarfs quenching at low-mass.
- Our pilot observation was successful. We developed a method to identify dwarf galaxies and we learned a lot of lessons.
- The current statistics is too poor to draw any conclusions (but we are already comparable to MW + M31), and we now need more galaxies!

We started a survey to statistically address the missing satellite problem with Hyper Suprime-Cam on Subaru.

Our pilot observation shows:

- LFs of dwarf galaxies around N779 and N2950 show a factor of 2 scatter (but still consistent within statistical uncertainties)
- Okamoto et al. models seem to overpredict the abundance of dwarfs.

– MW LF is consistent with those of N779 and N2950.

Our pilot observation was successful and we learned a lot of lessons. We now move on to construct a statistical sample of nearby galaxies. Stay tuned...