

Shuntaro Mizuno (Waseda)

With Shuichiro Yokoyama (Rikkyo)

Phys. Rev. D 91, 123521 (arXiv: 1504.05505 [astro-ph.CO])

Primordial perturbations from inflation

Inflation- extremely rapid expansion of the early universe

We can get information of high energy physics by detailed observational results related with inflation

Predictions on primordial perturbations depend on inflation models

CMB vs LSS

CMB last scattering 2D sphere

© NASA

LSS can give more stringent constraint !!

Constraints on local-type NG from LSS

Constraints on bispectrum

Giannatonio et al `13

$$-36 < f_{
m NL}^{
m local} < 45~$$
 (95% CL)

Future constraints:

Yamauchi et al `14 SKA (Square Km Array) |f_{NL}| < 0.1 ?

Constraints on trispectrum Desjacques and Seljak `10 $\zeta(x) = \zeta_G(x) + \frac{9}{25} g_{\rm NL}^{\rm local} \zeta_G^3(x)$ $-3.5 \times 10^5 < g_{\rm NL}^{\rm local} < 8.2 \times 10^5 \quad (95\% \text{ CL})$

How about equilateral-type NG?

Integrated Perturbation Theory (iPT)

Matsubara `12, `13, Bernardeau et al `08

Multi-point propagator of biased objects

 $\left\langle \frac{\delta^n \delta_X(\mathbf{k})}{\delta \delta_{\mathrm{L}}(\mathbf{k}_1) \delta \delta_{\mathrm{L}}(\mathbf{k}_2) \cdots \delta \delta_{\mathrm{L}}(\mathbf{k}_n)} \right\rangle = (2\pi)^{3-3n} \delta(\mathbf{k}_1 + \mathbf{k}_2 + \dots + \mathbf{k}_n) \Gamma_X^{(n)}(\mathbf{k}_1, \mathbf{k}_2, \dots, \mathbf{k}_n)$

 δ_X : number density field of the biased objects

Gravitational evolution Lagrangian bias,

 $\delta_{\rm L}$: linear density field which is related with primordial curvature perturbation ζ through

$$\delta_{\rm L}(k) = \mathcal{M}(k)\zeta(k); \ \mathcal{M}(k) = \frac{2}{3} \frac{D(z)}{D(z_*)(1+z_*)} \frac{k^2 T(k)}{H_0^2 \Omega_{\rm m0}}$$
$$D(a) : \text{growth factor} \qquad T(k) : \text{transfer function}$$

spectra of biased objects (Halo/Galaxy) systematically !!

Multi-point propagators on large scales Matsubara `12

$$\Gamma_X^{(1)}(\mathbf{k}) \approx 1 + \underline{c_1^{\mathrm{L}}(k)}$$

$$\Gamma_X^{(2)}(\mathbf{k}_1, \mathbf{k}_2) \approx F_2(\mathbf{k}_1, \mathbf{k}_2) + \left(1 + \frac{\mathbf{k}_1 \cdot \mathbf{k}_2}{k_2^2}\right) \underline{c_1^{\mathrm{L}}(\mathbf{k}_1)} + \left(1 + \frac{\mathbf{k}_1 \cdot \mathbf{k}_2}{k_1^2}\right) \underline{c_1^{\mathrm{L}}(\mathbf{k}_2)} + \underline{c_2^{\mathrm{L}}(\mathbf{k}_1, \mathbf{k}_2)}$$

$$F_2(\mathbf{k}_1, \mathbf{k}_2) = \frac{10}{7} + \left(\frac{k_2}{k_1} + \frac{k_1}{k_2}\right) \frac{\mathbf{k}_1 \cdot \mathbf{k}_2}{k_1 k_2} + \frac{4}{7} \left(\frac{\mathbf{k}_1 \cdot \mathbf{k}_2}{k_1 k_2}\right)^2$$

 c_n^{L} : renormalized bias function defined in Lagrangian space

$$\left\langle \frac{\delta^n \delta_X^{\mathrm{L}}(\mathbf{k})}{\delta \delta_{\mathrm{L}}(\mathbf{k}_2) \cdots \delta \delta_{\mathrm{L}}((\mathbf{k}_n)} \right\rangle = (2\pi)^{3-3n} \delta(\mathbf{k}_1 + \mathbf{k}_2 + \dots + \mathbf{k}_n) c_n^{\mathrm{L}}(\mathbf{k}_1, \mathbf{k}_2, \dots, \mathbf{k}_n)$$

The other parts include the information of displacement field in Lagrangian perturbation theory

Renormalized bias function

For the mass function, we adopted Sheth-Tormen model given by

$$f_{\rm ST}(\nu) = A(p) \sqrt{\frac{2}{\pi}} \left[1 + (q\nu^2)^{-p} \right] \sqrt{q\nu} e^{-q\nu^2/2}$$

$$\nu = \delta_c / \sigma_M \qquad p = 0.3, q = 0.707$$

$$A(p) = \left[1 + \Gamma(1/2 - p) / (\sqrt{\pi}2^p) \right]^{-1}$$

$$c_n^{\rm L}(\mathbf{k}_1, \dots, \mathbf{k}_n) \approx b_n^{\rm L}(M) \qquad (|\mathbf{k}_i| \to 0)$$

$$b_1^{\rm L}(M) = \frac{1}{\delta_c} \left[q\nu^2 - 1 + \frac{2p}{1 + (q\nu^2)^p} \right]$$

$$b_2^{\rm L}(M) = \frac{1}{\delta_c^2} \left[q^2\nu^4 - 3q\nu^2 + \frac{2p(2q\nu^2 + 2p - 1)}{1 + (q\nu^2)^p} \right]$$

no scale-dependence on large scales

Effects on Halo/galaxy power spectrum

Diagrams for the power spectrum of the biased objects

 $\implies \propto \mathcal{M}(k)^2 P_{\zeta}(k) \propto k$ $\Gamma_X^{(1)}(\mathbf{k}) P_{\mathrm{L}}(k) \Gamma_X^{(1)}(-\mathbf{k})$ large scale limit $k \ll p$ typical scale of the biased objects $\Gamma_X^{(1)}(\mathbf{k}) B_{\mathrm{L}}(k, p, |\mathbf{p} + \mathbf{k}|) \Gamma_X^{(2)}(\mathbf{p}, -\mathbf{p} - \mathbf{k})$ $\begin{array}{|c|c|c|c|c|} & & & & \\ \hline & & & \\ \hline & & \\ large scale limit \end{array} & \begin{array}{|c|c|c|c|} \propto \mathcal{M}(k)k^{-3} \propto k^{-1} & \text{for} & B_{\zeta}^{\text{local}} \\ \hline & & \\ \propto \mathcal{M}(k)k^{-1} \propto k & \text{for} & B_{\zeta}^{\text{equil}} \end{array} \end{array}$ no enhancement

Effects on Halo/galaxy bispectrum

Yokoyama, Matsubara, Taruya `13

Diagrams for the bispectrum of the biased objects

Halo/galaxy bispectrum with $f_{\rm NL}^{\rm equil}$

Halo/galaxy bispectrum with $f_{\rm NL}^{\rm equil}$

Making use of halo/galaxy bispectrum, we can obtain $\Delta f_{\rm NL}^{\rm equil} < 20$ by future surveys !!

Sefusatti and Komatsu `07

Primordial trispectrum in general k-inflation

Arroja, SM, Koyama, Tanaka `09, Chen et al `09, (Smith, Senatore, Zaldarriaga `15)

$$S = \frac{1}{2} \int d^{4}x \sqrt{-g} [M_{\text{Pl}}^{2}R + 2P(X, \phi)] \quad X \equiv -(1/2)g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi$$

$$\zeta \qquad \zeta \qquad \zeta \qquad \langle \Omega | \delta\phi(0, \mathbf{k}_{1})\delta\phi(0, \mathbf{k}_{2})\delta\phi(0, \mathbf{k}_{3})\delta\phi(0, \mathbf{k}_{4})|\Omega\rangle^{\text{CI}}$$

$$= -i \int_{-\infty}^{0} d\eta \langle 0 | [\delta\phi_{I}(0, \mathbf{k}_{1})\delta\phi_{I}(0, \mathbf{k}_{2})\delta\phi_{I}(0, \mathbf{k}_{3}) \times \delta\phi_{I}(0, \mathbf{k}_{3}) \times \delta\phi_{I}(0, \mathbf{k}_{4}), \frac{H_{I}^{(4)}(\eta)}{9}] | 0 \rangle,$$

$$H_{I}^{(4)}(\eta) = \int d^{3}x [\underline{\beta_{1}\delta\phi_{I}^{4}} + \underline{\beta_{2}\delta\phi_{I}^{2}(\partial\delta\phi_{I})^{2}} + \underline{\beta_{3}(\partial\delta\phi_{I})^{4}}],$$
contact interaction
$$\zeta \qquad \langle \Omega | \delta\phi(0, \mathbf{k}_{1})\delta\phi(0, \mathbf{k}_{2})\delta\phi(0, \mathbf{k}_{3})\delta\phi(0, \mathbf{k}_{4})|\Omega\rangle^{\text{SE}}$$

$$= -\int_{-\infty}^{0} d\eta \int_{-\infty}^{\eta} d\bar{\eta} \langle 0 | [[\delta\phi_{I}(0, \mathbf{k}_{1})\delta\phi_{I}(0, \mathbf{k}_{2}) \times \delta\phi_{I}(0, \mathbf{k}_{3})\delta\phi(0, \mathbf{k}_{4})]\Omega\rangle^{\text{SE}}$$

$$= -\int_{-\infty}^{0} d\eta \int_{-\infty}^{\eta} d\bar{\eta} \langle 0 | [[\delta\phi_{I}(0, \mathbf{k}_{1})\delta\phi_{I}(0, \mathbf{k}_{2}) \times \delta\phi_{I}(0, \mathbf{k}_{3})\delta\phi_{I}(0, \mathbf{k}_{4}), \frac{H_{I}^{(3)}(\eta)]}{H_{I}^{(3)}(\eta)}] | 0 \rangle,$$

$$H_{I}^{(3)}(\eta) = \int d^{3}x [\underline{Aa\delta\phi_{I}^{5}} + \underline{Ba\delta\phi_{I}(\partial\delta\phi_{I})^{2}}],$$

$$T_{\zeta}(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}, \mathbf{k}_{4}) = T_{\zeta}^{\dot{\sigma}^{4}} + T_{\zeta}^{\dot{\sigma}^{2}(\partial\sigma)^{2}} + T_{\zeta}^{(\partial\sigma)^{4}} + T_{\zeta}^{\dot{\sigma}^{6}} + T_{\zeta}^{\dot{\sigma}^{4}(\partial\sigma)^{2}} + T_{\zeta}^{\dot{\sigma}^{2}(\partial\sigma)^{4}}$$

Trispectra from contact interactions

Concrete expressions

$$\frac{T_{\zeta}^{\dot{\sigma}^{4}}}{(2\pi^{2}\mathcal{P}_{\zeta})^{3}} = \frac{221184}{25} \frac{g_{\mathrm{NL}}^{\dot{\sigma}^{4}}}{(\sum k_{i})^{5}k_{1}k_{2}k_{3}k_{4}}
\frac{T_{\zeta}^{\dot{\sigma}^{2}(\partial\sigma)^{2}}}{(2\pi^{2}\mathcal{P}_{\zeta})^{3}} = -\frac{27648}{325} g_{\mathrm{NL}}^{\dot{\sigma}^{2}(\partial\sigma)^{2}} \left[\frac{k_{1}^{2}k_{2}^{2}(\mathbf{k}_{3} \cdot \mathbf{k}_{4})}{(\sum k_{i})^{3}\Pi k_{i}^{3}} \left(1 + 3\frac{(k_{3} + k_{4})}{\sum k_{i}} + 12\frac{k_{3}k_{4}}{(\sum k_{i})^{2}} \right) + \text{perms.} \right]
\frac{T_{\zeta}^{(\partial\sigma)^{4}}}{(2\pi^{2}\mathcal{P}_{\zeta})^{3}} = \frac{165888}{2575} g_{\mathrm{NL}}^{(\partial\sigma)^{4}} \frac{[(\mathbf{k}_{1} \cdot \mathbf{k}_{2})(\mathbf{k}_{3} \cdot \mathbf{k}_{4}) + \text{perms.}]}{\sum k_{i}\Pi k_{i}}
\times \left(1 + \frac{\sum_{i < j} k_{i}k_{j}}{(\sum k_{i})^{2}} + 3\frac{\Pi k_{i}}{(\sum k_{i})^{3}} \sum \frac{1}{k_{i}} + 12\frac{\Pi k_{i}}{(\sum k_{i})^{4}} \right)$$

These trispectra also appear in effective field theory of inflation !! • Constraints from CMB (95 % CL) Smith, Senatore, Zaldarriaga `15

 $(-9.38 \times 10^6) < g_{NL}^{\dot{\sigma}^4} < (2.98 \times 10^6) \ (-2.34 \times 10^6) < g_{NL}^{(\partial\sigma)^4} < (0.19 \times 10^6)$

Effects on Halo/galaxy bispectrum

Diagrams for the bispectrum of the biased objects

Halo/galaxy bispectrum with $g_{ m NL}^{(\partial\sigma)^4}$

Adopting maximum allowed values by CMB observations

Contributions from $g_{\rm NL}^{(\partial \sigma)^4}$ and $f_{\rm NL}^{\rm equil}$

Shape-dependence of Halo/galaxy bispectrum

So far, we have limited the equilateral configuration ($k_1 = k_2 = k_3 = k$)

But the folded configuration ($k_1/2 = k_2 = k_3 = k$) is also helpful to distinguish $B_{tris}^{(\partial \sigma)^4}$ with B_{bis}^{equil}

Conclusions and Discussions

• Halo/galaxy bispectrum was shown to be useful tool to distinguish equilateral-type NG from gravitational nonlinearity.

 $B_{\rm grav} \propto k^2$, $B_{\rm bis}^{\rm equil} \propto k^0 \implies \Delta f_{\rm NL}^{\rm equil} < 20$

• We can also constrain primordial trispectrum generated by general k-inflation based on halo/galaxy bispectrum.

 $B_{\rm tris}^{\dot{\sigma}^2(\partial\sigma)^2, \ (\partial\sigma)^4} \propto k^0 \qquad \Longrightarrow \Delta g_{\rm NL}^{\dot{\sigma}^2(\partial\sigma)^2, \ (\partial\sigma)^4} = \mathcal{O}(10^6) ?$

 Constraints on more general class of inflation models which give equilateral-type bispectrum k-inflation (scalar-exchange interaction)
 Ghost inflation, Lifshitz scalar, Galileon inflation,....