Nuclear experimental approach to cluster correlation and nucleosynthesis in the universe Search for Rare γ -decay Modes in ¹²C

> M. Tsumura and Y. Takahashi Department of Physics, Kyoto University

> T. Kawabata Department of Physics, Osaka University

Cluster Correlation and Nucleosynthsis

⁴He (α particle) is the second abundant element in the universe

 $\rightarrow \alpha$ induced reaction is important

 α clustering is the most important correlation in nuclei.

Cluster correlation plays an important role in nucleosynthesis

Triple Alpha Reaction

The triple a reaction plays a crucial role in the nucleosynthesis.

Triple alpha reaction rate

γ -decay probability of the 3_1^- state

Difficult to measure the Γ_{γ}/Γ of the 3_1^- state because it is very small.

Possible strength of isospin forbidden E1 strength

Experimental procedure

Using the inverse kinematic reaction H(12 C, 12 C p), recoil protons and scattered 12 C will be measured simultaneously instead of γ -rays.

γ -decay probability Γ_{γ} / Γ

- Г_ү Г
- Number of γ -decay events
- Number of all excited events

Number of all excited events

 E_X in ¹²C is determined from the energy and angle of the recoiled proton.

Number of γ -decay events

The scattered ¹²C should be detected in coincidence with the recoiled proton.

- > Thin solid hydrogen target.
- Recoil proton detector.

Gion Recoil proton counter

Gion = \underline{G} AGG based light <u>ion</u> counter telescope

<u>GAGG</u>	. Gd ₃ Al ₂ Ga ₃ O _{12.}
-------------	--

	Density (g/cm ³)	∆E/E (FWHM) @662 keV	Decay time (ns)	Light output (photon/ MeV)
CsI(TI)	4.51	~6%	~1000	~56000
GAGG(Ce)	6.63	5-6%	88	65000

Gion

Solid Hydrogen Target (SHT) **Develop SHT Ortho-para Convertor** to suppress background. Target H/Contaminant SHT No SHT* 3.913 ×23.4 Т CH_2 0.167 gas * Include gas-sealing Aramid film (4 um x 2) 15 mm Thickness should be thinner than

Target cell

0.5 mm-thick

Thin!!

0.5 mm for $\Delta E_x < 250$ keV.

Ortho-para convertor → Enhance thermal conductivity of the solid hydrogen.

[Y. Matsuda, M. Tsumura, T. Kawabata *et.al.,* J. Radioanal. Nucl. Chem. **305**, 897--901 (2015).]

Improvement of the S/N

Accidental coincidence events cause serious background.

- Tagging counter (Gion) …To remove accidental coincidence events.
- Data reduction gate
 - Angular correlation between p and ¹²C.
 - Energy correlation between p and ¹²C.

Gamma Decay Probability

 γ -decay probability is given by

Geometrical efficiency should be estimated by MC calculation.

	0+2	1 + ₁	3 - ₁
Geo. Efficiency	0.117(2)	0.186(9)	0.229(3)
Γ_{γ}/Γ Previous	4.4(5)×10 ⁻⁴	2.21(7)×10 ⁻²	Unknown
Γ _γ /Γ Present	4.3(3)×10 ⁻⁴	2.6(6)×10 ⁻²	1.3(6)×10 ⁻⁶

The present results are consistent with with the previous result on the O_{2}^{+} and 1_{1}^{+} states.

 Γ_{γ} for the 3⁻¹ state is larger than the previous upper limit [8.2 × 10⁻⁷ (2 σ)].

Triple Alpha Reaction Rate

Triple reaction rate was calculated using the measured Γ_{γ}/γ

Triple Alpha Reaction Rate

Triple reaction rate was calculated using the measured Γ_{γ}/γ

The 3α rate is partially restored, but still lower than NACRE...

Summary

- Measurement of the γ-decay probability of the 3₁⁻ state in ¹²C.
 - Importance for the 3α reaction.
 - New detection scheme using the inverse kinematic reaction H(12 C, 12 C p) without γ -ray measurement.
- γ -decay events are successfully identified.
 - γ -decay events from the 3_1^- state were observed.
 - 3α reaction rate is partially restored but it is still lower than NACRE at high T.
 - 3α reaction via ⁸Be(2+₁) should be considered.

Thank you for your attention!!