Progress of Nuclear Astrophysics and neutrino physics

IAU S350 Weiping Liu July 1-6, 2019, Kyoto

Supported by the National Natural Science Foundation of China, Grant No. 11490560, 2015

W. P. Liu OMEG, July, 2019

China Institute of Atomic Energy (CIAE), Beijing, China

Nuclear Astrophysics roadmap

W. P. Liu OMEG, July, 2019

Joint efforts

LUNA, JUNA	
Direct in Gamow windo (underground)	W Nuclear as sensitivity
TRIUMF, NSCL,	
Direct in higher energy	Shell mode calculation
CIAE, TAMU, CNS	
In-direct measurements	
RIBF, CSR, NSCL	Abn ~ f(Xsec,
Nuclear decay	
CSR, GSI, TRIUMF	Shell mode
Nuclear mass	
W. P. Liu OMEG, July, 2019	

strophysics and study

el and mean field

Mass, $T_{1/2}$

el and mean field

Nuclear input database

RECLIB...

Mass and decay rate database

Major facilities in China

W. P. Liu OMEG, July, 2019

W. P. Liu OMEG, July, 2019

B. Guo, Z. H. Li, M. Lugaro et al., , Astrophys. J. 756, 193 (2012)

Big question, big impact, big challenge

W. P. Liu OMEG, July, 2019

Underground advantage and key to success

W. P. Liu OMEG, July, 2019

How to measure reactions underground

HPGe

BGO

ding

W. P. Liu OMEG, July , 2019

Cosmic

LUNA nuclear astrophysics

R Broggini C, et al. 2010. Annu. Rev. Nucl. Part. Sci. 60:53–73

W. P. Liu OMEG, July, 2019

³He(³He,2p)⁴He PRL82(1999)5205 ²H(³He,p)⁴He PLB482(2000)43 $^{2}H(p,\gamma)^{3}He$ NPA 706(2002)203 ³He(α,γ)⁷Be PRL 97(2006)122502 $^{14}N(p,\gamma)^{15}O$ PLB 591(2004)61 $^{15}N(p,\gamma)^{16}O$ PRC82, 055804(2010) $17O(p_{\gamma})^{18}F$ PRL 109, 202601(2012) $^{25}Mg(p,\gamma)^{26}Al$ PLB 707(2012) 60

Uncertainty remained for key reactions

Physics	Reaction
Massive star	¹² C(α,γ) ¹⁶ O
s-process neutron source	¹³ C(a,n) ¹⁶ O
Galaxy ²⁶ Al source	²⁵ Mg(p,γ) ²⁶ AI
F aboundace	¹⁹ F(p,a) ¹⁶ O

W. P. Liu OMEG, July, 2019

+	\wedge

Current	Desired
60%	20%
890 keV	220-380 keV
60%	10%
279 keV	140-230 keV
20%	5%
92 keV	50-300 keV
80 %	5 %
189 keV	50-250 keV

CJPL-II milestone

W. P. Liu OME

CJPL-II status 2016-2018

W. P. Liu OMEG, July, 2019

JUNA inauguration Mar. 1, 2016

CJPL-II experiments

Nuclear Astrophysics JUNA 400 kV

More experiments...

LXe PANDAX+

W. P. Liu OMEG, July, 2019

Weiping Liu ¹²C(α,γ)¹⁶O

P

Xiaodong Tang

¹³C(α,n)¹⁶O

lon source

Zhihong Li

Supported by the National Natural Science Foundation of China, Grant No. 11490560, 2015 W. P. Liu OMEG, July, 2019

<u>#</u>

1801

Jianjun He Gang Lian

Bao Quncui, Liangting Sun lon source and acc.

+

JUNA IAC

M. Wiescher	U
T. Motobayashi	RI
H. Wang	TC
C. Brune	0
M. Junker	IN
D. Robertson	U
F. Strieder	SD
D. Leitner	
Q. Yue	

1st meeting July 2015, 1st formal IAC meeting March, 2016, 2nd mini meeting Sept. 2017

W. P. Liu OMEG, July, 2019

IND KEN CAS hio IFN IND SMT

BL

HU

IAC, CJPL, Mar. 1, 2016

Mini IAC, Shanghai, Sept. 19, 2017

JUNA funding

CJPL-II / Tsinghua ~\$3+M

Electronics, shielding (NSFC \$1.0M)

Ion source (CAS \$0.65M), accelerator (CNNC \$1.6M)

Lab CJPL II (CNNC, Tsinghua, NSFC \$3+M)

total \$8+ M

W. P. Liu OMEG, July, 2019

CAS \$0.65M CNNC \$1.6 M

Detectors (NSFC \$1.3M)

JUNA Accelarator

30° analyzing Acceleration discusses discusses 90° analyzing	Goal	
magnet Acceleration diagnostic box magnet Beam Beam I Solenoids L J Sole	Intensity, mA	Energy,ke
diagnostic box Solenoids ECR source	10	70-40
High-voltage platform	10	70-40
		140-8
	Achieved	
Beam Magnetic Target	Intensity, mA	Energy,k
lens chamber	12	350
He	- 2.5	350
reaction physics current precision ref. JUNA Gamow		
limit (keV) (%) limit (keV) energy (keV)		_
$^{12}C(\alpha,\gamma)^{16}O$ Massive star 890 60 [17] 380 220-380	See: L. H. C	hen,
¹³ C(α ,n) ¹⁶ O HI synthesis 279 60 [18] 200 140-230	Poster No	13
²⁵ Mg(p, γ) ²⁶ Al Galaxy ²⁶ Al 92 20 [13] 58 50-300		
$^{19}F(p,\alpha)^{16}O$ F abundance 189 80 [19] 100 50-350		

Superconducting ECR

solid and gas detector and electronics

W. P. Liu OMEG, July, 2019

JUNA expertise

Tandem for test experiment

CJPL low background facility

lon source and accelerator status

Ion source installed, 1 mA tested; 7/31/16, reach 16 mA in Oct.

Beam line W. P. Liu OMEG, July, 2019

First beam of proton with 260 keV and 3 mA on May 27, 2017

Accelerator tank established

Beam dignostics

Ground test experiment

Content	Detector	Beam	Energy(keV)	Intensity
Energy calibration	HPGe (35%)	H⁺	150-250	100 uA
Target of ²⁵ Mg	HPGe (35%)	H⁺	230	100 uA
²⁵ Mg(p, γ) ²⁶ Al	HPGe (175%)	H⁺	210-330	0.1-1 mA
²⁵ Mg(p, γ) ²⁶ Al	BGO	H⁺	210-330	0.1-1 mA
¹⁹ F(p, αγ) ¹⁶ O	BGO	H⁺	150-300	10-100 uA
Target of ¹³ C		He+	400	6 mA
Target of ¹² C		He ⁺	400	2 mA

W. P. Liu OMEG, July, 2019

Simulation for BGO

¹²C implantation target in Lanzhou

coated gold W. P. Liu OMEG, July , 2019

$12C(\alpha,\gamma)^{16}O$ status

10		Det	E, kev	σ , b	ε, %	C/
	$d\sigma/d\Omega$	HPGe	600	10 -13	1.4	1
	σ_{tot}	BGO	450	10 -15	60	

High energy point for ${}^{12}C(a, \gamma){}^{16}O$

Direct Measurement of ¹²C(α,γ)¹⁶O at

high energy points 2017.10

3 MV accelerator in SCU

beam : He²⁺, 5 euA

two 175% rel. HPGe detector

¹²C implanted target: thickness 1×10¹⁸ atoms/cm²

Ec.m. = 2.42 MeV (3.23 MeV) E1 resonance

(420 keV), reaction rate 1 s⁻¹

Ec.m. = 2.69 MeV (3.59 MeV) E2 resonance

(0.62 keV) , reaction rate 10 s⁻¹

W. P. Liu OMEG, July, 2019

Z. H. Li et al., Sci. China Phys 58. 082002(2015). W. P. Liu OMEG, July, 2019

25Mg(p,y)26Al status

W. P. Liu OMEG, July , 2019

Stable under 1.5 C bombardment !

J. J. He et al., Sci. China Phys 59. 652001(2016

$^{13}C(a,n)^{16}O$ status,

W. P. Liu OMEG, July , 2019

1. LN₂ 2. Beam Pipe 3. ¹³C Target 4. Plastic Scintillator 5. 3He tubs 6. PMTs

Detector status

HPGe, $\Delta E = 2 \text{ keV}@1332 \text{ keV}$; ε = 0.8 % @7 MeV

1. GWL-300-15

- 2. 5 cm oxygen-free copper
- 3. 20 cm lead
- 4. 1 mm Cr
- 5. 15 cm boron-doping polyethylene

BGO, $\Delta E/E = 13\%@662 \text{ keV}$; $\varepsilon = 60\%@7 \text{ MeV}$

Target and shielding,

Beam			
	Chamber	Beam Dump	

- Oxygen-free copper
- Ŧ Lead
 - Polyethylene
 - Anti radon box

W. P. Liu OMEG, July, 2019

Counts

Implantation target analysis

Rotation target tested 30/8/16

P. Wang et al., NIM A 902 (2018) 88–94

特	急					
	Ŧ	家发展	和改	革委员	员会	
	教		育		部	
	科	学	技	术	部	
	财		政		部	7-14-
	中	Ŧ	科	学	院	XII
	中	E	T.	程	院	
	Ŧ	家自然和	科学基	金委	员会	
	王	家国防	方科主	支工业	上局	
	中	央军委	专装省	备发展	美部	

件成熟、前期准备工作充分的重大科技基础设施建设项目。"十三五" 期间,优先项目包括:空间环境地基监测网(子午工程二期),大型 光学红外望远镜,极深地下极低辐射本底前沿物理实验设施,大型 地震工程模拟研究设施,聚变堆主机关键系统综合研究设施,高能 同步辐射光源,硬X射线自由电子激光装置,多模态跨尺度生物医 学成像设施,超重力离心模拟与实验装置,高精度地基授时系统。

Under design, start construction end of 2018, part of National science plan • W. P. Liu OMEG, July, 2019

3D layout

l ah construction

Nov. 11, 2017, MOU with Yalong Co.

HPGe and BGO background in CJPL-I 2016

in press W. P. Liu OMEG, July, 2019

Duration	Contents
15, Mar May	Gamma
May - July	Gamma with shielding
Aug Oct.	BGO
Oct Dec.	Neutron
16, Nov17. Jan.	BGO, LaBr
17, Feb	Neutron

Period/Task	Accelerator	Laboratory	Experiment
2015 Q1-Q2	design, layout	layout	simulation, physics
2015 Q3-Q4	parts fabrication	on site study	background, test
2016 Q1-Q2	ion source, tube	design	background, prototype
2016 Q3-Q4	assemble	detailed design	target test
2017 Q1-Q2	beam on ground	design	fabrication
<mark>2018</mark>	ground tuning	construction	ground test
2019	underground	shield setup	ground experiment
2020		new detector layout	¹⁹ F(p,α) ¹⁶ O, ²⁵ Mg(p,γ) ²⁶ Al
2021	²⁺ He ion source		¹³ C(α,n) ¹⁶ O, ¹² C(α,γ) ¹⁶ O
2022			¹² C(α,γ) ¹⁶ O

Future milestone

June **Ground experiment** finished

2019

June Accelerator beam underground

2020

December Accelerator to underground

December ²⁵Mg data, ¹³C start to underground

2021

September ¹⁷F data & NIC2020

December Project commission

June ¹³C data ¹²C start

JUNA expectation

reaction	beam	inten.	Ec.m.	cross section	target	eff.	CTS	BKD
		(emA)	(keV)	(mb)	atoms/cm ²	%	(/day)	(/day)
$^{12}\mathrm{C}(\alpha,\gamma)^{16}\mathrm{O}$	$^{4}\text{He}^{2+}$	2.5	380	10 ⁻¹³	10 ¹⁸	75	0.7	0.7
$^{13}C(\alpha,n)^{16}O$	$^{4}\mathrm{He}^{1+}$	10	200	10 ⁻¹²	10 ²¹	20	7	1
$^{25}Mg(p,\gamma)^{26}Al$	${}^{1}\mathrm{H}^{1+}$	10	58	$\omega \gamma 2.1 \times 10^{-13} \text{ eV}$	$0.6 \mu g/cm^2$	38	1.4	0.7
$^{19}F(p,\alpha)^{16}O$	${}^{1}\mathrm{H}^{1+}$	0.1	100	7.2×10^{-9}	$4 \mu g/cm^2$	75	27	0.7

reaction	physics	current	precision	ref.	JUNA	Gamow	precisio
		limit (keV)	(%)		limit (keV)	energy (keV)	(%)
$^{12}\mathrm{C}(\alpha,\gamma)^{16}\mathrm{O}$	Massive star	890	60	[17]	380	220-380	test
$^{13}C(\alpha,n)^{16}O$	HI synthesis	279	60	[18]	200	140-230	20
$^{25}Mg(p,\gamma)^{26}Al$	Galaxy ²⁶ Al	92	20	[13]	58	50-300	15
$^{19}{ m F}(p,\alpha)^{16}{ m O}$	F abundance	189	80	[19]	100	50-350	10

W. P. Liu OMEG, July, 2019

JUNA road map

α gas target

400 kV p, a, 1-10 pmA 2019-

4 MV ¹²C, ¹⁶O, 0.1-1 mA 2022-

Underground wish list

H燃烧	
3 He(αv) 7 Be	12
$2H(\alpha \sqrt{6})$ i	16
3 He(3 He 2 n) 4 He	20
⁷ Be(p.v) ⁸ B	18
$12C(n_{1})13NI$	22
$\frac{14N(n v)150}{14}$	24
$15N(p,\gamma),(p,\alpha)^{16}O,12C$	
¹⁷ O(p,γ),(p,α) ¹⁸ F, ¹⁴ N	
$^{18}O(p,\gamma),(p,\alpha)^{19}F,^{15}N$	
$^{19}F(p,\gamma),(p,\alpha)^{20}Ne,^{16}O$	22
	20

JUNA-I

JUNA-II

户子源 $^{3}C(\alpha,n)^{16}O$ $^{2}Ne(\alpha,n)^{25}Mg$ ⁵Mg(α,n)²⁸Si ²⁶Mg(α,n)²⁹Si

 $^{2}C(\alpha,\gamma)^{16}O$ $^{5}O(\alpha,\gamma)^{20}Ne$ $^{3}O(\alpha,\gamma)^{22}Ne$ $^{2}Ne(\alpha,\gamma)^{26}Mg$ $^{4}Mg(\alpha,\gamma)^{28}Si$

He 燃烧 $^{D}Ne(\alpha,\gamma)^{24}Mg$

γ 天文学 $^{25}Mg(p,\gamma)^{26}AI$:

٠

Bay,

together with a spectral distortion A new type of neutrino oscillation is thus discovered

aya Bay experiment

Summary

Electron anti-neutrino disappearance is observed at Daya

 $R = 0.940 \pm 0.011$ (stat) ± 0.004 (syst),

 $\sin^2 2\theta_{13} = 0.092 \pm 0.016 \text{ (stat)} \pm 0.005 \text{ (syst)}$ χ^2 /NDF = 4.26/4

5.2 σ for non-zero θ_{13}

stand

concrete

Y. F. Wang

Non-accelerator science

- Jiangmen reactor neutrino observatory JUNO, 2008-2021, 300M\$, 20 kT LS, 700 m underground, Kaiping, Guangdong
- 20 GW+ NP 50 km away. For mass hierarchy (4σ in 6 yr), θ_{12} , Supernovae, Geo-u, etc..
- 6K home made MCP-PMT ready, electronic in progress, tunnel schedule got some delay due to geological complexities.

Muon Veto 20kton Liquid Scintillator 20 kton pure water **6 kton mineral oil** ~15000 20 PMTs Coverage~80% **150020" Veto PMTs**

Jiangmen 20 kT tank

Non-accelerator science project-l

- Jinping underground lab CJPL: CJPL-I **2010 for CDEX and PandaX dark matter** experiment get full results
- CJPL-II, 2019-2023 for above expansion and JUNA. With national budget of 1.24 **BRMB**, initial construction, end 2019 FCD planned, Dec. 2020 test operation expected.
- Jinping underground LXe dark matter experiment PandaX. 2014 120 kg, 2018 580 kg, ton level in future; ~60 T-day exposure, exclusion 8.6×10⁻⁴⁷ cm²@ 40 GeV/c². Ton level PandaX-II near completion, will be in CJPL-II.

Design of CJPL-II

PandaX in CJPL-I

Summary • Direct measurement is a key data for nuclear astrophysics

- Underground JUNA is in progress, up to now, accelerator get
- start experiment in 2020
- In near future JUNA and other underground labs will be able to the massive star evolution W. P. Liu, Z. H. Li, J. J. He, X. D. Tang, G. Lian et al., Sci. China Phys 59. 642001(2016).

W. P. Liu OMEG, July, 2019

proton beam, detectors near ready, target under development, lab. construction under way, on site detector measurement finished

• JUNA is now under ground tuning, will site turning 2019, hopefully

answer to key questions of most important reactions that driving

JUNA collaboration

Weiping Liu¹, Zhihong Li¹, Jianjun He^{2,15}, Xiaodong Tang^{2,17}, Gang Lian¹, Bing Guo¹, Jun Su^{1,15}, Yunju Li¹, Baoqun Cui¹, Liangting Sun², Qi Wu², Zhu An⁴, Qinghao Chen³, Xiongjun Chen¹, Yangping Chen¹, Zhijun Chen², Baoqun Cui¹, Xianchao Du¹, Changbo Fu⁵, Lin Gan¹, Guozhu He¹, Alexander Heger⁶, Suqing Hou², Hanxiong Huang¹, Ning Huang⁴, Baolu Jia², Liyang Jiang¹, Shigeru Kubono⁷, Jianmin Li³, Kuoang Li², Tao Li², Maria Lugaro⁸, Xiaobing Luo⁴, Shaobo Ma², Dongming Mei⁹, Yongzhong Qian¹⁰, Jiuchang Qin¹, Jie Ren¹, Liangting Sun², Wanpeng Tan¹¹, Isao Tanihata¹², Peng Wang⁴, Shuo Wang¹³, Youbao Wang¹, Qi Wu², Shiwei Xu², Shengquan Yan¹, Litao Yang³, Xiangqing Yu², Qian Yue³, Sheng Zeng¹, Huanyu Zhang¹, Hui Zhang³, Liyong Zhang², Ningtao Zhang₂, Qiwei Zhang¹, Tao Zhang⁵, Xiaopeng Zhang⁵, Xuezhen Zhang², Zimin Zhang², Wei Zhao³, Zuo Zhao¹, Chao Zhou¹, Yuhua Chen¹⁴, Ningchun Xu¹⁴, Shiyong Wu¹⁴, Xuyuan Guo¹⁴, Jifang Zhou¹⁴, Shengming He¹⁴, Jinhua Ning¹⁴, Jianfeng Yue¹⁴

¹China Institute of Atomic Energy, Beijing, China, ²Institute of Modern Physics, Lanzhou, China ³Tsinghua University, Beijing, China, 4Sichuan University, Chengdu, China ⁵Shanghai Jiaotong University, Shanghai, China, ⁶Monash University, Melbourne, Victoria, Australia, ⁷RIKEN, Institute of Physical and Chemical Research, Wako, Japan, ⁸Konkoly Observatory of the Hungarian Academy of Sciences, Hungary, ⁹South Dakota State University, Brookings, South Dakota, US ¹⁰Minnesota University, Minneapolis and Saint Paul, Minnesota, US, ¹¹University of Notre Dame, Notre Dame, Indiana, US, ¹²Osaka University, Suita, Osaka, Japan ¹³Shangdong University, Beihai, China ¹⁴ Yalong River Basin Hydropower Development Co., Ltd. ¹⁵Beijing Normal University ¹⁶Zhongshan University ¹⁷University of Chinese Academy of Sciences

W. P. Liu OMEG, July, 2019

