フェムトスコピー研究の発展と 大西さんとの思い出

クォーク・ハドロン・原子核物理の潮流と展望 大西さん追悼研究会 2024年3月3日

大西さんとの縁

• 2014.4~ 院生時代

• 2019.3: YIPQS 2019@京都 フェムトスコピーに参入

高エネルギー衝突実験における ハドロン運動量相関

ΛΛ

Morita, Furumoto, Ohnishi PRC 91, 024916 (2015)

*p*Ω-(ΩΩ)

- Strong enhancement (C > 1) at small momenta ==> Coulomb interaction ⁹ 0.4 ^{0.4} ⁹ 0.2 ^{0.4} ⁹ 0.2 ^{0.2} ⁹ 0.2 ^{0.4} ⁹ 0.2 ^{0.2} ¹ 1 ⁹ 0.2 ¹ 1 ¹ 1 ⁹ 0.2 ¹ 1 ¹ 1

 K^-p 相関

Koonin-Pratt-Lednicky-Lyuboshits-Lyuboshits (KPLLL) formula

$$C(\mathbf{q}) = \int d^3 \mathbf{r} \, S(\mathbf{r}) \, |\psi^{(-)}(q;r)|^2 + \sum_{j \neq i} \omega_j \int d^3 \mathbf{r} \, \underline{S_j(\mathbf{r})} \, |\psi_j^{(-)}(q;r)|^2 \qquad \overset{S}{\mathbb{R}}$$

S.E. Koonin, PLB 70 (1977) S. Pratt et. al. PRC 42 (1990) R. Lednicky, et.al. Phys. At. Nucl. 61(1998)

• Contribution from coupled-channel source

$$K^-p, \bar{K}^0n, \pi^0\Sigma^0, \pi^+\Sigma^-, \pi^-\Sigma^+, \pi^0\Lambda$$

$$\begin{array}{c} FSI \\ FSI \\ p \end{array} \begin{array}{c} K^{-} \\ p \end{array} \begin{array}{c} C_{K^{-}p} \end{array}$$

- Enhance C(q)
- Enhance cusp structure
- ω_i : production rate

(compared to measured channel)

Kamiya, Hyodo, Morita, Ohnishi, Weise, PRL 124 (2020) 13, 132501

(

• $N\Xi$ - $\Lambda\Lambda$ HAL QCD potential K. Sasaki et al. [HAL QCD], NPA 998 (2020), 121737.

> H ダイバリオン:NE付近のunphysical pole(ぎりぎり束縛しない)

p p Ξ - Λ 相関 YK, K. Sasaki, T. Fukui, K. Morita, K. Ogata, A. Ohnishi, T. Hatsuda, *Phys.Rev.C* 105 (2022) 1,014915

シンション ユニタリ極限近傍のクーロン効果

Coulomb interaction with LL formula + Gamow correction

- クーロンなし
 - LLモデル

- クーロンあり(引力の場合)
 - クーロンはガモフファクター

- 低運動量: クーロン効果が支配的
- 束縛状態(a₀ > 0): ==> ディップ

YK, K. Sasaki, T. Fukui, K. Morita, K. Ogata, A. Ohnishi, T. Hatsuda, *Phys.Rev.C* 105 (2022) 1,014915

Scope of Femtoscopic study of HHI

A. Ohnishi @ A J-PARC-HI evening #8, Nov.30, 2021, Online 39

Ohnishi-san's talk slide @ J-PARC-HI 8th

DD* /DD* 相関(チャーム)

• DD^* and $D\overline{D}^*$ sector

- ・閾値に近いペア($D^0 \overline{D}^{*0} / D^0 \overline{D}^{*+}$) で顕著な相関
- 散乱長に応じたソースサイズ依存性
- ・将来の実験データから内部構造の
 判別が可能
- YK, T. Hyodo, A. Ohnishi, Eur.Phys.J.A 58 (2022

 $a_0 \equiv \mathscr{F}(E = E_{\rm th})$

■ 有限密度でのNA相互作用

- <u>ハイペロンパズル</u>解決の鍵

-> stiffer EOS

Chi3モデル: スキルムA ポテンシャル<- Chiral EFT w/ 三体力
 A. Jinno. K. Murase, Y. Nara, and A. Ohnishi arXiv:2306.17452

$$U_{\Lambda}^{\text{local}} = a_1^{\Lambda} \rho_N + a_2^{\Lambda} \tau_N - a_3^{\Lambda} \triangle \rho_N + a_4^{\Lambda} \rho_N^{4/3} + a_5^{\Lambda} \rho_N^{5/3}$$

- Well reproduces the binding energy of Λ in hypernuclei
- NΛ ポテンシャルモデル
 - LY-IV

		D	E. Lan	skov and	Y.	Yamamoto, l	PRC 55, 2330 ((1997)	
	•	HP/	12	5	(Chi2mom	Chi3mom	LÝ-IV	ΗΡΛ2
		a1		r fans^.3x) .	Dh	im a352c2C	Shy-33888130	Phy 500889	1 (2302.72
	~ Λ	a2	Me¥	.fm^5)	い	× بر عليه بر	6 47.28	16.00	23.73
L	λ1	a3	(MeV	fm^5)		52.18	36.56	20.00	29.84
	Nucl	ach (MAY	fm^4)	Ga	au s 3.56.96	. -405.68	480.54	581.04
		a5	(MeV	ťm^5)		31,000.80	2 1256.74	0.00	0.00
	ρ	ŔŴ	SD (het/c/	π)	$e_{1.59}$	0.75	0.74	0.78
		J /	(Me)	V)	ma	33.45	-30.03	-29.78	-31.23
		Ľ/	^g (Mě	V)	-115	-23.55	9.32	-36.24	-46.10
		K_/		We see	e th	e effett	rep533303P	core ² 17.80	277.40
		m*/	Vm∕∖	C		0.73	B 0.70	0.87	0.82
• Unknown a_3^{-1} : fit to reproduce the $\frac{1}{2}$ He experimental $E_R = 3.12$ Me									

A. Jinno, Y. Kamiya, T. Hyodo, A. Ohnishi in prep.

• $\alpha\Lambda$ 相関 with Chi3 model

- Characteristic lineshapes for weak binding system $(^{5}_{\Lambda}\text{He})$
 - Strong source size dependence
 - Dip structure
- C(q) with Chi3 is slightly suppressed from that with LY-IV
 - Effect of the repulsive core emerges in small source size
- 斥力芯効果
 - NΛ Isle potential Kumagai-Fuse, S. Okabe, Y. Akaishi, PLB 345 (1995)

$$V(r) = V_1 e^{-r^2/b_1^2} + V_2 e^{-r^2/b_2^2}$$

repulsive coreattractive part(short range)(long range)

 V_{isle}

• C(q): Much stronger suppression compared to LY-IV

Strength of the repulsive core can be tested with

 $C_{\alpha\Lambda}(q)$ from small source!

4

αΞ⁻相関と⁵_ΞH

• $\alpha \Xi$ folding $\# \tau \rightarrow \nu \psi$ with HAL QCD

K. Sasaki et al., NPA, 121737 (2019).

E. Hiyama, M. Isaka, T. Doi, and T. Hatsuda, PRC (2022).

potential	EB [MeV]	Model
Vfolding	0.45	HAL QCD base folding V (original)
2 Vfolding	2.16	<i>E_B</i> chiral model (H. Le, et al EPJA(2021)
Vfolding / 2	(Unbound)	Weaker interaction case

- Result with mid source (R = 3 fm)
 - V_{folding} : suppression from Coulomb
 - $2V_{\text{folding}}$: bump structure around $q \sim 100 \text{ MeV}/c$
 - $V_{\text{folding}}/2$: enhancement from Coulomb

 ${}_{\Xi}^{5}$ H can be distinguished by the source size dependence

- Result with small source (R = 1 fm)
 - $V_{\rm folding}$ and $V_{\rm folding}/2$ unnatural bump at $q \sim 100~{\rm MeV}/c$
 - $2V_{\text{folding}}$: deep bump structure

Effect by the strong repulsion core

Y. Kamiya, A. Jinno, T. Hyodo, A. Ohnishi in prep.

大西さん安らかにお眠りください