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1. Introduction

Nuclear EOS for core-collapse simulations

Effective interactions (Skyrme or RMF model)

TNTYST   |  AV18+UIX     n, p, a, ( A, Z )            2.21     11.5   0.32   y     Togashi et al. (2017)

Microscopic EOS with bare nuclear potentials

(HT, K. Nakazato, Y. Takehara, S. Yamamuro, H. Suzuki, M. Takano, NPA961 (2017) 78)

Uniform EOS: cluster variational method with AV18 + UIX potentials
Non-uniform EOS: Thomas-Fermi method (Single nucleus approximation)
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Nuclear EOS with microscopic calculation
- Fermi Hypernetted Chain (FHNC) variational method

Potential: AV18 two-body pot. + UIX three-body pot.

APR (A. Akmal, V. R. Pandharipande, D. G. Ravenhall, PRC 58 (1998) 1804)

Trial wave function: Jastrow (central, tensor, spin-orbit correlations)

Nuclear Matter: Pure neutron matter and Symmetric nuclear matter

- Quantum Monte Carlo method

Potential: V8 two-body pot. + UIX (or Illinois) three-body pot.

Nuclear Matter: Pure neutron matter

Auxiliary field diffusion Monte Carlo (S. Gandolfi et al., PRC 85 (2012) 032801(R)) 

Trial wave function: Jastrow (central and tensor correlations)
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1: Cluster variational method 
with AV18 + UIX potentials

2: Thomas-Fermi calculation 
for non-uniform matter

Uniform

Non-uniform

Our procedure to construct a supernova EOS table
- EOS should provide thermodynamic quantities in the wide ranges.

• Temperature T : 0 ≤ T ≤ 400 MeV

• Density r : 105.1 ≤ rB ≤ 1016.0g/cm3

• Proton fraction Yp : 0 ≤ Yp ≤ 0.65

Phase diagram of nuclear matter [based on HT et al., NPA 961 (2017) 78] 4/15



Nuclear Hamiltonian

Jastrow wave function
FF: Fermi-gas wave function

(Phys. Lett. 87B(1979) 11, PRC 75(2007) 035802)

fij: Correlation function

• The prescription by Schmidt and Pandharipande is employed 
to obtain the free energy at finite temperature.

• The expectation value of the Hamiltonian 
is calculated in the two-body cluster approximation.

2. Supernova EOS with realistic nuclear forces

Argonne v18 (AV18) two-body potential Urbana IX (UIX) three-body potential
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n0[fm-3]

0.16

E0[MeV] Esym[MeV]K [MeV]

-16.1 245 30.0
APR : A. Akmal, V. R. Pandharipande, D. G. Ravenhall, 

PRC 58 (1998) 1804

Our EOS : HT and M. Takano, NPA 902 (2013) 53

FHNC : A. Mukherjee, PRC 79(2009) 045811

Nuclear EOS for uniform matter
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We use the Thomas-Fermi method by Shen et al. (PTP 100 (1998) 1013,  APJS 197(2011) 20) 

Nuclear EOS for non-uniform matter

HT et al., NPA 961 (2017) 78 7/15



http://www.np.phys.waseda.ac.jp/EOS/

Home Page of Variational EOS Table

(HT et al., NPA961 (2017) 78)
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J1614-2230: Nature 467 (2010) 1081J0348+0432: Science 340 (2013) 1233232
Shaded region is the observationally suggested region by Steiner et al. 

(Astrophys. J. 722 (2010) 33)

Mass-Radius relation of neutron stars

HT et al., NPA 961 (2017) 78

3. Application to astrophysical objects
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(K. Sumiyoshi, et al., NPA 730 (2004) 227)Progenitor: Woosley Weaver 1995, 15M◉ (Astrophys. J. Suppl. 101 (1995) 181)

Radial trajectories of mass elements

Application to Core-Collapse Supernovae
1D neutrino-radiation hydrodynamics simulations

HT et al., in preparation

Central density: 0.30 fm-3

Temperature: ~10 MeV
Proton fraction: ~0.3
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tpb = 0 ms

More sophisticated multi-dimensional simulation
→ Takiwaki-san’s talk in this afternoon!



K. Nakazato, H. Suzuki, and HT, Phys. Rev. C 97 (2018) 035804

Application to Proto-Neutron Star Cooling

1D neutrino-radiation hydrodynamics simulations (until 300 ms)
→ Quasi-static evolutionary calculation of PNS cooling

Central density: 0.47 fm-3

Temperature: ~10 MeV
Proton fraction: ~0.1
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4. Hyperon mixing in dense matter
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HYPERON PUZZLE

D. Lonardoni et al., PRL 114 (2015) 092301

Hyperon Three-Body Force 
（ΛNN TBF)

• EOS becomes softer 
due to hyperon mixing. 

• Maximum mass tends 
to be lower than the 
observational data. 

Hyperon Interactions for the variational method
(E. Hiyama et al., PRC 74 (2006) 054312): two-body potential (E. Hiyama et al., PRC 66 (2002) 024007)

- Constructed so as to reproduce the experimental binding energies of light hypernuclei

: three-body potential
- Repulsive part of  the UIX pot. is employed



w/o Hyperon 3BF

Nuclear Matter

w/o Hyp. 3BF
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Hyperon mixing in neutron-star matter



Hyperon mixing in supernova matter

- Charge neutral and Isentropic matter (The entropy per baryon S ~ 1-2)
- Neutrino-free b-stable matter

Supernova matter

Central density at tpb =0 s
(Core-collapse supernova)

Central density at tpb =50 s 
(PNS cooling) 14/15



Summary
Nuclear EOS for supernova simulations is constructed

with realistic nuclear forces (AV18 + UIX).

Our SN-EOS is available at 
http://www.np.phys.waseda.ac.jp/EOS/

Uniform nuclear matter : Cluster variational method 
Non-uniform nuclear matter : Thomas-Fermi approximation 

Future Plans
• Construction of the hyperon EOS table for simulations
• Taking into account mixing of other hyperons (S-, S0, S+, X0, X-)
• Employing more sophisticated baryon interactions (e.g. Nijmegen)

→ We are extending our microscopic EOS table 
to consider Λ hyperon mixing in dense nuclear matter.
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