将来の21cm線放射の観測による 暗黒エネルギーの性質の解明

東京大学 宇宙線研究所 大山祥彦

郡和範(KEK) 関ロ豊和(ヘルシンキ大学) 高橋智(佐賀大学)

観測的宇宙論ワークショップ 2015/11/19

Oynamical dark energy

 $d(z) = \int_0^z \frac{dz'}{H(z')}$

Expansion ratio of the Universe (Hubble parameter)

$$H^{2} = H_{0} \left[\Omega_{m} a^{-3} + \Omega_{r} a^{-4} + \Omega_{k} a^{-2} + \left[\Omega_{X} \exp \left[3 \int_{a}^{1} \frac{da'}{a'} (1 + w_{X}(a')) \right] \right] \right]$$

Contribution of the dark energy

Comoving distance : Equation of state (EOS) $w_X(a') \equiv \frac{p_X(a')}{\rho_X(a')}$

2

We investigate sensitivities of 21 cm line to the dynamical dark energy model ($w_x \neq \text{constant}$).

1. Parametrizations of dynamical dark energy

2. 21cm line observations

3. Future constraints of dynamical dark energy

4. Summary

1. Parametrizations of dynamical dark energy

2. 21cm line observations

3. Future constraints of dynamical dark energy

4. Summary

Dynamical dark energy model

一般にdark energyのEOS $w_X(a')$ は時間依存

 $w_X(a')$ の時間依存性はモデルによって異なる

ここでは特定のmodelを用いず, 現象論的に数個のパラメータを導入することで EOSの時間依存性を表しそれらのパラメータを 制限するという方法を考慮する

Parametrization 1 [Chevallier, Polarski 2001; Linder 2003]

$$w_X(z) = w_0 + (1-a)w_1 = w_0 + \frac{z}{1+z}w_1$$

A very simple model : w_X is proportional to the scale factor a.

Parametrization 2 [Hannestad, Mortsell 2004]

$$w_X(z) = w_0 w_1 \frac{a^p + a_s^p}{w_1 a^p + w_0 a_s^p} = w_0 w_1 \frac{1 + \left(\frac{1+z}{1+z_s}\right)^p}{w_1 + w_0 \left(\frac{1+z}{1+z_s}\right)^p}$$

 w_X suddenly changes at a transition redshift $z_s = \frac{1}{a_s} - 1$.

Parametrization 3 [Wetterich 2004]

$$w_X(z) = \frac{w_0}{[1+b\log(1+z)]^2}$$

Early dark energy : the contribution of dark energy has a relatively large impact in the early epoch.

Current constraint of dynamical dark energy Planck 2015 (Parametrization 1)

1. Parametrizations of dynamical dark energy

2. <u>21cm line observations</u>

3. Future constraints of dynamical dark energy

4. Summary

\diamondsuit Cosmological 21 cm radiation

 T_{S} の定義: $\frac{\overline{n_{1}}}{n_{0}} \equiv \frac{\overline{g_{1}}}{g_{0}} \exp\left(-\frac{h\overline{v_{21}}}{k_{B}T_{S}}\right)$ <u>n₁, n₀: スピン1, o 状態の数密度</u>

 T_{s} に影響する効果 (1) 水素原子, 電子, 陽子との<u>衝突</u> (2) CMB光子の吸収, 放射 (3) Lya光子の吸収, 放射 (4) 中性水素比*x_{HI}の変化* $x_{HI} \equiv n_{HI}/n_H$

\diamond 21cm line fluctuation δ_{21}

$$\delta_{21} \equiv \frac{\Delta T_b - \Delta \overline{T}_b}{\Delta \overline{T}_b}$$

$\diamondsuit \text{ Power spectram of } 21\text{cm } P_{21}(k,\mu)$ $\langle \tilde{\delta}_{21}(k) \tilde{\delta}_{21}^*(k') \rangle \equiv (2\pi)^3 \delta^D(k-k') P_{21}(k,\mu)$

$$P_{T_b} \equiv \left(\bar{T}_b\right)^2 P_{21}$$

$$= \left(\bar{T}_b / \bar{x}_{\rm HI}\right)^2 \left\{ \left[\bar{x}_{\rm HI}^2 P_{\delta\delta} - 2\bar{x}_{\rm HI} P_{x\delta} + P_{xx} \right] + 2\mu^2 \left[\bar{x}_{\rm HI}^2 P_{\delta\delta} - \bar{x}_{\rm HI} P_{x\delta} \right] + \mu^4 \bar{x}_{\rm HI}^2 P_{\delta\delta} \right\}$$

$$\begin{cases} P_{\delta\delta} : \text{ Matter power spectrum} \\ P_{x\delta} = \bar{x}_i P_{\delta_x\delta} : \text{Density-ionization power spectrum} \\ P_{xx} = \bar{x}_i^2 P_{\delta_x\delta_x} : \text{Ionization power spectrum} \end{cases}$$

лHI

IOI

Lauonnacuoi

$igodoldsymbol{+}$ u-space vector : $oldsymbol{u}$

Fluctuation of 21 cm line
$$\delta_{21} \equiv \frac{\Delta T_b - \Delta \overline{T}_b}{\Delta \overline{T}_b}$$

Its power spectrum is
 $P_{21}(\boldsymbol{u}) = \frac{1}{d_A(z)^2 y(z)} P_{21}(\boldsymbol{k}) \begin{bmatrix} d_A(z) : \text{commoving} \\ \text{angular diameter distance} \\ y(z) = \frac{\lambda_{21}(1+z)^2}{H(z)} \end{bmatrix}$

<u>*u*</u>: u-space vector

Fourier dual of angle θ_{χ} , θ_{y} and frequency (line of sight direction) space: $\Theta \equiv \theta_{\chi} \mathbf{e}_{\mathbf{x}} + \theta_{y} \mathbf{e}_{\mathbf{y}} + \Delta f \mathbf{e}_{\mathbf{z}}$

$$\boldsymbol{u} = (u_1, u_2, u_3) = \left(k_1 \frac{d_A(z)}{2\pi}, k_2 \frac{d_A(z)}{2\pi} k_3 \frac{y(z)}{2\pi}\right)$$

We can get information about $d_A(z)$ and H(z) from this relation between k and u space.

♦ 21cm line observations

21CMA

Next generation ~2020 SKA (Square Kilometer Array)

in Australia 2018:

Construction starts.

http://www.skatelescope.org/

• Omniscope

From Max Tegmark's presentation

Max Tegmark, Matias Zaldarriaga

Phys. Rev. D 82, 103501 (2010)

1. Parametrizations of dynamical dark energy

2. 21cm line observations

3. <u>Future constraints of</u> <u>dynamical dark energy</u>

4. Summary

$$F_{\alpha\beta} \equiv \left\{ \frac{\partial^2 \ln L(\boldsymbol{\theta} | \boldsymbol{x})}{\partial \theta_{\alpha} \partial \theta_{\beta}} \right\}$$

 $L(\boldsymbol{\theta}|\boldsymbol{x})$:Likelihood function

 $\theta_{\alpha\beta}$:theoretical parameters x:data vector

Cramér-Rao bound

 $V_{\alpha\beta}(\widehat{\boldsymbol{\theta}}) \geq (F^{-1})_{\alpha\beta} \quad V_{\alpha\beta}(\widehat{\boldsymbol{\theta}})$: variance of $\widehat{\theta}$

We can estimate minimum variance of $\hat{\theta}$.

Cosmological parameter set

Fiducial parameters

 $\left(\Omega_m h^2, \Omega_b h^2, \Omega_\Lambda, n_s, A_s, \tau, Y_p\right)$

 $= (0.1417, 0.02216, 0.6914, 0.9611, 2.214 \times 10^{-9}, 0.0952, 0.25)$

Parametrization of dark energy models

(1) Parametrization 1 $w_0 = -0.9, w_0 = 0.2$

(2) Parametrization 2 $w_0 = -0.9, w_0 = -0.35,$

 $a_s = 0.5, p = 100$

(3) Parametrization 3 $w_0 = -0.9, b = 1$

(Preliminary result)

A constraint of SKA 1 + Planck is twice as good as that of Planck only.

(Preliminary result)

Stage IV CMB: (we assume a CMBPol like experiment)

A constraint of SKA 2 + stage IV CMB is twice as good as that of Stage IV CMB only.

(Preliminary result)

For $a_s \sim 0.5$, constraints of 21 cm + Planck are several times as good as that of Planck only.

95% C.L. Contour -0.1 Stage IV Stage IV CMB + SKA1 CMB + SKA2 -0.2 + Omniscope +Omniscope -0.3 ×1 Х -0.4 +SKA 2 • +SKA 1 -0.5 Model2:w₀ = -0.9, w₁ = -0.35, a_s =0.5, p=100 -0.6 -1.4 -1.2 -0.8 -0.6 -0.4 -0.2 -1 W_O

(Preliminary result)

For $a_s \sim 0.5$, constraints of 21 cm + stage IV CMB are several times as good as that of stage IV CMB only.

(Preliminary result)

For the early dark energy model, constraints of 21 cm + Planck are several times as good as that of Planck only.

(Preliminary result)

1. Parametrizations of dynamical dark energy

2. 21cm line observations

3. Future constraints of dynamical dark energy

4. Summary

We studied sensitivities of 21cm line to the dynamical dark energy.

SKA can strongly improve constraints of dynamical dark energy.

For suddenly transition model, constraints of 21 cm + Planck are **several times** as good as that of Planck only.

For early dark energy model, constraints of the combination are several times as good as that of Planck only.