

Mapping the resonances of ¹²C+¹²C fusion at stellar energies using an efficient thick target method

Xiao Fang

Sino-French Institute of Nuclear Engineering and Technology

Sun Yat-sen University

Method article published: Nuclear Science and Techniques 30(8), 2019 DOI: 10.1007/s41365-019-0652-9

OMEG15, Kyoto University, July 2--5, 2019

Outline

1 Role of carbon burning(¹²C+¹²C) in stellar evolution

2 / Introduction of ¹²C+¹²C studies

3/ The principle of the efficient thick target method

4 / Results and discussion

5⁄ Summary

Role of ¹²C+¹²C in stellar evolution

Small star (less than 8 solar masses)

The ¹²C+¹²C fusion reaction at low energies plays important roles in the nucleosynthesis during stellar evolution of massive stars, and is considered to ignite a <u>carbon-oxygen white dwarf</u> into a <u>type la</u> <u>supernova</u> explosion.

Massive star (more than 8 solar masses)

 \clubsuit Evolutionary stages of a 25 M $_{\odot}$ star

Stage	Time Scale	Т9	Density
			(g cm ⁻³)
Hydrogen burning	7x10 ⁶ y	0.06	5
Helium burning	5x10⁵ y	0.23	7x10 ²
Carbon burning	600 y	0.93	2x10 ⁵
Neon burning	1 y	1.7	4x10 ⁶
Oxygen burning	6 months	2.3	1x10 ⁷
Silicon burning	1 d	4.1	3x10 ⁷
Core collapse	seconds	8.1	3x10 ⁹
Core bounce	milliseconds	34.8	3x10 ¹⁴
Explosive burning	0.1-10 s	1.2-7.0	Varies

↓Type la supernova

Role of ¹²C+¹²C in stellar evolution

↑ Top: Astrophysical S factors vs. E_{cm} for the ¹²C+¹²C, ¹²C+¹⁶O, and ¹⁶O+¹⁶O reactions. Bottom: temperature T of stellar matter vs. Gamow-peak energy ranges for these reactions in the thermonuclear regime. (PRC 74, 035803,2006)

 $\label{eq:constraint} \begin{array}{l} {}^{12}\text{C} + {}^{12}\text{C} -> p + {}^{23}\text{Na} \ (\text{Q} = 2.238 \ \text{MeV} \) \\ {}^{12}\text{C} + {}^{12}\text{C} -> \alpha + {}^{20}\text{Ne} \ (\text{Q} = 4.616 \ \text{MeV} \) \\ {}^{12}\text{C} + {}^{12}\text{C} -> n + {}^{23}\text{Mg} \ (\text{Q} = -2.599 \ \text{MeV} \) \end{array}$

¹²C + ¹⁶O -> p + ²⁷Al (Q = 5.170 MeV) ¹²C + ¹⁶O -> α + ²⁴Mg (Q = 6.772 MeV) ¹²C + ¹⁶O -> n + ²⁷Si (Q = -0.424 MeV)

¹²C+¹²C reaction channels: p, α , n

Review of previous work studying ¹²C+¹²C

Carbon burning determination project

¹²C(¹²C,n)²³Mg: PRL 114, 251102 (2015)

The setup of the thick target method

The principle of the thick target method

¹²C(¹²C, p)²³Na

$$Q = (\frac{M_a}{M_B} - 1)E_a + (\frac{M_b}{M_B} + 1)E_b - 2\frac{\sqrt{M_a M_b E_a E_b}}{M_B}cos(\theta)$$

The principle of the thick target method

The principle of the thick target method

The S* factor of p₁ channels

The scanned S* factor of p_0 and p_1 channels

The S* factor of $p_0 + p_1$ channel

Scan the ${}^{12}C+{}^{12}C$ using ${}^{12}C$ beam of energies E_{beam} =6.0--10.6 MeV by step 0.1 MeV.

Particle–gamma coincidence measurement

Summary

- The ¹²C+¹²C fusion reaction is famous for its complication of molecular resonances, and plays an important role in both nuclear structure and astrophysics. It is extremely difficult to measure the cross sections of ¹²C+¹²C fusions at energies of astrophysical relevance due to very low reaction yields.
- An efficient thick target method has been developed and applied for the first time to measure the complicated resonant structure existing in ¹²C(¹²C,p)²³Na at energies 3.0 MeV<E_{cm}<5.3 MeV.</p>
- It can provide cross sections within a range of [E_{beam} -ΔE, E_{beam}] using a single incident energy E_{beam}.
- The efficient thick target method of the present work will be useful in searching for potentially existing resonances of ¹²C+¹²C in the energy range 1 MeV<E_{cm}<3 MeV.</p>
- Future plan: Particle–gamma coincidence measurement for ¹²C(¹²C,p)²³Na and ¹²C(¹²C,α)²⁰Ne.

X. Fang¹, B. Bucher^{2,3}, S. Almaraz-Calderon², A. Alongi², D. Ayangeakaa², A. Best², C. Cahillane², E. Dahlstrom², J.J. Kolata², A. Long², S. Lyons², A. Roberts², M. Smith², R. Talwar², W.P. Tan², X.D. Tang^{4,5}, M. Wiescher²

1 Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai, Guangdong 519082, China 2 Institute for Structure and Nuclear Astrophysics and Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, Indiana 46556, USA

3 Idaho National Laboratory, Idaho Falls, ID 83415, USA

4 Institute of Modern Physics, Chinese Academy of Science, Lanzhou, Gansu 730000, China

5 School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China