The 15th International Symposium on Origin of Matter and Evolution of Galaxies

Gravitational-wave observation - Recent results and prospects -

Masaki Ando (Univ. of Tokyo)

Outline

Introduction : GW observations
Ground-based Antennae and KAGRA
Space GW antenna : B-DECIGO
Summary

First Detection of GW

 On Feb. 11th, 2016, LIGO announced first detection of gravitational wave. The signal was from inspiral and merger of binary black hole at 410Mpc distance.
 ⇒ Opens a new field of '<u>GW astronomy</u>'.

Mergers of Binary Black Hole

Publications after the first event.

*2nd: GW151226 (reported in 2016.6)
*3rd: GW170104 (reported on 2017.6.2)
*4th: GW170814 (reported on 2017.9.27)
*5th: GW170608 (reported on 2017.11.15)
*6-10th: GW151012, GW170729,
GW170809, GW170818,
GW170823 (reported on 2018.11.30)

arXiv:1811.12907 (Nov. 30, 2018)

•Public alerts in O3 (2019.April-) : 18 alerts so far.

 \rightarrow BBH mergers are common events in the universe.

Merger of Binary Neutron Stars

 On Oct.16th, 2017, LIGO-VIRGO collaboration announced the first detection of gravitational-wave signal from merger of binary neutron stars

The signal was detected on August 17th, 2017.
→ Named GW170817.
Source Localization ~30deg²

Courtesy Caltech/MIT/LIGO Laboratory

EM Follow-up Observations

 Detection by Advanced LIGO: SNR of 32.4.
 Advanced Virgo contribution for sky localization: from 190 deg² to 30 deg².

Prompt EM (gamma-ray) observation by Fermi, 1.7sec after GW.
Obs. by ~70 EM telescopes. EM counterpart was detected by X-ray, UV, Optical, IR, and Radio.

•EM counterpart was observed for the first time in GW170817.

- New knowledge
- * Origin of SGRB.
- * Origin of heavy elements in the universe.
- * EoS of neutron star
- * Fundamental physics and cosmology: speed of GW, Hubble's constant, ….

iz 11.57h

W 11.40h

10

SO-NT

2000

X-rav

Radio

16.4d

SOAR

ApJL 848 L12 (2017)

OMEG15 (Jul 11/31h 20

BNS Merger Rate

 Estimation from pulsar observations Galaxy event rate: $\mathcal{R} = 118^{+174}_{-79}$ [events/Myr] V. Kalogera et.al., ApJ, 601 L179 (2004) Number density of galaxies: $\rho = 1.2 \times 10^{-2}$ [Mpc⁻³] R. K. Kopparapu et.al., ApJ. 675 1459 (2008) \Rightarrow BNS merger rate: 1400^{+2100}_{-950} Gpc⁻³yr⁻¹ •Estimation from GW observation (GW170817) BNS merger rate: 1540^{+3200}_{-1220} Gpc⁻³yr⁻¹ LIGO and VIRGO, PRL (2017)

Fundamental Physics: Speed of GW

- •Test of GR : Propagation speed of GW.
- •GW (GW170817) and EM (GRB170817A) from the same BNS merger
 - * False coincidence rate (direction and time): 5×10^{-8}
 - * Arrival time difference 1.74 ± 0.05 sec
 - * Source distance : 40 Mpc (1.2×10^{24} m).

 \rightarrow Stringent limit on the speed of GW

 $-3 \times 10^{-15} \le \frac{v_{\rm GW}}{v_{\rm EM}} - 1 \le 7 \times 10^{-16}$.

※ Note: Dependent on GRB source model. Here, GW and EM radiation-time difference is assumed to be less than 10 sec from the source. There are more exotic models, which will be tested by more events to be observed.

NS EoS: Tidal deformability

Tidal deformation in formation from GW waveform

* Tidal deformability λ :

 $Q_{ii} = -\lambda E_{ii}$

Image: Image: fillImage: fillQuadrupoleTidal force frommomentcompanion object

* Dimensionless parameter

$$\Lambda = \frac{G}{C^5 R^5} \lambda, \ C = \frac{GM}{c^2 R}$$

Hard EoS \rightarrow Large diameter \rightarrow Large Λ

Next Steps ...

 The first GW (and EM counter part) detections demonstrated new possibilities by GW astronomy.
 → More events, More precise parameter estimation.

•As for BNS, we need more events, sky localization, higher SNR for astrophysics and nuclear physics.

Network of 2nd-gen. GW antennae (aLIGO, AdVIRGO, <u>KAGRA</u>, LIGO-India) will be formed in several years.
Two ways after that for Astronomy and Cosmology:
- 3rd-gen. ground-based GW antennae (ET, CE).
- Space GW antennae (LISA, <u>B-DECIGO</u>, …).

Ground-based GW Antennae

International GW Network

International network by 2^{nd} -gen GW antennae. \rightarrow GW astronomy (Detection, Parameter estimation, \cdots)

Importance of Sky Localization

For GW astronomy, parameter estimation of the source is important. In particular, sky localization is critical for identification of EM counterpart.
In GW170817, the sky position was localized with ~30deg² error by 2 LIGO + 1 VIRGO detectors. ~20 galaxies in this region.

Credit: LIGO/Virgo/NASA/Leo Singer (Milky Way Image: Alex Mellinger)

Credit: Sarah Wilkinson / LCO (Taken from https://youtu.be/wnwMhvdDcfI)

Source Localization

GW170104 LIGO: 1200deg²

LVT151012

GW151226 LIGO: 850deg²

GW170817 LIGO-VIRGO: 30deg²

GW150914 LIGO: 600deg²

LIGO/Virgo/NASA/Leo Singer (Milky Way image: Axel Mellinger)

OMEG15 (July. 4th, 2019, YITP, Kyoto)

GW170814

LIGO-VIRGO: 60deg²

Antenna Pattern of GW Detector

An Interferometric GW antenna has … Good sky coverage * * Poor angular resolution Difficult to determine the source sky position with single antenna.

International Network for Astronomy

Animation : S. Kawamura (ICRR)

Multiple Detector

Identify the source by the arrival-time difference (and also signal strength)

KAGRA

KAGRA (かぐら)

Large-scale Cryogenic Gravitational-wave Telescope 2nd generation GW detector in Japan

Large-scale Detector Baseline length: 3km High-power Interferometer

Cryogenic interferometer Mirror temperature: 20K

Underground site Kamioka mine, 1000m underground

KAGRA Collaboration

KAGRA collaboration: ~300 members from ~60 Universities or Institutes

Sky Localization

Adding KAGRA to the network (aLIGO + adv. VIRGO) \rightarrow Improvement of angular resolution by 3-4 times.

KAGRA Features

Large laser interferometer : Baseline 3km
 Underground site : stable environment.
 Cryogenic mirrors : thermal noise reduction

Original advanced technologies in KAGRA, which also gives prospects for 3G detectors

KAGRA Site

Underground site at Kamioka, Gifu prefecture Facility of the Institute of Cosmic-Ray Research (ICRR), Univ. of Tokyo.

KAGRA Photos

KAGRA 3-km Tunnel and Duct

KAGRA Optical Design

Sensitivity Comparison

BNS Detection Rate

Detection rate of GW signal from BNS

- BNS merger rate: 1540^{+3200}_{-1220} Gpc⁻³yr⁻¹

 KAGRA observable range ~140 Mpc (SNR>8, Sky average) from the design sensitivity

 \Box KAGRA Detection rate ~10 events/yr

% Detection rate of ~1 event/yr when Obs. Range is ~60 Mpc

More BBH detection rate is expected;
 BBH rate 103⁺¹¹⁰₋₆₃ Gpc⁻³yr⁻¹ (PRL 118 221101 (2017))
 Detector range is roughly proportional to the target mass.

Observation Scenario

	— 01	01 🛑 02		— O3		— 04		O 5		
LIGO	60-80 Mpc	60-100 Mpc	1: 	120+ Mpc		175 Mpc		Target 325 Mpc		
Virgo	3 BBHs	25-30 Мрс	61 N	0-85 Ирс	ε	35-120 Mpc		3	Target 00 Mp	C
KAGRA		7 BBHs 1 BNS		8-25 Мрс	2	25-130 Mpc		1:	30+ Mj	C
LIGO-India				18 public alerts so far			Target 325 Mpc			
20	L	2017 2018	2019	1000ay			2023	2024	2025	2026
	Living Reviews in Relativity 21, 3 (2018); Updated version to be submitted.									

LIGO+VIRGO (+KAGRA) 03

•O3 began on April 1st, 2019.

* H-L-V three-way coincidence duty factor ~45%, "no interferometer" state of the network ~ 2.7%.
* Released public alerts for 18 event candidates.
• KAGRA will join the network in 2019 (or early 2020).

KAGRA Schedule and Status for O3

Installation is completed (expect for small components).
* All optics, Vibration isolation system are installed.
* Mirrors are already cooled down.
* Interferometer is under commissioning phase Arm cavities, Central IFO, → Full operation.

KAGRA's Contribution Study for O3

JGW-G1910299, JGW-T1910330, JGW-G1910190 https://git.ligo.org/sadakazu.haino/o3-simulation-for-kagra

In N=2(HL,LV,HV) -> 3(+K) cases,

- >30% improvement with 25 Mpc
- ~15% improvement even with 15 Mpc

From presentation by Haino (KIW6, June 2019)

Next Generation GW Antennae

3rd Generation GW Antennae (~2030)

- * Europe: ET (Einstein Telescope x10 sensitivity, Long baseline ~10km, Underground, Cryogenic
- * USA: CE (Cosmic Explorer) x10 sensitivity, Long baseline ~40km, Surface site, Cryogenic (?)

Fifteenth Marcel Grossmann Meeting (July 1-7, 2018, University of Rome, Italy)

B-DECIGO

Space GW Observatory: B-DECIGO

 \otimes We changed the name: Pre-DECIGO \rightarrow B-DECIGO

•B-DECIGO

- Space-borne GW antenna formed by three S/C
- Target Sensitivity for GW : 2×10^{-23} Hz^{-1/2} at 0.1Hz.

Sciences of B-DECIGO
(1) Compact binaries.
(2) IMBH merger.
(3) Info. of foregrounds for DECIGO.

Fig. by S.Sato

Target: JAXA Strategic Large-scale mission (~2030).

Target (1) : Compact Binaries

B-DECIGO will observe >100/yr binary NS inspirals. ~ 10^{5} /yr binary BH inspirals.

Sensitivity Curves

Observable Range

$30M_{\odot}$ BBH Merger : 100 Gpc (z>10) range with SNR~8 (optimal direction/polarization).

B-DECIGO Sciences for CBC

With its <u>BBH</u> observable range, in B-DECIGO Detection Rate will be ~ 4 × 10⁴ − 10⁶ events/yr .
Range for <u>BNS</u> is ~2Gpc → ~ 100 events/yr .

With low-freq. GW observations, <u>longer observation</u> <u>time</u> is expected; in 30M_☉ BBH merger case, the signal is at 0.1Hz in 15days before merger.
→ Improved parameter estimation accuracy with lager cycle number (~10⁵) :
* Localization, Merger time → <u>Alerts for GW-EM</u>.
* Mass, Distance, Spin → <u>Origin and nature of BBH</u>.

Parameter Estimation Accuracy

 $30M_{\odot}$ BBH merger case, the signal integration upto 15 days before merger.

Summary

Summary

- First direct detection of GW opened the new field of 'Gravitational-wave astronomy'. We obtained a new prove to understand the universe.
- •The field will be expanded by antennae with better sensitivity, multiple detectors, and with different frequencies.
- Japanese KAGRA will improve the source parameter estimation accuracy. Best effort to join the network.
 Space mission B-DECIGO enables an alert before merger for EM counterpart search. Light curve can be observed just after merger. More event rate, higher SNR is expected.

中性子星の状態方程式に対する制限

GRBのモデル (形成された天体が BH or マグネター)と, 重力波 観測から求められた質量から,中性子星の状態方程式に対する 制限が与えられる (SHTやMS1モデルでは,BHはできなさそう).

THE ASTROPHYSICAL JOURNAL LETTERS, 848:L13 (27pp), 2017 October 20

APR4 1.4< 0.89MB 1.2SHT MS1 0.8 $m_1 < M_{\rm C}^{\rm Static}$ 0.61.02.02.53.01.52.53.01.01.52.51.01.52.02.03.0 $m_1 \, [\mathrm{M}_\odot]$ $m_1 \, [\mathrm{M}_\odot]$ $m_1 [M_{\odot}]$

Abbott et al.

Figure 3. Critical mass boundaries for different EOSs in comparison with the 90% credible region of the gravitational masses inferred from GW170817 (prior limits on the spin magnitude, $|\chi_z|$, given in the legend). The slanted curves in the left panel and middle panel correspond to the maximum baryonic mass allowed for a single non-rotating NS (left) and for a uniformly rotating NS (middle). Arrows indicate for each EOS the region in the parameter space where the total initial baryonic mass exceeds the maximum mass for a single non-rotating or uniformly rotating NS, respectively. The right panel illustrates EOS-dependent cuts on the gravitational mass m_1 of the heavier star, with arrows indicating regions in which m_1 exceeds the maximum possible gravitational mass M_G^{Static} for non-rotating NSs. In all three panels the black solid line marks the $m_1 = m_2$ boundary, and we work in the $m_1 > m_2$ convention.

Multiple-band Observation

•Electro-Magnetic Observations : Multiple-band observations (Radio, Optical/IR, X-ray, γ-ray)
→ Variety of knowledge corr. to the Energy and Temperature of the target.

 Gravitational-wave Observations : Frequency of radiated GW ~ 1/ (Time scale of source motion)
 → Variety of knowledge corr. to the <u>Time scale and Mass</u> of sources.

Current Status and the Next Steps

•Observation Runs by 2nd-generation GW antennae: *aLIGO and AdV has started observation runs. *KAGRA and LIGO-India will join the network soon. \rightarrow 10~100 events/year expected. Proposals for 3rd-generation GW antennae: *ET (Einstein Telescope) in Europe. *CE (Cosmic Explorer) in USA. \rightarrow Obs. range of z>10 for compact binary mergers. Space GW antenna missions for low-freq. GWs: *LISA for MBHs and stationary binaries. *B-DECIGO and DECIGO for IMBH and GWB. → Galaxy, Cosmology, and Fundamental physics.