

r-process and kilonovae

Shinya Wanajo (Albert Einstein Institute)

The 15th International Symposium on Origin of Matter and Evolution of Galaxies (OMEG15), July 2-5, 2019, YITP, Kyoto

- 1. neutron star mergers and Galactic chemical evolution
- 2. mass ejection from a neutron star merger
- 3. radioactive sources of the kilonova/GW170817 (Wanajo 2018)
- 4. radioactive heating in disk ejecta (Fujibayashi, Wanajo, et al. 2019, in prep.)

discovery of neutron star mergers

6 (possible) neutron star mergers have been reported by LIGO/Virgo

- 1 neuron star merger, GW170817, with EM emission (kilonova)
- higher frequency than expected (0-5 events per year in O3)

OMEG15

Shinya WANAJO

what we learned from the kilonova are ...

total ejecta mass of M_{ej} ≈ 0.03-0.06 M_☉ and the lanthanide mass fraction of X_{lan} ≈ 0.001-0.01 (see also Cowperthwaite+2017, etc.)
 no evidence of heavy r-nuclei production (gold, platinum, ...)

Shinya WANAJO

problems in Galactic chemical evolution

 ❖ delay time of neutron star mergers (> a few 10 Myrs)
 → [Fe/H] > -2 only (see also Wehmeyer+2015)

❖ delay time distribution of neutron star mergers (~ $t^{-\gamma}$, γ ≈ 1) → flat [Eu/Fe] trend (see also Hotokezaka+2018)

problems solved?

- ❖ Galactic halo is an ensemble of sub-halos with different chemical evolutions
 → r-enhanced stars were born in low-mass (UFD-like) sub-halos at low metallicity
- ☆ a problem in the Galactic disk may be solved by considering complex star formation (Shönrich+2019) or radial migration (Tsujimoto+2019)?
 → or another site plays a role? (see a talk by N. Nishimura)

n-richness (or Y_e) in dynamical/disk ejecta

nucleosynthesis in dynamical/disk ejecta

production of r-elements with few light trans-iron elements (see also Goriely+2015; Radice+2018)

production of light trans-iron elements with few r-elements (see also Just+2015; Lippner+2017)

what are the r-process elements?

r-process "residuals"= solar abundances– s-process component

elements of A > 90
 are made by the r process (including
 2nd and 3rd peaks)

 but, those of A < 90,
 "light trans-iron nuclei", can be made in NSE or QSE (including 1st peak)

free expansion (FE) models

Wanajo 2018

free expansion (FE) models that mimic the physical conditions of merger outflows (either of dynamical and disk ejecta)

$$\rho(t) = \rho_0 \left(1 + \frac{t}{R_0/v}\right)^{-3}$$

★ three parameters: $(v/c, S, Y_e)$ = (0.05-0.30, 10-35, 0.01-0.50)with intervals (0.05, 5, 0.01)
in total N_{FE} = 1800 models
(S is in units of k_B/nuc)

let's think of two fittings to r-residuals

heating rates

A ≥ 69 (light trans-iron dominant)
 not scaled by a power law but rather by an exponential during 1-15 days

 $A \ge 90$ (r-process dominant)

well scaled by a power law as in previous studies (e.g., Metzger et al. 2010)

heating rates from individual β -decays

 $A \ge 69$ (light trans-iron dominant)

★ two decay chains are identified: ⁶⁶Ni (2.3 d) → ⁶⁶Cu (5.1 m) → ⁶⁶Zn ⁷²Zn (1.9 d) → ⁷²Ga (14 h) → ⁷²Ge $A \ge 90$ (r-process dominant)

a number of A ~ 130 nuclei contribute as in previous studies (e.g., Metzger+2010)

comparison with kilonova of GW170817

 $A \ge 69$ (light trans-iron dominant)

light curve can be well explained by the decays of ⁶⁶Ni and ⁷²Zn $A \ge 90$ (r-process dominant)

light curve is inconsistent with the heating rate

if this is the case for GW170817...

Wanajo 2018

nucleosynthesis in disk ejecta

DD2-135; Fujibayashi, Wanajo+2019, in prep.

2D simulation with general relativistic and (approx.) neutrino transport

three combinations of EOSs and (equal) neutron star masses:

DD2-135 (1.35 M_{\odot}) DD2-125 (1.25 M_{\odot}) SFHo-125 (1.25 M_{\odot})

- ✤ no BH formation (< 2-4 s)</p>
- $\bigstar (M_{\rm ej}, v_{\rm ej}/c)$
 - = (0.073, 0.089): DD2-135
 - = (0.092, 0.074): DD2-125
 - = (0.042, 0.109): SFHo-125

role of neutrinos

Fujibayashi, Wanajo+2019, in prep.

- mass ejection is predominantly due to viscosity heating (assuming a_{vis} = 0.04), but
- neutrino flux is high enough to reach equilibrium (Y_e ~ 0.35 at freezeout; ~ 1 MeV) similar to CCSNe

same problems as CCSNe?

 $Y_{\rm e}$ distribution for a 9.6 M_{\odot} CCSN; Müller 2016

- In CCSN simulations, a simplified neutrino transport schemes (like those used in this study) underpredict Y_e values by ∆Y_e ~ 0.1
- ★ therefore, we test the cases with Y_e distributions systematically shifted by ΔY_e ~ +0.05 and +0.1

nucleosynthesis

comparison for different models

higher Y_e cases obtain more nuclei of A = 50-70 including ⁵⁶Ni and ⁶⁶Ni

similar results among three models with dominant production of A = 50-100but few heavy r-nuclei

OMFG15

heating rates from β -decays

★ two dominant decay chains:
⁵⁶Ni (6.1 d) → ⁵⁶Co (77 d) → ⁵⁶Fe
⁶⁶Ni (2.3 d) → ⁶⁶Cu (5.1 m) → ⁶⁶Zn

higher Y_e cases exhibit greater heating rates (by factors of 2 and 4) because of more abundant ⁵⁶Ni and ⁶⁶Ni

summary and outlook

kilonova associated with GW170817

- dominant radioactive energy likely from ⁶⁶Ni and ⁵⁶Ni (not r-nuclei)
- ejecta are dominated by light trans-iron elements from disk ejecta
- no evidence for production of heavy r-nuclei beyond lanthanides
- problems to be solved
 - ejecta mass cannot be constrained better than a factor of several
 - more accurate neutrino transport is needed for better Y_e prediction
 - what can be a "smoking gun" of heavy r-nuclei production?