Probing the stellar nucleosynthesis and explosion with X-ray and gamma-ray observations of supernova remnants

Hiroya Yamaguchi (ISAS/JAXA, Univ of Tokyo)

Talk plan

- Physics of supernova remnants (SNRs)
 - Why X-ray and gamma-ray observations are crucial
 - What we can learn from SNRs
- Nucleosynthesis and related physics in the core of both core-collapse and thermonuclear (Type Ia) supernovae that can be probed by SNR observations

Supernova remnants

Spatially extended objects that offer up-close view of stellar explosions

cf. SNe are found more frequently (each day) but far too distant to resolve

Chemical composition and distribution (i.e., origin of matter) can be investigated in detail.

Supernova remnants

 $V_{\rm s} \approx 3000$ km/s

$$k_B T = 3/16 \cdot \mu m_p V_s$$

 $\approx 10 \text{ keV}$

→ X-ray emitting

→ Atoms are highly ionized

X-ray/γ-ray spectra

Atomic transition

 $Fe^{24+} + e^{-} \rightarrow Fe^{24+*} + e^{-}$ $Fe^{24+*} \rightarrow Fe^{24+} + h\nu$

Radioactive decay

⁴⁴Ti \rightarrow ⁴⁴Sc^{*} + ν_e ⁴⁴Sc^{*} \rightarrow ⁴⁴Sc + γ

Bright in X-rays	Pros	Real distribution tracable
Shock heating needed	Cons	Faint, Age dependent

Narrow band image

Chandra and NuSTAR view of Cassiopeia A

Si (1.9 keV)

> Fe (6.7 keV)

SN type discrimination

SN type discrimination

Fe ejecta ionization state (Yamaguchi+2014)

Massive stars explode in denser environment

Massive stars explode more asymmetrically

(Lopez+2011) 12 etric G15.9+0.2 W49B N49B **6** (N206 **RCW 103** 100 **Kes 73** 0506-68.0 Cas A 0548-70.4 G292.0+1 N132D G11.2-0.3 + B0453-685 Kes 79 P₂ / P₀ (x10⁻⁷) G344.7-0.1 Kepler • 0509-67.5 **10**⊧ G337.2-0.7 Tycho • 0534-69.9 0519-69.0 DEM L71 G272.2-3.2 N103B **Symmetric** 0.1 10 $P_3 / P_0 (x10^{-7})$

X-ray Morphology

Origin of asymmetric explosion

Simulations of CC SNe suggest distribution of ⁵⁶Ni depends sensitively on progenitor structure (Wongwathanarat et al. 2015)

Lighter elements (e.g., O) are less affected by explosion asymmetries (e.g., Wongwathanarat et al. 2013, Janka et al. 2017)

Wongwathanarat et al. 2015

Observational test using X-rays

Heavier elements distributed more asymmetrically than lighter elements

Neutron star kick: theory

Neutron stars commonly have $v \ge 100$ km/s

If a neutron star is recoiled by asymmetric mass ejection, NS goes opposite to heavy ejecta (e.g., Wongwathanarat et al. 2013, Janka 2017)

If the NS kick arises from anisotropic neutrino emission, NS goes in the same direction as heavy ejecta

(e.g., Fryer & Kusenko 2006)

Wongwathanarat et al. 2013

Neutron star kick: observations

Holland-Ashford et al. 2017

Katsuda et al. 2018

Asymmetric mass ejection scenario supported

44Ti in Cassiopeia A

⁴⁴Ti is generated in the innermost, high-entropy region, so the best species to trace the physics of core-collapse SNe

⁴⁴Ti initial mass ≈ 2 x 10⁻⁴ M_☉

Grefenstette et al. 2014; 2017

⁴⁴Ti emission highly redshifted

44Ti in Cassiopeia A

⁴⁴Ti is generated in the innermost, high-entropy region, so the best species to trace the physics of core-collapse SNe

Grefenstette et al. 2014; 2017

⁴⁴Ti in Cassiopeia A

Wongwathanarat et al. 2017

⁴⁴Ti (and ⁵⁶Ni) are expelled in the hemisphere opposite to the NS kick direction
Asymmetric core-collapse explosion is the key for both NS kick and efficient production of ⁴⁴Ti

How does the nuclear burning proceed? What is the mass of the progenitor WD?

Ejecta distribution in SNR la

Chandra deep observation G344.7-0.1 (PI: HY)

Fe ejecta surrounded by Si ejecta shell (Fukushima, HY+ in prep.)

Ejecta distribution in SNR la

Pre-explosion WD mass

SNe Ia show almost uniform brightness (used as cosmological standard candles)

Pre-explosion WD mass somehow regulated?

Explodes with the mass near the Chandrasekhar limit (M_{Ch}) after mass accretion from companion?

This scenario recently doubted Sub-*M*_{Ch} scenario supported more often

Difference in nucleosynthesis

Electron capture: $p + e^{-} \rightarrow n + v_e$ (only in $\sim M_{Ch}$ WD) High abundance of n-rich species (⁵⁵Mn, ⁵⁸Ni) expected

Density-dependent nucleosynthesis

Discovery of Mn- & Ni-rich SNR Ia

Comparison with models

near-Mch SNe Ia

 $\textbf{sub-M}_{Ch} \textbf{ SNe } Ia$

Leung & Nomoto (2018)

Leung & Nomoto (2019)

3C 397 originate from near-M_{Ch} with a VERY high central density and relatively high metallicity

Implication for galactic chemical evolution

Mass ratio

Cr, Mn, Ni/Fe ratios are too high compared to the solar values

Other Type Ia SNRs always show sub-solar ratios

	3C 397	Solar
Cr/Fe	2.1-3.4%	1.3%
Mn/Fe	1.8-3.3%	0.8%
Ni/Fe	12-24%	5.4%

If 3C 397 is a typical near- M_{Ch} SNR Ia, or if high ρ_c (~ 5 x 10⁹ g cm⁻³) is typical for near- M_{Ch} progenitors, near- M_{Ch} WDs must not be the majority.

Sub-*M*_{Ch} SNe Ia are required to achieve the solar abundance of the Fe-peak elements.

Summary

- X-ray and gamma-ray observations of SNRs are crucial to understand the origin of matter and chemical evolution of galaxies
- Focused on 'innermost' nucleosynthesis in both core-collapse and thermonuclear SNe
 - High-entropy products (e.g., ⁴⁴Ti) are efficiently synthesized in highly-asymmetric CC SNe
 - Neutron-rich species (e.g., ⁵⁵Mn, ⁵⁸Ni) are efficiently synthesized in high-density SNe Ia

Back-up slides

X-ray image

Atomic transition Fe^{24+*} \rightarrow Fe²⁴⁺ + h ν

Radioactive decay $^{44}\text{Ti} \rightarrow ^{44}\text{Sc}^* + \gamma \rightarrow ^{44}\text{Sc} + \gamma$

pros: Bright in X-rays

reverse shock

cons: Need to be heated by reverse shock Hot Iron 6.7 keV pros: Traces real distribution

cons: Relatively faint Age dependent Radioactive Titanium 68 keV

Ejecta distribution as a probe for explosion mechanisms

Density-dependent nucleosynthesis

More Ni and Mn produced in ~M_{Ch} SN Ia

Suggested association

	SD	DD
Primary/ejecta mass	M Ch	sub-M _{Ch}
Electron capture	Yes	No
Secondary	MS or RG	WD
CSM	Yes	No

Central density effect

Leung & Nomoto 2017

Metallicity effect

Leung & Nomoto 2017

To disentangle the degeneracy... Cr's (and Mn's) origin/distribution are the key

NuSTAR!?

emission from the <u>radioactive</u> element ⁴⁴Ti.

NuSTAR!?

Objective of 3C 397 observations

Comparison of morphologies of Ni (NuSTAR) and Cr (XMM)

If identical, high density progenitor is very likely

Theoretical predictions

Let's find SNe Ia with high Ni/Fe and Mn/Fe ratios

Classical DD model (80s~90s)

The secondary WD accretes onto the primary so the total mass exceeds M_{Ch} (Webbink 1984)

Explosion unsuccessful

Collapse into NS via O-Ne-Mg WD (Saio+1985)

Updated DD model

Violent merger (e.g., Pakmor+2010, 2012)

Explodes within ~ 100 s

 $M_1 \sim 1.1 M_{\odot}, M_2 \sim 0.9 M_{\odot}$ required for typical SN Ia Hard to explain observed SN rate.

Latest DD model

Dynamically-driven double degenerate double detonation (D⁶: e.g., Shen+2018)

Accretion of tidally stripped materials from secondary ignites He detonation on primary surface

→ Triggers C detonation

<u>Secondary WD remains intact</u> → sub-M_{Ch} ejecta + high-v WD

Laser Interferometer Space Antenna (LISA)

ESA's mission to be launched in ~2034

Laser Interferometer Space Antenna (LISA)

DECIGO

Can directly detect WD-WD mergers!