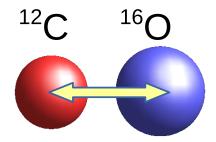
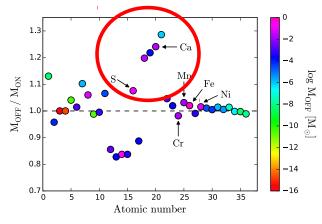
Low-lying ${}^{12}C + {}^{16}O$ molecular resonance band in ${}^{28}Si$

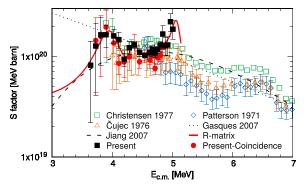

TANIGUCHI Yasutaka¹, KIMURA Masaaki²

 $^1\mathrm{National}$ Institute of Technology (KOSEN), Kagawa College, $^2\mathrm{Hokkaido}$ University


The 15th International Symposium on Origin of Matter and Evolution of Galaxies (OMEG15) July 2–5, 2019@YITP, Kyoto Univ.

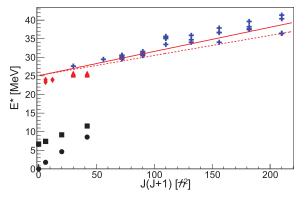
Nuclear fusion reaction rate and nucleosynthesis

- Nuclear fusion reaction rate is important for nucleosynthesis.
- Nuclear fusion reaction rate is sensitive to energy of molecular resonant (MR) states.


$m ^{12}C + m ^{16}O$ fusion reaction rate and abundance of S–Ca

[H. Martínez-Rodríguez et al, ApJ843, 35 (2017)]

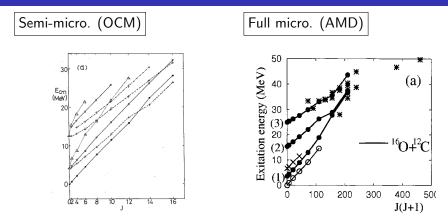
S-Ca abundances are sensitive to ${}^{12}C + {}^{16}O$ fusion reaction rate in type Ia SN.


Low-energy ${ m ^{12}C} + { m ^{16}O}$ fusion reaction

[X. Fang et al, PRC96, 045804 (2017)]

- Resonant states are observed around $\gtrsim 4$ MeV.
- Theoretical calculations of ¹²C + ¹⁶O resonant states around the threshold energy are necessary.

High-lying ${ m ^{12}C} + { m ^{16}O}$ resonant states

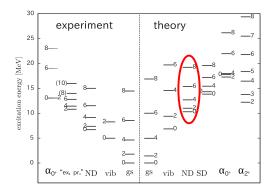


[A. Goasduff et al, PRC89, 014305 (2014)]

• Many ${}^{12}C + {}^{16}O$ resonant states are observed around the Coulomb barrier top. ($E_{th}^{CO} = 16.75$ MeV).

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うへの

Theoretical studies of ${}^{12}\text{C} + {}^{16}\text{O}$ MR states



[K. Katō, S. Okabe, and Y. Abe, PTP**74**, 1053 (1985)]

- ¹²C + ¹⁶O resonant states close to the threshold energy are predicted by semi- and full microscopic calculations.
- No full microscopic study treating ¹²C-¹⁶O and α -²⁴Mg relative motion. $\Rightarrow \alpha$ and *p*-decay cannot be evaluated $\Rightarrow =$

[[]Y. Kanada-En'yo et al, NPA**738**, 3 (2004)]

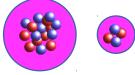
$^{12}\text{C-}^{16}\text{O}$ cluster correlations in low-lying states

[Y. Taniguchi, Y. Kanada-En'yo, M. Kimura, PRC80, 044316 (2009)]

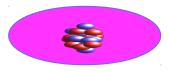
 Low-lying states are well reproduced by the antisymmetrized molecular dynamics (AMD).

э

The ND states contain large amount of ¹²C-¹⁶O cluster structure components.


Wave function

Deformed-basis antisymmetrized molecular dynamics (AMD) wave function $|\Phi\rangle$:


Slater determinant of Gaussian wave packets that can deform.

$$\begin{aligned} |\Phi\rangle &= \hat{\mathcal{A}} |\varphi_1, \ \varphi_2, \cdots, \varphi_A\rangle, \\ \varphi_i &\propto \exp\left[-(\mathbf{r} - \mathbf{Z}_i) \cdot \mathsf{M}(\mathbf{r} - \mathbf{Z}_i)\right] \sigma_i \tau_i. \end{aligned}$$

Cluster structure

Deformed structure

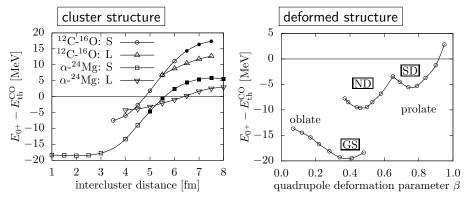
Energy variational calculation with a constraint potential

Parameters in wave functions are determined by energy variational calculations with a constraint potential $V_{\rm cnst}$.

$$\delta \left[\left\langle \hat{P}^{\pi} \Phi \middle| \hat{H} \middle| \hat{P}^{\pi} \Phi \right\rangle + V_{\text{cnst}} \right] = 0$$

• $V_{\rm cnst}$: quadrupole deformation parameter β (deformed structure)

intercluster distance ($^{12}\mathrm{C}\text{-}^{16}\mathrm{O}$ and $\alpha\text{-}^{24}\mathrm{Mg}$ cluster structures)

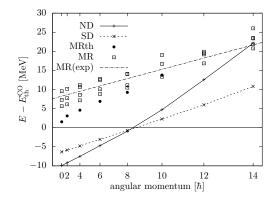

- Effective interaction \hat{H} : Gogny D1S
- Conjugate gradient method.

Framework Correlations

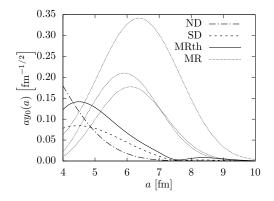
Generator coordinate method (GCM)

$$f_1 \odot + f_2 \odot + f_3 \odot + \dots$$

+ $f'_1 \odot + f'_2 \odot \odot + f'_3 \odot \odot + \dots$


Energy curves

• Spherical clusters $(^{16}O/\alpha)$ locate on the short and long axes of deformed clusters $(^{12}C/^{24}Mg)$ in S and L types, respectively.


• Oblate and prolate shapes coexist on the β -energy curve.

Level scheme

- ¹²C-¹⁶O resonant states (MRth and MR) are obtained.
- The band head energy of the MRth states is just above the ${
 m ^{12}C} + {
 m ^{16}O}$ threshold energy.
 - $\Rightarrow \mathsf{Enhancement} \text{ of fusion reaction rate at low temperature?}$

$m ^{12}C-^{16}O$ reduced width amplitude (RWA)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- ¹²C-¹⁶O RWA are obtained.
- p-²⁷Al and α -²⁴Mg RWAs can be obtained.
 - \Rightarrow Branching ratio of α and p decay.

Summary

- By AMD + GCM, ¹²C + ¹⁶O molecular resonant states are investigated in ²⁸Si.
- ¹²C + ¹⁶O molecular resonant states exist just above the threshold energy. The molecular resonant states may be important for nucleosynthesis.
- Future works
 - Fusion reaction rate at low temperature. (with reaction theorists)
 - Branching ratio of α and p decay for the $^{12}{\rm C}+^{16}{\rm O}$ molecular resonant states.