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Lithium	has	proved	to	be	a	stubborn	problem	for	astrophysicists;	the	quantities	predicted	to	have	resulted
from	the	Big	Bang	are	not	present	in	stars,	but	the	figures	have	recently	been	proven	correct.

Lithium	is	one	of	the	first	three	elements	to	have	formed	–	even	before	the	first	stars	–	through	primordial
nucleosynthesis.	When	the	Universe	was	only	a	few	minutes	old,	neutrons	and	protons	merged	to	form	not

only	lithium,	but	hydrogen	and	helium	too.

Observations	of	lithium-6	in	metal	poor	stars	suggest	this	isotope	was	produced	in	large	quantities	during
Big	Bang	nucleosynthesis,	but	the	reaction	has	never	been	measured	inside	the	Big	Bang	nucleosynthesis
energy	range.	A	team	from	the	Helmholtz	Zentrum	Dresden	Rossendorf	(HZDR)	have	recently	measured

this	for	the	first	time	in	experiments	conducted	at	LUNA,	Gran	Sasso.

Scientists	used	LUNA	(Laboratory	for	Underground	Nuclear	Astrophysics)	to	reproduce	the	nucleosynthesis
of	lithium	by	firing	helium	nuclei	at	deuterium	in	order	to	reach	energies	similar	to	those	just	after	the	Big
Bang.	They	then	measured	how	much	lithium	formed	and	confirmed	the	theoretical	predictions,	which

differ	to	the	observed	lithium	concentrations	found	in	the	Universe.

“For	the	first	time,	we	could	actually	study	the	lithium-6	production	in	one	part	of	the	Big	Bang	energy
range	with	our	experiment,”	said	Daniel	Bemmerer,	who	has	also	study	the	production	of	lithium-7.

The	research,	published	in	Physical	Review	Letters,	states:	we	report	on	the	results	of	the	first

measurement	of	the	2H	(α,γ)Li6	cross	section	at	big	bang	energies…The	primordial	6Li/7Li	isotopic

abundance	ratio	has	been	determined	to	be	(1.5±0.3)Þ 10−5,	from	our	experimental	data	and	standard	BBN
theory.”

Even	with	these	new	results,	the	lithium	problem	still	remains	a	tough	one	to	solve.		Laboratory	results
suggest	the	theory	of	primordial	nuceosynthesis	is	correct,	but	observations	show	only	half	as	much

lithium-7	as	predicted.

“Should	unusual	lithium	concentrations	be	observed	in	the	future,	we	know,	thanks	to	new	measurements,
that	it	cannot	be	due	to	the	primordial	nucleosynthesis,”	Bemmerer	added.

First	Direct	Measurement	of	the	2H	(α,γ)	6Li	Cross	Section	at	Big	Bang	Energies	and	the	Primordial	Lithium
Problem
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!1σ spread in the predicted abundances. These results assume
Nν ¼ 3 and the current measurement of the neutron life-
time τn ¼ 880.3! 1.1 s.
Using a Monte Carlo approach also allows us to extract

sensitivities of the light-element predictions to reaction rates
and other parameters. The sensitivities are defined as the
logarithmic derivatives of the light-element abundances with
respect to each variation about our fiducial model parameters
(Fiorentini et al., 1998), yielding a simple relation for
extrapolating about the fiducial model:

Xi ¼ Xi;0

Y

n

!
pn

pn;0

"
αn
; ð12Þ

where Xi represents either the helium mass fraction or the
abundances of the other light elements by number. The pn
represent input quantities to the BBN calculations (η; Nν; τn)
and the gravitational constant5 GN as well as key nuclear rates
which affect the abundance Xi. pn;0 refers to our standard
input value. The information contained in Eqs. (13)–(17) is
summarized in Table III:
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B. The neutron mean lifetime

As noted in the Introduction, the value of the neutron mean
lifetime has had a turbulent history. Unfortunately, the
predictions of SBBN remain sensitive to this quantity. This
sensitivity is displayed in the scatter plot of our Monte Carlo
error propagation with fixed η ¼ 6.10 × 10−10 in Fig. 2. The
correlation between the neutron mean lifetime and 4He
abundance prediction is clear. The correlation is not infini-
tesimally narrow because other reaction rate uncertainties
significantly contribute to the total uncertainty in 4He.

C. Planck likelihood functions

For this paper, we consider two sets of Planck Markov
chain data, one for standard BBN (SBBN) and one for

5In models beyond the standard model, one may also consider
variations of the gravitational constant (for fixed nucleon masses).
See Yang et al. (1979), Accetta, Krauss, and Romanelli (1990),
Sarkar (1996), Copi, Davis, and Krauss (2004), and Cyburt et al.
(2005) for BBN limits on variations of GN .

TABLE III. The sensitivities αn’s defined in Eq. (12) for each of the
light-element abundance predictions, varied with respect to key
parameters and reaction rates.

Variant Yp D/H 3He=H 7Li=H 6Li=H

η (6.1 × 10−10) 0.039 −1.598 −0.585 2.113 −1.512
Nν (3.0) 0.163 0.395 0.140 −0.284 0.603
GN 0.354 0.948 0.335 −0.727 1.400
n decay 0.729 0.409 0.145 0.429 1.372
pðn; γÞd 0.005 −0.194 0.088 1.339 −0.189
3Heðn; pÞt 0.000 0.023 −0.170 −0.267 0.023
7Beðn; pÞ7Li 0.000 0.000 0.000 −0.705 0.000
dðp; γÞ3He 0.000 −0.312 0.375 0.589 −0.311
dðd; γÞ4He 0.000 0.000 0.000 0.000 0.000
7Liðp; αÞ4He 0.000 0.000 0.000 −0.056 0.000
dðα; γÞ6Li 0.000 0.000 0.000 0.000 1.000
tðα; γÞ7Li 0.000 0.000 0.000 0.030 0.000
3Heðα; γÞ7Be 0.000 0.000 0.000 0.963 0.000
dðd; nÞ3He 0.006 −0.529 0.213 0.698 −0.522
dðd; pÞt 0.005 −0.470 −0.265 0.065 −0.462
tðd; nÞ4He 0.000 0.000 −0.009 −0.023 0.000
3Heðd; pÞ4He 0.000 −0.012 −0.762 −0.752 −0.012
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Fig. 3. Abundance of light elements produced in SBBN as a function of η. The vertical region
Ωbh

2 = 0.02222 ± 0.00023 indicates the constraint from Planck.50

the rate of the reaction 3He(α, γ)7Be of NACRE II is higher than that of DAA at
the temperature range of BBN.

3.3. Constraints from observations of 4He, D, and 7Li

The observation of 4He is important to constrain the physics of the early universe,
because the theoretical value of 4He is sensitive to cosmological models, such as the
gravitational model beyond general relativity and the effective neutrino number.

Helium-4 is the most abundant element nuclide except for 1H produced in BBN.
It is also produced through hydrogen burning inside stars. Since the abundance of
4He grows after BBN era, its observed value is an upper limit to the primordial
abundance. Hence, it is not easy to determine primordial Yp. However, it is deduced
that primordial 4He remains in a low-metallicity region, because star formation does
not occur there. Then 4He is determined from the recombination lines of proton
and helium in extragalactic HII regions.

Recently, the observational abundance of 4He has a conflict between two groups.
Izotov et al. report

Yp = 0.254± 0.003 (7)

using linear relation Y −O/H for 111 highest-excitation HII regions.44 And adding

Foley, GJM et al. 2017 
NACRE II Coc & Vangioni 2017 

Monte-Carlo 
NACRE II + Statistical Theory 

Nakamura et al. 2017 
NACRE II+Descouvemont 04  

O’Meara et al., 2001, 2006; Pettini and Bowen, 2001;
Levshakov et al., 2002; Kirkman et al., 2003; Pettini et al.,
2008; Srianand et al., 2010; Fumagalli, O’Meara, and
Prochaska, 2011; Noterdaeme et al., 2012). Despite the fact
that there was considerable dispersion in the data (unexpected
if these observations correspond to primordial D/H), the
weighted mean of the data gave D=H ¼ ð3.01# 0.21Þ ×
10−5 with a sample variance of 0.68. While the data were
in reasonably good agreement with the SBBN predicted value
(discussed in detail later) using the CMB-determined value
for the baryon-to-photon ratio, the dispersion indicated that
either the quoted error bars were underestimated and larger
systematic errors were unaccounted for or if the dispersion
was real, in situ destruction of deuterium must have taken
place within these absorbers. In the latter case, the highest
ratio (∼4 × 10−5) should be taken as the post-BBN value,
leaving room for some post-BBN production of D/H that may
have accompanied the destruction of 7Li; we return to this
possibility (or lack thereof) later.
Pettini and Cooke (2012) published results from a new

observation of an absorber at z ¼ 3.05 with D=H ¼ ð2.54#
0.05Þ × 10−5 corresponding to an uncertainty of about 2% that
can be compared with typical uncertainties of 10%–20% in
previous observations. This was followed by another precision
observation and a reanalysis of the 2012 data along with a
reanalysis of a selection of three other objects from the
literature (chosen using a strict set of restrictions to be able
to argue for the desired accuracy) (Cooke et al., 2014). The
resulting set of five absorbers yielded

!
D
H

"

p
¼ ð2.53# 0.04Þ × 10−5 ð8Þ

with a sample variance of only 0.05. We use this value in our
SBBN analysis.4

C. Lithium

Lithium has by far the smallest observable primordial
abundance in SBBN, but as we see provides an important
consistency check on the theory—a check that currently is not
satisfied. In SBBN, mass 7 is made in the form of stable 7Li,
but also as radioactive 7Be. In its neutral form, 7Be decays via
electron capture with a half-life of 53 days. In the early
Universe, however, the decay is delayed until the Universe is
cool enough that 7Be can finally capture an electron at z ∼
30 000 (Khatri and Sunyaev, 2011), shortly before hydrogen
recombination. Thus 7Be decays long after the ∼3 min time
scale of BBN, yet after recombination, all mass 7 takes the
form of 7Li. Consequently, 7Li=H theory predictions sum both
mass-7 isotopes. Note also that 7Li production dominates at
low η, while 7Be dominates at high η, leading to the character-
istic “lithium dip” versus baryon density in the Schramm plot
(Fig. 1) described later.

A wide variety of astrophysical processes have been
proposed as lithium nucleosynthesis sites operating after
BBN. Cosmic-ray interactions with diffuse interstellar (or
intergalactic) gas produce both 7Li and 6Li via spallation
reaction such as pcrþ 16Oism → 6;7Liþ&&&, and fusion 4Hecr þ
4Heism → 6;7Liþ & & & (Reeves, Fowler, and Hoyle, 1970;
Meneguzzi, Audouze, and Reeves, 1971; Prantzos, Cassé,
and Vangioni-Flam, 1993; Ramaty et al., 1997; Fields and
Olive, 1999a; Rollinde, Vangioni-Flam, and Olive, 2005). In
the supernova “ν process,” neutrino spallation reactions can
also produce 7Li in the helium shell via νþ 4He → 3He
followed by 3Heþ 4He → 7Beþ γ as well as the mirror
version of these (Woosley et al., 1990; Heger et al., 2005)
although the importance of this contribution to 7Li is limited
by associated 11B production (Olive et al., 1994). Finally, in
somewhat lower mass stars undergoing the late, asymptotic
giant branch phase of evolution, 3He burning leads to high
surface Li abundances, some of that may (or may not) survive
to be ejected in the death of the stars (Cameron and Fowler,
1971). Nova produced 7Li may also contribute to its chemical
evolution (Izzo et al., 2015; Tajitsu et al., 2015). Thus, despite
its low abundance, 7Li is the only element with significant
production in the big bang, stars, and cosmic rays; by contrast,
the only conventional site of 6Li production is in cosmic-ray
interactions (Reeves et al., 1973; Fields and Olive, 1999b;
Vangioni-Flam et al., 1999).
To disentangle the diverse Li production processes obser-

vationally thus requires measurements of lithium abundances

FIG. 1. Primordial abundances of the light nuclides as a function
of cosmic baryon content as predicted by SBBN (the “Schramm
plot”). These results assume Nν ¼ 3 and the current measurement
of the neutron lifetime τn ¼ 880.3# 1.1 s. Curve widths show
1 − σ errors.

4Note that the most recent measurement described by Reimer-
Sørensen et al. (2015) has a somewhat larger uncertainty, and its
inclusion does not affect the weighted mean in Eq. (8).
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2. (Data are from Ref. 20). The vertical stripe corre-
sponds to the CMB baryonic density6 while the horizontal hatched area represent the primordial
abundances (§ 3).

observations, are in good agreement except for 7Li, whose calculated abundance
is significantly higher11, 42, 43 (a factor of ≈3.5) than the primordial abundance de-
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Solutions to the Lithium Problem? 
•  New Nuclear Physics? 
•  New Astrophysics?  

–  Stellar destruction? 
–  Galactic Chemical Evolution? 

•  Cosmological Solutions? 
–  New Statistical Physics? 
–  Primordial Magnetic Field? 
–  Neutrino degeneracy? 
–  Non-standard model Physics? 

•  Supersymmetric Particles 
•  Axion Condensates 
•  Dark Matter 
•  Mirror Matter 
•  Time varying constants   

–  . 
–  . 
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Turbulent Diffusion Models   
(Richard, et al.  2005) 

126 CHAPTER 7. FROM PRE-MAIN SEQUENCE TO THE SPITE PLATEAU

Figure 7.9: By applying the same parameter of envelope overshooting and ac-
cretion, we could reproduce the Spite plateau and the first Li decline branch for a
wide range of metallicities (from Z=0.00001 to Z= 0.0005). The compared POP
II data are the same as in figure 7.8. The model results are all main sequence stars
at age 10 Gyr, with initial mass 0.80 M� to 0.57 M� from the left to the right for
each metallicity as shown in the color-bar label.
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ABSTRACT

Big Bang nucleosynthesis (BBN) theory predicts the abundances of the light elements D, 3He, 4He, and 7Li
produced in the early universe. The primordial abundances of D and 4He inferred from observational data are in
good agreement with predictions, however, BBN theory overestimates the primordial 7Li abundance by about a
factor of three. This is the so-called “cosmological lithium problem.” Solutions to this problem using conventional
astrophysics and nuclear physics have not been successful over the past few decades, probably indicating the
presence of new physics during the era of BBN. We have investigated the impact on BBN predictions of adopting a
generalized distribution to describe the velocities of nucleons in the framework of Tsallis non-extensive statistics.
This generalized velocity distribution is characterized by a parameter q, and reduces to the usually assumed
Maxwell–Boltzmann distribution for q=1. We find excellent agreement between predicted and observed
primordial abundances of D, 4He, and 7Li for 1.069�q�1.082, suggesting a possible new solution to the
cosmological lithium problem.

Key words: early universe – plasmas – primordial nucleosynthesis

1. INTRODUCTION

First proposed in 1946 by George Gamow(Gamow 1946),
the hot Big Bang theory is now the most widely accepted
cosmological model of the universe, where the universe
expanded from a very high density state dominated by
radiation. The theory has been vindicated by the observation
of the cosmic microwave background(Penzias & Wilson 1965;
Hinshaw et al. 2013), our emerging knowledge of the large-
scale structure of the universe, and the rough consistency
between calculations and observations of primordial abun-
dances of the lightest elements in nature: hydrogen, helium,
and lithium. Primordial Big Bang nucleosynthesis (BBN)
began when the universe was 3 minutes old and ended less than
half an hour later when nuclear reactions were quenched by the
low temperature and density conditions in the expanding
universe. Only the lightest nuclides (2H, 3He, 4He, and 7Li)
were synthesized in appreciable quantities through BBN, and
these relics provide us a unique window on the early universe.
The primordial abundances of 2H (referred to as D hereafter)
and 4He inferred from observational data are in good general
agreement with predictions; however, BBN theory over-
estimates the primordial 7Li abundance by about a factor of
three(Cyburt et al. 2003; Coc et al. 2004; Asplund et al. 2006;
Sbordone et al. 2010). This is the so-called “cosmological
lithium problem.” Attempts to resolve this discrepancy using
conventional nuclear physics have been unsuccessful over the
past few decades(Angulo et al. 2005; Cyburt et al. 2008; Boyd
et al. 2010; Kirsebom & Davids 2011; Scholl et al. 2011; Wang

et al. 2011; Coc et al. 2012; Voronchev et al. 2012; Hammache
et al. 2013; Pizzone et al. 2014; Famiano et al. 2016), although
nuclear physics solutions altering the reaction flow into and out
of mass-7 are still being proposed(Cyburt & Pospelov 2012;
Chakraborty et al. 2011). The dire potential impact of this
longstanding issue on our understanding of the early universe
has prompted the introduction of various exotic scenarios
involving, for example, the introduction of new particles and
interactions beyond the Standard Model(Pospelov & Pradler
2010; Kang et al. 2012; Coc et al. 2013; Kusakabe et al. 2014;
Yamazaki et al. 2014; Goudelis et al. 2016). On the
observational side, there are attempts to improve our under-
standing of lithium depletion mechanisms operative in stellar
models(Vauclair & Charbonnel 1998; Pinsonneault
et al. 1999, 2002; Richard et al. 2005; Korn et al. 2006). This
remains an important goal but is not our focus here. For recent
reviews on BBN and the primordial lithium problem, please
read articles written by Fields (2011) and Cyburt et al. (2016).
In this work we suggest one solution to the lithium problem

that arises in a straightforward, simple manner from a
modification of the velocity distributions of nuclei during the
era of BBN. In the BBN model, the predominant nuclear-
physics inputs are thermonuclear reaction rates (derived from
cross sections). In the past decades, great efforts have been
undertaken to determine these data with high accuracy (e.g.,
see compilations of Wagoner 1969; Caughlan & Fowler 1988;
Smith et al. 1993; Angulo et al. 1999; Descouvemont et al.
2004; Serpico et al. 2004; Xu et al. 2013). A key assumption in
all thermonuclear rate determinations is that the velocities of
nuclei may be described by the classical Maxwell–Boltzmann
(MB) distribution(Rolfs & Rodney 1988; Iliadis 2007). The

The Astrophysical Journal, 834:165 (5pp), 2017 January 10 doi:10.3847/1538-4357/834/2/165
© 2017. The American Astronomical Society. All rights reserved.

11 Corresponding author email: jianjunhe@impcas.ac.cn

1

MB distribution was derived for describing the thermodynamic
equilibrium properties of an ideal gas, and was verified by a
high-resolution experiment at a temperature of ∼900 K about
60 years ago(Miller & Kusch 1955). However, it is worth
asking: do nuclei still obey the classical MB distribution in the
extremely complex, fast-expanding, Big Bang hot plasma?
Indeed, Clayton et al. (1975) adopted a similar approach when
addressing the solar neutrino problem prior to the unambiguous
measurement of neutrino flavor change by Ahmad et al. (2001).

Whatever the source of the distortions from MB, one expects
that the distribution should still maximize entropy. Hence, to
account for modifications to the classical MB velocity
distribution, one may use Tsallis statistics (also referred to as
non-extensive statistics; Tsallis 1988), which is based on the
concept of generalized non-extensive entropy. The associated
generalized velocity distribution is characterized by a para-
meter q and reduces to the MB distribution for q=1. Tsallis
statistics has been applied in a host of different fields, including
physics, astronomy, biology, and economics(Gell-Mann &
Tsallis 2004).

2. THERMONUCLEAR REACTION RATE

It is well-known that thermonuclear rate for a typical
+ l +1 2 3 4 reaction is usually calculated by folding the

cross section σ(E)12 with an MB distribution(Rolfs &
Rodney 1988; Iliadis 2007)
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with k the Boltzmann constant, and μ12 the reduced mass of
particles 1 and 2. In Tsallis statistics, the velocity distribution
of particles can be expressed by (Tsallis 1988)
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where Bq denotes the q-dependent normalization constant. With
this velocity distribution, the non-extensive thermonuclear
rate(Iliadis 2007) for a typical + l +1 2 3 4 reaction, where
both reactants and products are nuclei, can be calculated by
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Table 1
Nuclear Reactions Involved in the Present BBN Network

Reaction Ratio Reaction Ratio
1H(n, γ)2H(Hara et al. 2003) 1.02 2H(n, γ)3H(Wagoner 1969) 1.09
2H(p, γ)3He(Descouvemont et al. 2004) 0.81 3He(n, γ)4He(Wagoner 1969) 1.10
2H(d, n)3He(Descouvemont et al. 2004) 1.12 3He(3He,2p)4He(Caughlan & Fowler 1988) 1.54
2H(d, p)3H(Descouvemont et al. 2004) 0.91 24He(n, γ)9Be(Caughlan & Fowler 1988) 0.62
3H(d, n)4He(Descouvemont et al. 2004) 1.02 6Li(p, γ)7Be(Xu et al. 2013; He et al. 2013) 0.59
3H(α, γ)7Li(Descouvemont et al. 2004) 0.60 6Li(n, γ)7Li(Malaney & Fowler 1989) 0.47
3He(n, p)3H(Descouvemont et al. 2004) 1.11 6Li(n,α)3H(Caughlan & Fowler 1988) 0.47
3He(d, p)4He(Descouvemont et al. 2004) 0.84 7Li(n, γ)8Li(Wagoner 1969) 1.06
3He(α, γ)7Be(Descouvemont et al. 2004) 0.37 8Li(n, γ)9Li(Li et al. 2005) 1.06
7Li(p, α)4He(Descouvemont et al. 2004) 0.61 8Li(p, n)24He(Wagoner 1969) 1.07
7Be(n, p)7Li(Descouvemont et al. 2004) 0.39 9Li(p, α)6He(Thomas et al. 1993) 1.07
3H(p, γ)4He(Dubovichenko 2009) 0.69 9Be(p, α)6Li(Caughlan & Fowler 1988) 1.01
2H(α, γ)6Li(Angulo et al. 1999; Xu et al. 2013; Anders et al. 2014) 0.43 9Be(p, d)24He(Caughlan & Fowler 1988) 0.97
6Li(p, α)3He(Angulo et al. 1999; Xu et al. 2013) 0.36
7Be(n, α)4He(King et al. 1977) 0.35
7Li(d, n)24He(Caughlan & Fowler 1988) 0.53
7Be(d, p)24He(Caughlan & Fowler 1988; Parker 1972) 0.11

Note.The non-extensive Tsallis distribution is implemented for the 17 principal reactions shown in bold face. The listed flux ratio is the time-integrated reaction flux
calculated with the non-extensive Tsallis distribution (with q=1.0755) relative to that with the classical MB distribution (q=1). References are listed for each
reaction in parentheses.

Table 2
The Predicted Abundances for the BBN Primordial Light Elementsa

Nuclide Coc et al. (2012) Cyburt et al. (2016) Bertulani et al. (2013) This work Observation
(q=1) (q=1) (q=1) q=1 q=1.069∼1.082

4He 0.2476 0.2470 0.249 0.247 0.2469 0.2561±0.0108(Aver et al. 2010)
D/H(×10−5) 2.59 2.58 2.62 2.57 3.14∼3.25 3.02±0.23(Olive et al. 2012)
3He/H(×10−5) 1.04 1.00 0.98 1.04 1.46∼1.50 1.1±0.2(Bania et al. 2002)
7Li/H(×10−10) 5.24 4.65 4.39 5.23 1.62∼1.90 1.58±0.31(Sbordone et al. 2010)

(a) The observational data are listed for comparison.
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where Bq denotes the q-dependent normalization constant. With
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with Emax=
-
kT

q 1
for q>1 and+¥ for 0<q<1. Here, the

q<0 case is excluded according to the maximum-entropy
principle(Tsallis 1988; Gell-Mann & Tsallis 2004). Usually,
one defines the + l +1 2 3 4 reaction with positive Q value
as the forward reaction and the corresponding + l +3 4 1 2
reaction with negative Q value as the reverse one. Under the
assumption of classical statistics, the ratio between reverse and
forward rates is simply proportional to exp ( )- Q

kT
(Iliadis

2007). With Tsallis statistics, however, the reverse rate is
expressed as
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Equations (1)–(3) are well-defined in Iliadis (2007). For a
reaction g+ l +1 2 3 , we assume the photons obey the
Planck radiation law(Iliadis 2007; Torres et al. 1997, 1998)
and use the approximation of - »g ge e1E kT E kT (Mathews
et al. 2011) when calculating the corresponding reverse
rate.

3. IMPACT OF NON-EXTENSIVE STATISTICS ON BBN

A previous attempt to examine the impact of deviations from
the MB distribution on BBN(Bertulani et al. 2013) only used
non-extensive statistics for forward rates and did not consider the
impact on reverse rates. Here, we have for the first time used a
non-extensive velocity distribution to determine thermonuclear
reaction rates of primary importance to BBN in a consistent
manner. With these non-extensive rates, the primordial abun-
dances are predicted by a standard BBN code by adopting the
up-to-date cosmological parameter η=(6.203± 0.137)×
10−10(Hinshaw et al. 2013) for the baryon-to-photon ratio,
and the neutron lifetime of τn=(880.3± 1.1) s(Olive
et al. 2014). The reaction network involves 30 reactions with
nuclei of A�9 (see Table 1) in total. Here, the thermonuclear
(forward and reverse) rates for those 17 principal reactions (with
bold face in Table 1) have been determined in the present work
using non-extensive statistics, with 11 reactions of primary
importance(Smith et al. 1993) and 6 of secondary importan-
ce(Serpico et al. 2004) in the primordial light-element

Figure 1. Predicted primordial abundances as a function of parameter q (in red
solid lines). The observed primordial abundances(Aver et al. 2010; Sbordone
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Figure 2. Normalized relative probabilities for non-extensive energy
distributions and for the standard MB distribution (q=1) at a temperature
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(q=1.0755), respectively.
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FIG. 4. Evolution of nuclear abundances as a function of T9.
X and Y are mass fractions of 1H and 4He in total baryon
matter, respectively. Other nuclear abundances are shown by
the number ratios to 1H, i.e., A/H. In the upper panel, the
solid lines are for the Tsallis statistics, while the dashed lines
are for the previously assumed relative velocity distribution
function. The dotted lines are results for the MB statistics.
The Tsallis parameter is set to q = 1.075. The lower panel
shows abundances for Tsallis statistics with q = 0.9 (dashed
lines), 1 (dotted), and 1.1 (solid), respectively.

dance. The 3He abundance is predominantly contributed
by 3He, plus a small abundance of 3H produced during
BBN (see Fig. 4) has been added. The vertical line is at
q = 1 and corresponding to the SBBN case. The plotted
range is allowed by the 2 σ limit on the 4He abundance
of Ref. [47] and excluded by that of Ref. [48]. Also this
region is allowed by the 2 σ upper limits on 3He/H [50].

The reasons for the abundance changes of D, 3He, 7Be,
and 7Li have been explained above. The one percent level
of change for the final 4He mass fraction Yp is caused by
different neutron abundances during the 4He synthesis.
For larger q, the D destruction rate is smaller and the
D abundance is larger. As a result of the balance of
forward and reverse reactions of 1H(n,γ)2H (see above),
the n abundance is kept higher and more neutrons are
lost by β-decay before 4He synthesis is completed. The

FIG. 5. Light element abundances versus the Tsallis param-
eter q. Boxes show the 2 σ observational limits on D/H and
7Li/H. In the panel for 7Li/H, dashed and dotted lines show
abundances of 7Be and 7Li, respectively, immediately after
the BBN. The vertical line is at q = 1, i.e., the SBBN case.

final 4He abundance is therefore smaller.

It is seen that the D abundance increases and the
7Li abundance decreases with increasing q value. At
q ≈ 1.01–1.02, the theoretical result for the D abun-
dance is consistent with the observation. On the other
hand, for q ! 1.055, the 7Li abundance agrees with the
observation. However, in this parameter region, the D
abundance is enhanced to above D/H= 3 × 10−5, which
requires an additional mechanism for later D destruction.
Because of their fragility, deuterons can be destroyed eas-
ily if there is a source of non-thermal photons in the early
universe (e.g., [9, 52]). Then, the D destruction by non-
thermal photons can reproduce the primordial elemental
abundances consistent with observations of all light nu-
clei. This can happen for example, in a model including
photon cooling by an axion condensate [53].

Unless a later D destruction mechanism is induced, the
D enhancement is very problematic. Therefore, the ob-
served D abundance places an upper limit on q. We find
that in the range of q ≈ 1.01–1.02 where the observed D
abundance is reproduced, the 7Li abundance is smaller
than in the SBBN by ∼30–60 %. This level of Li reduc-
tion is significant but not enough. On the other hand,
there are other astrophysical processes which can further
reduce the Li abundance, i.e., a chemical separation of
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Abstract

We investigate the effect on the Big Bang nucleosynthesis (BBN) from the presence of a stochastic primordial
magnetic field (PMF) whose strength is spatially inhomogeneous. We assume a uniform total energy density and a
Gaussian distribution of field strength. In this case, domains of different temperatures exist in the BBN epoch due
to variations in the local PMF. We show that in such a case, the effective distribution function of particle velocities
averaged over domains of different temperatures deviates from the Maxwell–Boltzmann distribution. This
deviation is related to the scale invariant strength of the PMF energy density ρBc and the fluctuation parameter σB.
We perform BBN network calculations taking into account the PMF strength distribution and deduce the element
abundances as functions of the baryon-to-photon ratio η, ρBc, and σB. We find that the fluctuations of the PMF
reduce the 7Be production and enhance D production. We analyze the averaged thermonuclear reaction rates
compared with those of a single temperature and find that the averaged charged-particle reaction rates are very
different. Finally, we constrain the parameters ρBc and σB from observed abundances of 4He and D and find that the
7Li abundance is significantly reduced. We also find that if the η value during BBN was larger than the present-day
value due to a dissipation of the PMF or a radiative decay of exotic particles after BBN or if the stellar depletion of
7Li occurred, abundances of all light elements can be consistent with observational constraints.

Key words: magnetic fields – nuclear reactions, nucleosynthesis, abundances – primordial nucleosynthesis

1. Introduction

Light element synthesis in the early universe is well
described by the standard model of Big Bang nucleosynthesis
(BBN). A comparison of predicted isotopic abundances with
observation is essential to constrain cosmological models and
the physical processes during the BBN epoch (Fields &
Olive 2006; Steigman 2007; Cyburt et al. 2016; Mathews et al.
2017). The standard BBN (SBBN) model evolves a network of
nuclear reactions among primordial elements (mainly D, 3He,
4He, and 7Li) in a spacetime characterized by general relativity,
while the microphysics is characterized by particle interactions
described within the standard model of particle physics
(Bertulani & Kajino 2016).

Theoretical calculations of light element abundances in
SBBN are now well defined and precise (Cyburt et al. 2016;
Mathews et al. 2017). The only parameter is the baryon-to-
photon ratio (η), which is now well determined from the power
spectrum of the cosmic microwave background temperature
fluctuations. For the value of η derived from Planck or the
WMAP-9 yr analysis (Bennett et al. 2013; Ade et al. 2016a),
there is excellent agreement between BBN and the observed
primordial abundances of D and 4He (Cyburt et al.
2003, 2016). However, the observed abundance of 7Li in
metal-poor halo stars (Spite & Spite 1982; Sbordone et al.
2010) implies Li/H=1.6×10−10, which disagrees with the
theoretical prediction by about a factor of 3 (Li/H= 5.1×
10−10; Cyburt et al. 2016).

A number of suggestions have been proposed to solve this
problem. One is that a better understanding of the diffusive
transport may be needed to understand the lithium abundances
of the metal-poor halo stars on the Spite plateau (Fu et al.
2015). Others have argued for the existence of a stellar mass-

dependent mechanism to deplete stellar lithium (Richard et al.
2005). Motivated by recent observations, Piau et al. (2006)
suggest that the interstellar medium (ISM) is in fact quite
dynamic; it has also been suggested that the 7Li depleted ejecta
from massive Population III stars may be mixed inefficiently
with the proto-Galactic ISM.
In addition to explanations from astrophysical processes, it

has been proposed that the current uncertainties in the cross
sections of relevant nuclear reactions are at the level of 0.2%
for 4He, 5% for D, and 3He and 15% for 7Li (Descouvemont
et al. 2004). Therefore, a partial solution from the nuclear
reaction side might be possible once more accurate measure-
ments are achieved (Broggini et al. 2012). Experimentally, a
recent measurement of the 7Be(n,p)7Li reaction suggests that
the final state involving the first excited state of 7Li* can
contribute up to 20% of the total cross section (Damone 2018;
S. Hayakawa & H. Yamaguchi 2018, private communication).
Theoretically, detailed nuclear reaction network calculations up
to the CNO cycle have been carried out (Coc et al. 2011; Coc &
Vangioni 2017), as well as a Monte Carlo likelihood analysis to
make a rigorous approach of the theoretical BBN nuclear
reaction networks (Iliadis et al. 2016). Those results, however,
do not give a solutions to the lithium problem. On the other
hand, the possibility of new resonance reactions to destroy 7Li
such as 7Be , C11a g( ) and 7Be(3He,2 pa)4He will be explored
in the near future, although it has been found that these
resonances must have unrealistically large decay widths
(Chakraborty et al. 2011; Civitarese & Mosquera 2013;
Hammache et al. 2013).
Besides these, a variety of nonstandard BBN models

have also been proposed such as an inhomogeneous BBN
(Alcock et al. 1987; Applegate et al. 1987; Fuller et al. 1988;
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function f (ρB) exists, then the associated radiation energy
density fluctuations can modify the nuclear reaction yields after
averaging over all local regions.

Most BBN network calculations have considered the photon
energy density to be homogeneous during the entire epoch.
Here, however, we consider large-scale energy density
fluctuations in the temperature (or, equivalently, photon energy
density). The nuclear reactions occur locally, which means that
the local velocity distribution function for baryons is
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where m12 is the reduced mass of the system 1+2. Because
local fluctuations of the energy density occur due to the
inhomogeneous PMF, locally, nuclei obey a classical MB
distribution with inverse temperature equal to β′. The thermo-
nuclear reaction rates averaged over the set of temperature
fluctuations is then given by
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In the last equation, we defined a new function F(v) that is
independent of β′ as an effective distribution function averaged
over the set of temperature fluctuations.5 In principle, the
evolution of nuclear abundances should be solved inhomogen-
eously, i.e., the abundance at a given time depends on
locations, i.e., Yi(t, x). But in the present calculation, the
inhomogeneity of nuclear abundances is neglected, i.e., Yi(t).
Then, an average distribution function can be defined:
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Here, f (β′) is the distribution function of β′ generated from
averaging over fluctuations of the energy density. The
derivation of this deviation from a classical MB distribution
is similar to that deduced in Beck (2001) in terms of Tsallis
statistics. Now, we can invoke the central limit theorem and
simply assume that the distribution function of magnetic energy
density f (ρB) follows a Gaussian distribution with a peak
located at the mean value ρBc ( Brá ñ in Equation (5)):
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We then introduce the fluctuation parameter σB as a
dimensionless quantity, i.e., BB Bcs s r= † to describe the
fluctuations of the PMF. In the limit of σB→0, this is a delta
function that corresponds to the homogeneous case. Now, we
assume that the total energy density is uniform for all volumes,
but with some fraction contributed from the magnetic energy
density:
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An effective temperature Teff can be defined as
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Since ρtot is constant, the magnetic energy density cannot
exceed ρtot, in which case radr would obtain an unphysical

Figure 1. Calculated isotopic abundances in the SBBN model (solid line) and a
BBN model with a constant strength of PMF with 0.13B totr r= (dashed line).
The observational values are given by green bands for each isotope. The Planck
constraint of 10 6.10 0.0410h ´ = o is given by the vertical blue band. The
observed value for each element abundance is given in the horizontal painted
band. The constraints in the top, middle, and bottom panels are taken from (1)
Yp: Aver et al. (2010; dark green band), Izotov et al. (2014; light green band);
(2) D/H: Cooke et al. (2018; dark green band), Olive et al. (2012; light green
band); (3) 7Li/H: Sbordone et al. (2010), 1σ (dark green band), and 2σ (light
green band), respectively.

5 Note that F(v) is the average velocity distribution function over a length
scale much longer than the typical size of magnetic domains’ but not a real
particle velocity distribution.
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negative value. Here, we impose a cutoff to the distribution
function f (ρB) ( 0.25B totr r< ).

Figure 2 shows Gaussian functions for various values of σB.
As we do not expect a very large inhomogeneity in the
magnetic energy density strength during BBN, a narrow
distribution f (ρB) is required. For σB<0.65, f (ρB) is
consistent with our cutoff range for Br . The photon temperature
Tγ determines the radiation energy density as Trad

4r µ g , so
Equation (16) becomes
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2.3. Effect on Reaction Rates

Adopting this as the distribution function, we show that the
averaged charged-particle reactions are affected significantly
by the inhomogeneous temperature distribution. For neutron-
induced reactions, the transmission probability of a neutron
through the nuclear potential surface is proportional to the
inverse of the velocity v within the assumption of a sharp
potential surface (Bertulani & Kajino 2016). Hence, the cross
section is usually expressed as E R E vneutrals =( ) ( ) , where R
(E) is a smooth function. Therefore, the change of reaction rates
is mainly determined by the deviation of the average
distribution function from an MB distribution function. This
is not a large effect as shown in Figure 3 (solid straight line and
dashed straight line).

For charged-particle reactions, the astrophysical S-factor is
introduced to rewrite the cross section σ(E) in terms of a much
smoother dependence on the center of mass energy E:

E
E
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S E
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, 20chargeds
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where Eexp 2ph-[ ( )] approximately expresses the probability
to penetrate the Coulomb barrier. This is also known as the
Gamow factor, E E E2 Gph =( ) . Equation (12) is peaked at
the so-called Gamow energy E m eZ Z2G 12 1 2

2p= ( ) . The devia-
tion from an MB distribution function in the inhomogeneous
PMF model is not large. However, the impact on reaction rates
can increase when we take into account the factor of

Eexp 2ph-[ ( )] for charged-particle reactions as shown in
Figure 3. The distribution function (shown by straight lines) in
our PMF model looks similar to an MB distribution function.
However, Eexp 2ph-[ ( )] is also a energy-dependent function,
and the inhomogeneous PMF model suggests an effective
reduction of the Gamow window derived by multiplying this
term with the average distribution function F(v).
In conclusion, for the case of an inhomogeneous PMF during

BBN epoch, the effect generated from the distribution of PMF
energy density can be divided into two parts: (1) changes in the
Hubble expansion rate (see Section 2.1) and (2) changes within
nuclear reaction rates due to an effective non-MB averaged
distribution function when we calculate the sum of averaged
thermonuclear reaction rates in all domains.

3. Results and Discussion

3.1. Standard Case

We have encoded the temperature averaged reaction rates as
described in Equations (13) and (19) to calculate the BBN
reaction network and compare the results with the observa-
tionally inferred abundances for D, 4He, and 7Li. We use the
current Particle Data Group world average value τn=880.3 s
for the neutron lifetime (Olive & Group 2014). The baryonic
density of the universe or η is now deduced to be

Figure 2. Temperature distribution under the assumption of an inhomogeneous
PMF strength. Here, Tγ is in units of 10 K9 (centered at T9=1) and Brá ñ is
taken as 0.05 of ρtot. When σB<0.01, the distribution function f Tg( ) can
approximately be treated as T 10 K9d -g( ).

Figure 3. Deviation of the Gamow window for the 3He(α, γ)7Be reaction in
our PMF model from that of the MB case at t s670~ that corresponds to
T9=0.5 in SBBN. Although the deviation of the distribution function itself is
not large (solid straight line versus the dashed straight line), the Gamow peak in
the PMF model (dashed curve) is suppressed compared with the classical
Gamow peak for the homogeneous BBN (solid curve).
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negative value. Here, we impose a cutoff to the distribution
function f (ρB) ( 0.25B totr r< ).

Figure 2 shows Gaussian functions for various values of σB.
As we do not expect a very large inhomogeneity in the
magnetic energy density strength during BBN, a narrow
distribution f (ρB) is required. For σB<0.65, f (ρB) is
consistent with our cutoff range for Br . The photon temperature
Tγ determines the radiation energy density as Trad
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2.3. Effect on Reaction Rates

Adopting this as the distribution function, we show that the
averaged charged-particle reactions are affected significantly
by the inhomogeneous temperature distribution. For neutron-
induced reactions, the transmission probability of a neutron
through the nuclear potential surface is proportional to the
inverse of the velocity v within the assumption of a sharp
potential surface (Bertulani & Kajino 2016). Hence, the cross
section is usually expressed as E R E vneutrals =( ) ( ) , where R
(E) is a smooth function. Therefore, the change of reaction rates
is mainly determined by the deviation of the average
distribution function from an MB distribution function. This
is not a large effect as shown in Figure 3 (solid straight line and
dashed straight line).

For charged-particle reactions, the astrophysical S-factor is
introduced to rewrite the cross section σ(E) in terms of a much
smoother dependence on the center of mass energy E:

E
E

E
S E

exp 2
, 20chargeds

ph
=

-( ) [ ( )] ( ) ( )

where Eexp 2ph-[ ( )] approximately expresses the probability
to penetrate the Coulomb barrier. This is also known as the
Gamow factor, E E E2 Gph =( ) . Equation (12) is peaked at
the so-called Gamow energy E m eZ Z2G 12 1 2

2p= ( ) . The devia-
tion from an MB distribution function in the inhomogeneous
PMF model is not large. However, the impact on reaction rates
can increase when we take into account the factor of

Eexp 2ph-[ ( )] for charged-particle reactions as shown in
Figure 3. The distribution function (shown by straight lines) in
our PMF model looks similar to an MB distribution function.
However, Eexp 2ph-[ ( )] is also a energy-dependent function,
and the inhomogeneous PMF model suggests an effective
reduction of the Gamow window derived by multiplying this
term with the average distribution function F(v).
In conclusion, for the case of an inhomogeneous PMF during

BBN epoch, the effect generated from the distribution of PMF
energy density can be divided into two parts: (1) changes in the
Hubble expansion rate (see Section 2.1) and (2) changes within
nuclear reaction rates due to an effective non-MB averaged
distribution function when we calculate the sum of averaged
thermonuclear reaction rates in all domains.

3. Results and Discussion

3.1. Standard Case

We have encoded the temperature averaged reaction rates as
described in Equations (13) and (19) to calculate the BBN
reaction network and compare the results with the observa-
tionally inferred abundances for D, 4He, and 7Li. We use the
current Particle Data Group world average value τn=880.3 s
for the neutron lifetime (Olive & Group 2014). The baryonic
density of the universe or η is now deduced to be

Figure 2. Temperature distribution under the assumption of an inhomogeneous
PMF strength. Here, Tγ is in units of 10 K9 (centered at T9=1) and Brá ñ is
taken as 0.05 of ρtot. When σB<0.01, the distribution function f Tg( ) can
approximately be treated as T 10 K9d -g( ).

Figure 3. Deviation of the Gamow window for the 3He(α, γ)7Be reaction in
our PMF model from that of the MB case at t s670~ that corresponds to
T9=0.5 in SBBN. Although the deviation of the distribution function itself is
not large (solid straight line versus the dashed straight line), the Gamow peak in
the PMF model (dashed curve) is suppressed compared with the classical
Gamow peak for the homogeneous BBN (solid curve).
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Big�bang nucleosynthesis (BBN) is a valuable tool to constrain the physics of the early universe
and is the only probe of the radiation�dominated epoch. A fundamental assumption in BBN is
that the nuclear velocity distributions obey Maxwell�Boltzmann statistics as they do in stars. In
this letter, however, we point out that there is a fundamental di↵erence between stellar reaction
rates and BBN reaction rates. Specifically, the BBN epoch is characterized by a dilute baryon
plasma for which the velocity distribution of nuclei is mainly determined by the dominant Coulomb
scattering with mildly relativistic electrons. This modifies the nuclear velocity distributions and
significantly alters the thermonuclear reaction rates, and hence, the light�element abundances.
We show that this novel result alters all previous calculations of light�element abundances from
BBN, and indeed exacerbates the discrepancies between BBN and inferred primordial light�element
abundances possibly suggesting the need for new physics in the early universe.

PACS numbers: 26.35.+c, 98.80.Jk, 98.80.Ft, 02.50.Ey

Big-bang nucleosynthesis (BBN) is a pillar of mod-
ern cosmology[1, 2]. It provides an almost parameter
free prediction of the abundances of light isotopes 2H,
3He, 4He and 7Li formed during the first few moments
of cosmic expansion. At the onset of BBN (T ⇠ 1010 K)
the universe is mainly comprised of electrons, positrons,
photons, neutrinos and trace amounts of protons and
neutrons. Once the temperature becomes low enough
(T ⇠ 109 K) for the formation of deuterium, most neu-
trons are quickly absorbed by nuclear reactions to form
4He nuclei. However, trace amounts of 2H, 3H, 3He and
7Li and 7Be also remain at the end of BBN at T ⇠ 107

K.
These trace amounts, however, are sensitive to the de-

tailed freeze-out of the thermonuclear reaction rates as
the universe cools. In this letter we show that the way of
deducing [3] thermonuclear reaction rates that have been
used until now are incorrect. The true rates must be ob-
tained using the modified baryon velocity distributions
that result from the dominant Coulomb scattering of nu-
clei with relativistic electrons during most of the BBN
epoch.

The reaction rate between two species 1 and 2 can be
written as [4]

n1n2 < �(v)v >= n1n2

Z
v�(v)f(v)dv , (1)

where n1 and n2 are the number densities of the two
species, �(v) is the reaction cross section, v is the rela-
tive center-of-mass (CM) velocity and f(v) is the relative
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velocity distribution function. In this letter we evaluate
a crucial modification of f(v) of relevance to BBN.
During BBN baryons are extremely dilute in numbers

as compared with the background e+�e� pairs and pho-
tons. The baryon-to-photon ratio (⌘) is ⇠ 10�9 while the
ratio of baryons to e+ � e� pairs is < 10�7 during most
of BBN. Hence, each nucleus undergoes scattering with a
background plasma comprised of electrons, positrons and
photons much more often than with other nuclei. This
becomes important when considering the energy and ve-
locity distribution functions for nuclei. The velocity dis-
tribution of nuclei will depend upon scattering events
with the background plasma [5]. Here, we show by sim-
ple conservation of momentum and energy that the re-
sultant velocity distributions for all nuclei di↵er from the
classical Maxwell-Boltzmann (MB) distribution until the
background plasma itself becomes non-relativistic near
the end of BBN.
The Boltzmann equation describing the velocity distri-

bution function of a particle undergoing scattering in a
dilute gas is a standard problem in statistical mechanics.
A clear derivation of the solution can be found in [6]. The
solution is given as

f(v) = A exp {�M.b

2
(v � �

b
)2} (2)

Here A is the normalizing factor, M is the nuclear mass
and v is the velocity. b and � are the unknown parame-
ters which can be solved from the moments of the distri-
bution. It can be shown that since we have a co-moving
gas � =0. We know from equipartition theorem that
the average kinetic energy of the particle has to equal
1
2M < v2 >. The average kinetic energy for a classi-
cal gas is given as 3

2KT . However this is not true for
a relativistic gas. Hence the nuclei in equilibrium with
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TABLE I: Calculated ratios of reaction rates for e� � e+

pair plasma relative to photons. We use the minimum
among the two cross section ratios (4th and 5th

columns) to get the reaction rate ratio (last column).

T
n±
n�

�±
��

�±
��

T9 MeV �
±

= ⇡r2D �
±

= Mott X-sec. ⇠ n±�±
n���

11.6 1 1.43 5⇥ 104 105 105

1.16 0.1 0.102 107 105 104

0.116 0.01 10�13 2⇥ 1028 1029 1015

It is evident from the �
±

/�� ratios in Table I that
nuclei scatter with the background e� � e+ pair plasma
significantly more than with photons during BBN. Simi-
larly, the ratio of electron-nucleon scattering to nucleon-
nucleon scattering is > 107. Hence, nuclei are mainly
thermalized by the background e��e+ pair plasma, while
photons and other nuclei have a negligible e↵ect during
the thermalization process.

For a dilute non-relativistic species in thermal equilib-
rium, the velocity distribution is classically given by the
MB distribution

f(v) =

✓
m

2⇡kT

◆3/2

exp

✓
�mv2

2kT

◆
4⇡v2 . (8)

However, as noted above, the thermalization of nu-
clei is dominated by coulomb scattering with the back-
ground e� � e+ plasma. Since the temperatures during
BBN are comparable to the electron rest mass (kT ⇠
0.5 � 0.01MeV) the electrons and positrons are mildly
relativistic. This alters the relativistic velocity distribu-
tion for the background e� � e+ pair plasma, to that of
a Maxwell-Jüttner (MJ) distribution:

f(�) =

✓
�2vme

kTK2(mec2/kT )

◆
1

exp [(ET ± µ)/kT ] + 1
,

(9)
where � = 1/

p
1� v2/c2 is the usual Lorentz factor, K2

is the modified Bessel function of the second kind, and
ET = �mec2 is the total electron relativistic energy.

We simulate nuclear thermalization in a bath with tem-
peratures and an environment relevant to BBN. This is to
obtain the true kinetic-energy and velocity distributions
for the nuclei. Table I shows that photons play a negli-
gible role in this process. Hence, we need only simulate
scattering of e��e+ pairs with nuclei. The e��e+ distri-
bution function is given by Eq. (9). We let the electrons
and positrons scatter o↵ of nuclei. During this scattering
process energy is transferred to or from nuclei. The di-
rection of transfer of energy is governed by the angle of
incoming particles, the velocity of incoming particles and
the scattering angle of the outgoing electron or positron.
For our simulation the angle of the incoming particles is
chosen isotropically in the cosmic frame. However, this
would not be isotropic in the nuclear rest frame due to
the nuclear velocity.

FIG. 3: Simulated proton velocity (v/c) distribution
(blue curve) after 107 scattering events at kT = 0.1

MeV near the onset of BBN. These are compared with
the mildly relativistic electron plasma distribution, and
the usual MB distribution. Clearly, the nuclear velocity
distribution more closely resembles the MJ distribution

of the electrons than the usually assumed MB
distribution.

We randomly select the incoming electron velocity
from the energy distribution given by Eq. (9). The angle
of scattering for electrons is chosen from a distribution
given by the di↵erential cross-section in Eq. (7). The in-
coming energy of nuclei before each scattering event is
given by its energy in the previous scattering event. The
scattering process is then repeated for a su�ciently large
number of times (⇠ 107). Note that according to Table
I there would be 10�9 photon scatterings for each elec-
tron scattering. Moreover, for a baryon-to-photon ratio
of ⌘ ⇠ 10�9, there would be no nucleus-nucleus scatter-
ings. Hence, the influence of nuclear and photon scatter-
ing is negligible. This is not the case in stars where the
baryon density is much higher.
Figure 3 illustrates the resultant velocity distribution

for protons immersed in the primordial plasma near the
beginning of helium synthesis at kT = 0.1 MeV. Even at
this low temperature, nuclei have a velocity distribution
(blue curve on Figure 3) that is reflective of the mildly
relativistic electrons and positrons (green curve) rather
than the MB distribution (red curve) that is usually as-
sumed.
In standard BBN, the MB velocity distribution for nu-

clei can be simply converted to the relative velocity dis-
tribution by inserting the reduced mass and the relative
velocity into Eq. (8). This distribution can then be in-
serted into Eq. (1) to obtain the nuclear reaction rates.
However, as recently shown in Ref. [8] this simple substi-
tution is only valid for MB statistics. For a distribution
that is non-Maxwellian such as a Tsallis [8–10] distribu-
tion or the MJ distribution of interest here, one must
construct a relative velocity distribution that conserves
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a Maxwell-Jüttner (MJ) distribution:

f(�) =

✓
�2vme

kTK2(mec2/kT )

◆
1

exp [(ET ± µ)/kT ] + 1
,

(9)
where � = 1/

p
1� v2/c2 is the usual Lorentz factor, K2

is the modified Bessel function of the second kind, and
ET = �mec2 is the total electron relativistic energy.

We simulate nuclear thermalization in a bath with tem-
peratures and an environment relevant to BBN. This is to
obtain the true kinetic-energy and velocity distributions
for the nuclei. Table I shows that photons play a negli-
gible role in this process. Hence, we need only simulate
scattering of e��e+ pairs with nuclei. The e��e+ distri-
bution function is given by Eq. (9). We let the electrons
and positrons scatter o↵ of nuclei. During this scattering
process energy is transferred to or from nuclei. The di-
rection of transfer of energy is governed by the angle of
incoming particles, the velocity of incoming particles and
the scattering angle of the outgoing electron or positron.
For our simulation the angle of the incoming particles is
chosen isotropically in the cosmic frame. However, this
would not be isotropic in the nuclear rest frame due to
the nuclear velocity.

FIG. 3: Simulated proton velocity (v/c) distribution
(blue curve) after 107 scattering events at kT = 0.1

MeV near the onset of BBN. These are compared with
the mildly relativistic electron plasma distribution, and
the usual MB distribution. Clearly, the nuclear velocity
distribution more closely resembles the MJ distribution

of the electrons than the usually assumed MB
distribution.

We randomly select the incoming electron velocity
from the energy distribution given by Eq. (9). The angle
of scattering for electrons is chosen from a distribution
given by the di↵erential cross-section in Eq. (7). The in-
coming energy of nuclei before each scattering event is
given by its energy in the previous scattering event. The
scattering process is then repeated for a su�ciently large
number of times (⇠ 107). Note that according to Table
I there would be 10�9 photon scatterings for each elec-
tron scattering. Moreover, for a baryon-to-photon ratio
of ⌘ ⇠ 10�9, there would be no nucleus-nucleus scatter-
ings. Hence, the influence of nuclear and photon scatter-
ing is negligible. This is not the case in stars where the
baryon density is much higher.
Figure 3 illustrates the resultant velocity distribution

for protons immersed in the primordial plasma near the
beginning of helium synthesis at kT = 0.1 MeV. Even at
this low temperature, nuclei have a velocity distribution
(blue curve on Figure 3) that is reflective of the mildly
relativistic electrons and positrons (green curve) rather
than the MB distribution (red curve) that is usually as-
sumed.
In standard BBN, the MB velocity distribution for nu-

clei can be simply converted to the relative velocity dis-
tribution by inserting the reduced mass and the relative
velocity into Eq. (8). This distribution can then be in-
serted into Eq. (1) to obtain the nuclear reaction rates.
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Here we summarize the derivation of the multicomponent Boltzmann Eq. in the context of BBN
and highlight some misconceptions in the literature
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I. INTRODUCTION

It is important to understand the stationary distribu-
tion function for a nonrelativistic particle immersed in a
bath of photons and moderately relativistic electrons. As
we shall see, this stationary distribution is not necessarily
identical to the equilibrium distribution of a single non-
relativistic particle. It is a common misconception in the
literature [e.g. [1]] that the equilibrium distribution of a
multicomponent fluid is exactly that of the single compo-
nent solution to the Boltzmann equation for each species,
i.e. a Maxwell Boltzmann distribution for non-relativistic
baryons and and a Fermi-Dirac or Planck spectrum for
electrons and photons. This is an erroneous assumption
for a mixture of relativistic and non-relativsistic species.

Indeed, although the essentials of the relativistic and
nonrelativistic single-component gas have been known for
many decades [2], the solution of the relativistic multi-
component Boltzmann equation has only recently been
attempted [3, 4] and transport coe�cients have only been
deduced for the case of equal or nearly identical-mass
particles. Here we summarize the derivation of the dis-
tribution function for a multicomponent relativistic gas
and reduce it to the specific case of a dilute baryon gas
for which the collision term is dominated by elastic scat-
tering with relativistic electrons.

II. BOLTZMANN EQUATION

Following [4] let us consider a mixture of r con-
stituents in a Minkowski space with metric tensor ⌘↵� =
diag(1,�1,�1,�1). The fluid consists of particles of
mass ma with a = 1, ....r. Each particle is character-
ized by space-time coordinates X

↵, ↵ = 0, 1, 2, 3 and
momenta p

↵
a = (p0a, p

ia), so that p0a =
p

(pi)2 +mac
2. If

we restrict to the consideration of only elastic collisions,
then the conservation of four momenta can be imposed

p

↵
a + p

↵
b = p

0↵
a + p

0↵
b , (1)

then, the state of the mixture of relativistic species r can
be characterized by the set of one-particle distribution
functions:

f(X,Pa,t) ⌘ fa , a = 1, 2, ....r . (2)

The one-particle distribution function characterizing
collisions of constituent a with constituent b satisfies a

Boltzmann equation,

p

↵
a@↵fa =

rX

a=1

Z
(f 0

af
0
b � fafb)Fba�abd⌦

d

3
pb

pb0
, (3)

where the right-hand side is the one-particle collision
term. The quantity Fba =

p
(p↵apb↵)

2 �mambc
4 is the

invariant flux, while �ba is the invariant di↵erential elas-
tic scattering cross section into an element of solid angle
d⌦ that characterizes the collision of constituent a with
constituent b.
However, in a multi-component plasma, one must also

count the flow of momentum and energy among com-
ponents in the fluid. This leads to additional constraint
equations of the moments of the distribution function [4?
]. The constraints on the first three moments for each
component a are, respectively the particle four flow N

↵
a ,

the partial energy-momentum tensor T

↵�
a , and a third

moment T↵��
a , with

N

↵
a =

Z
p

↵
afa

d

3
pa

pa0
, (4)

T

↵�
a =

Z
p

↵
ap

�
afa

d

3
pa

pa0
, (5)

T

↵��
a =

Z
p

↵
ap

�
ap

�
afa

d

3
pa

pa0
, (6)

The energy-momentum balance equation involves a mo-
mentum collision term:

@↵T
↵�
a =

rX

a=1

Z
(p

0�
a � p

�
a)fafbFba�abd⌦

d

3
pb

pb0

d

3
pa

pa0
.

(7)
The balance equation for the third moment is:

@↵T
↵��
a =

rX

a=1

Z
(p

0�
a p

0�
a � p

�
ap

�
a)fafbFba�abd⌦

d

3
pb

pb0

d

3
pa

pa0
.

(8)
By summing Eqs. (4), 5), and (6) over all constituents
one obtains the balance equations for particle flow,
energy-momentum, and the third moment:

@↵N
↵ = 0 , @T

↵� = 0 , @↵T
↵�� =

rX

a=1

C

��
a . (9)

where the quantities above are obtained by summing the
partial moments over all constituents and C

��
a is the col-

lision term on the r.h.s of Eq. (6). Our goal is to deduce
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the baryon particle distribution function fB which satis-
fies the constraint equations on first three moments of the
distribution. To do this, we now address the conditions
during BBN.

A. Relativistic Boltzmann Equation during BBN

In terrestrial applications or in stars, the collision term
among non-relativistic baryons dominates over photon or
electron scattering so that the equilibrium distribution
for baryons leads to the usual Maxwell-Boltzmann dis-
tribution of temperature T in a bath of photons with
a Planck distribution also characterized by a tempera-
ture T . However, unlike the non-relativistic theory of
gases, the temperature in the relativistic theory cannot
be simplified in terms of the distribution function [4].
Moreover, during BBN, the baryons are an extremely
dilute gas for which the collision terms above are domi-
nated by elestic scattering with the background electrons.
Hence, denoting electrons e and baryons B, the relativis-
tic baryon Boltzmann equation simplifies to a modified
single-component equation:

p

↵
B@↵fB ⇡

Z
(f 0

Bf
0
e � fBfe)FeB�Bed⌦

d

3
pe

pe0
. (10)

The energy-momentum balance equation becomes:

@↵T
↵�
B =

Z
(p

0�
B � p

�
B)fBfeFeB�Bed⌦

d

3
pe

pe0

d

3
pB

pB0
.

(11)
The balance equation for the third moment is now:

@↵T
↵��
B =

Z
(p

0�
B p

0�
B � p

�
Bp

�
B)fBfeFeB�Bed⌦

d

3
pb

ee0

d

3
pB

pB0
.

(12)
This di↵ers from the usual one-particle Boltzmann equa-
tion in that the distribution is fixed by the dominant col-
lisions with relativistic electrons. Nevertheless, from this
one can immediately derive the form of the stationary
solution of the Boltzmann equation for the baryons. For
the distribution to be stationary one requires that the
term in brackets on the r.h.s of Eq. 10 vanish. Hence,
f

0
Bf

0
e = fBfe, which implies ln f 0

e+ln f 0
B = ln fe+ln fB .

So, for both the electrons and baryons the form ln f =
A+B↵p

↵ a summational invariant [4] for which the terms
A and B↵ are determined from the stationary values of
the particle four-flow and the energy-momentum tensor.
The stationary distribution for both baryons and elec-
trons is then of the form [4] :

f(p) = exp [�A+B↵p
↵] . (13)

or with the imposition of Fermi-Dirac statistics, one has

f(p) =
1

exp [A�B↵p
↵] + 1

. (14)

For BBN one can ignore correction for FD statistics.

Now the particle number-density four-current is just
J

µ = nU

µ, with n the local proper rest particle density
and U

µ the particle four velocity, with UµU
µ = �1. Since

J

µ is the only relevant four vector, one can identify B

µ /
J

µ = ⇣U

µ. Then in the dilute gas limit the equilibrium
distribution takes the Boltzmann-Jüttner form:

feq(p) = exp [A� ⇣(U↵
p↵))] . (15)

The parameter A can be identified with the chemical po-
tential [6] which is small during BBN and so for our pur-
poses and can be ignored.
The identification of the parameter ⇣ and its relation to

the temperature T , however, requires the determination
of the state variables. To do this one imposes the Gibb’s
equation,

sE =
1

T

(e� P

n

) (16)

where sE is the equilibrium entropy per particle, e =
hE �mi = h(� � 1)mi is the average internal energy per
particle, P is the pressure, and n is the number density.
The total equilibrium relativistic entropy is deduced from
the entropy flow

S

↵
E = nsEU

↵
. (17)

The total entropy flow, however, must be determined de-
termined from the distribution function f via [6].

S

↵
E =

Z
p

↵
f


�k ln

✓
fh

3

gs

◆

+ k

✓
1 +

gs

✏fh

3

◆
ln

✓
1 +

✏fh

3

gs

◆�
d

3
p

p0
. (18)

Insertion of Eq. (15) into Eq. (18) leads to the following
expression for the entropy per particle [6].

sE =
k⇣

m

✓
e+

4⇡m4
gs

3nh3
J40

◆
, (19)

where

Jm,n(⇣) =

Z 1

0

sinhn ✓ coshm ✓

exp
(⇣ cosh ✓)d✓ , (20)

The entropy per particle is then [6]

sE =
k⇣

m

(e� P

n

) , (21)

while the relevant state variables are:

n = 4⇡m3 gs

h

3
J21 , (22)

e = m


J22

J21
� 1

�
. (23)

P = 4⇡m4 gs

h

3
J40 . (24)

Note, that it is not possible to obtain an explicit ex-
pression for ⇣ directly from the distribution function. To
obtain an expression for ⇣ one must consider the physics
of the environment for each species of a multicomponent
system.
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electron scattering so that the equilibrium distribution
for baryons leads to the usual Maxwell-Boltzmann dis-
tribution of temperature T in a bath of photons with
a Planck distribution also characterized by a tempera-
ture T . However, unlike the non-relativistic theory of
gases, the temperature in the relativistic theory cannot
be simplified in terms of the distribution function [4].
Moreover, during BBN, the baryons are an extremely
dilute gas for which the collision terms above are domi-
nated by elestic scattering with the background electrons.
Hence, denoting electrons e and baryons B, the relativis-
tic baryon Boltzmann equation simplifies to a modified
single-component equation:
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This di↵ers from the usual one-particle Boltzmann equa-
tion in that the distribution is fixed by the dominant col-
lisions with relativistic electrons. Nevertheless, from this
one can immediately derive the form of the stationary
solution of the Boltzmann equation for the baryons. For
the distribution to be stationary one requires that the
term in brackets on the r.h.s of Eq. 10 vanish. Hence,
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0
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e = fBfe, which implies ln f 0

e+ln f 0
B = ln fe+ln fB .

So, for both the electrons and baryons the form ln f =
A+B↵p

↵ a summational invariant [4] for which the terms
A and B↵ are determined from the stationary values of
the particle four-flow and the energy-momentum tensor.
The stationary distribution for both baryons and elec-
trons is then of the form [4] :

f(p) = exp [�A+B↵p
↵] . (13)

or with the imposition of Fermi-Dirac statistics, one has
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↵] + 1
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For BBN one can ignore correction for FD statistics.

Now the particle number-density four-current is just
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µ = nU

µ, with n the local proper rest particle density
and U

µ the particle four velocity, with UµU
µ = �1. Since
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µ is the only relevant four vector, one can identify B

µ /
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µ. Then in the dilute gas limit the equilibrium
distribution takes the Boltzmann-Jüttner form:

feq(p) = exp [A� ⇣(U↵
p↵))] . (15)

The parameter A can be identified with the chemical po-
tential [6] which is small during BBN and so for our pur-
poses and can be ignored.
The identification of the parameter ⇣ and its relation to

the temperature T , however, requires the determination
of the state variables. To do this one imposes the Gibb’s
equation,
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where sE is the equilibrium entropy per particle, e =
hE �mi = h(� � 1)mi is the average internal energy per
particle, P is the pressure, and n is the number density.
The total equilibrium relativistic entropy is deduced from
the entropy flow
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The total entropy flow, however, must be determined de-
termined from the distribution function f via [6].
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Insertion of Eq. (15) into Eq. (18) leads to the following
expression for the entropy per particle [6].
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Note, that it is not possible to obtain an explicit ex-
pression for ⇣ directly from the distribution function. To
obtain an expression for ⇣ one must consider the physics
of the environment for each species of a multicomponent
system.
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Note, that it is not possible to obtain an explicit ex-
pression for ⇣ directly from the distribution function. To
obtain an expression for ⇣ one must consider the physics
of the environment for each species of a multicomponent
system.
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B. mildly relativistic non-degenerate electrons

Firs we consider the electrons. Since the electrons in-
teract much more frequently with each other than with
baryons, they can be treated as a single component rela-
tivistic gas. In the limit of a single component gas with
the isotropic pressure appropriate to the velocity distri-
bution, one can simply equate Eqs. (16) and (21) so that
⇣e = me/kT . In the limit of a non-degenerate gas, the
Jmn can be related [6] to modified Bessel functions Kn.
In the cosmological rest frame U

↵
p↵ = Ee/m, the total

relativistic electron energy. Hence, the Maxwell Jütner
distribution for the electrons is obtained.

fe(E) =
n
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For the other thermodynamic variables one can write:
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C. Baryons experiencing collisions with electrons

The physics of the baryons, however, is di↵erent in that
the isotropic velocities of the baryon gas gas during BBN
are dominated (at least initially) by collisions with rela-
tivistic electrons rather than other baryons. That is, the
baryonic pressure is not the pressure of a nonrelativis-
tic single-component baryon gas for which the distribu-
tion function reduces to Maxwell-Boltzmann statistics.
Rather, one must consider that elastic scattering with
electrons conserves momentum and energy.

1. conservation of momentum

In particular for each elastic scattering event
pe + pB ! p0

e + p0
B, the conservation of momentum

guarantees that pe + pB = p

0
e + p

0
B and on average

hpBi = hpei. Hence, the baryonic pressure is not that
of a single component baryon gas. Rather, one must de-
duce the pressure from the momentum distribution.

The derivation of the pressure in this case is straight-
forward. For a system of discrete point particles, the
energy-momentum tensor takes the form

T

µ⌫ =
X

a

p

µ(a)p⌫(a)

p

0(a)
�
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where now a labels each particle and p

µ(a) = m(a)Uµ(a)
is the covariant four momentum, and in flat space U

µ =
(�, �v1, �v2, �v3).

One is only interested in the spatial components Tij for
the derivation of pressure in the cosmological rest frame.
Moreover, since the spatial components of momentum are
isotropic, only diagonal components are relevant. Hence
we can write
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(30)
Unlike a Maxwell-Boltzmann gas, the momenta in this

case arise from recoil with relativistic electrons, so by mo-
mentum conservation hpibi = hpibi. Moreover, the baryons
must be in pressure equilibrium with electrons so that the
pressure per particle is the same

PB

nB
=

Pe

ne
= kT . (31)

2. Conservation of energy

Since the dominant process is elastic scattering, one
must also conserve energy in each collision, i.e.

Ee + EB = E

0
e + E

0
B , (32)

or, since the rest masses remain unchanged during each
scattering,

(� � 1)me + (1/2)mBv
2
b

= (�0
e � 1)me + (1/2)mB(v

0
B)

2 (33)

where the non-relativistic nature of the baryons is now
inserted, i.e. (� � 1)mB ⇡ (1/2)mBv

2
b .

The key point now is that the average kinetic energy
of the baryons is due to recoils from the relativistic elec-
trons. This is not the same as the average kinetic en-
ergy a Maxwell Boltzmann gas for which h1/2mBv

2
b i =

(3/2)kT . Rather, one must determine the average recoil
energy from the bath of relativistic electrons. The av-
erage internal energy per baryon is then some function
of the internal energy per electron which can be denoted
J (ee).
In energy equipartition, the internal energy of baryons

and electrons would be equal. However, the steady state
will be a complicated average of the sum of many col-
lisions treated in proper relativistic kinematics and the
achievement of equipartition would need to be proven.
In principle, one could deduce the average transferred

energy from the Lorentz invariant Mandelstam variable:

t ⌘ (pB � p

0
B)

2 = (pe � p

0
e)

2
, (34)

averaged over a large number of collisions. For example,
in the lab frame of a stationary target experiencing elastic
collisions, the kinetic energy of the recoil, TK = t/(2mB).
For our purposes Lorentz invariant we here determine
this relationship via a Monte Carlo simulation of many
relativistic collisions between electrons an baryons.
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Figure 1 shows the average kinetic energy of protons
in a bath of relativistic electrons after a large number of
simulations. Also shown for illustration is the average for
a classical MB gas, h1/2mBv

2
b i = 3/2kT , and (� � 1)me

for the electron bath as a function of kT . From this we
find that to a good approximation

h1/2mBv
2
b i = LkT , (35)

with L a constant.

FIG. 1: Average kinetic energy hEKi for a mildly rel-
ativistic e

+ � �e

� plasma (blue line) compared to the
average kinetic energy of a classical non-relativistic gas
obeying 3

2kT (red line). Black line shows the numerical
determination from the simulation.

From this we can determine the value of ⇣ for the
baryon distribution function in the relativistic electron
bath. The entropy per particle (in units of Boltzmann’s
constant) is

s
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whereas for a MB gas we have
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Hence, for baryons

⇣ =
2mB

5kT
(L+ 1) . (38)

Hence, the Baryon distribution function becomes:

fB = exp


�(1/2)mBv

2

kT

2

5
(L+ 1)

�
(39)

This accounts for the di↵erence between the average
kinetic-energy from scattering with relativistic electrons
vs. that for a non-relativistic Boltzmann gas.
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vs. that for a non-relativistic Boltzmann gas.
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the CM momentum and energy.
Note that for a fixed temperature, one cannot distin-

guish between particles in the MB kinetic energy (EK)
distribution, even though they may have di↵erent masses.
This means that in the classical case, a mixture of two
types of particles at same temperature have the same ki-
netic energy distribution. However, this is not true for
the velocity or momentum distributions which are mass
dependent.

Thus, the velocity distribution shown in Figure 3 is
better represented by the EK distribution of the back-
ground plasma, i.e.

fA(EK) = fe±(EK) , (10)

where the relativistic kinetic energy is EK = (� � 1)m.
For non-relativistic nuclei, this trivially reduces to EK =
(1/2)miv2 where mi is mass of the nuclide i. The kinetic
energy distribution of nucleus A then becomes:

fA(EK;T ) = CK(T )
E1/2

K (EK + 2me)1/2(EK +me)

eme/T eEK/T + 1
,

(11)

where CK(T ) is a temperature dependent normalization
and here we use natural units for which k = c = 1.

The distribution function of relative nuclear velocities
f rel(v) must then be constructed [8] via

f rel(v;T ) =

Z
dV [f(v1)f(v2)]v

=
(m1m2)3

27⇡
C2

K(T )

Z 1

�1
d cos ✓

Z
1

0
V 2dV

⇥IJut(V, cos ✓;m1,m2, T, v) , (12)

where,

IJut(V, cos ✓;m1,m2, T, v) =

(v21 + 4me
m1

)1/2(v21 + 2me
m1

)

eme/T em1v2
1/2T + 1

(v22 + 4me
m2

)1/2(v22 + 2me
m2

)

eme/T em2v2
2/2T + 1

. (13)

Here V is the CM velocity, vi is the velocity of nuclide
i = 1 and 2, cos ✓ is the angle between V and v, and M =
m1+m2. Eq. (12) is then the correct velocity distribution
to be inserted into Eq. (1) to derive the reaction rates.

We have re-evaluated all of the BBN nuclear reaction
rates based upon an updated JINA REACLIB Database
[11]. We have then run the SBBN code of Ref. [12, 13].
Both forward and reverse reaction rates for the eleven
important reactions of BBN were calculated using the
revised distribution as was done for the Tsallis distribu-
tion in [8].

Figure 4 shows calculated primordial abundances as
a function of the baryon-to-photon ratio ⌘. Solid and
dashed lines are final abundances for the modified and
MB distributions, respectively. Although the e↵ect on
the 4He abundance is small, the abundances of D, 3He,
and 7Li for the modified distributions are significantly

FIG. 4: Primordial abundances as a function of ⌘. Solid
and dashed lines are final abundances in the MJ and
MB cases, respectively. The dotted and dash-dotted

lines are abundances of 7Be before its decay into 7Li in
the MJ and MB cases, respectively. Boxes show the 2 �
observational limits on Yp and 7Li/H and the 4 � limit
on D/H (PPL16 is [14] and ITG14 is [15]). The vertical

line indicates the 2 � constraint on the
baryon-to-photon ratio from the Planck analysis [18].

di↵erent from those in the MB case. The dotted and
dash-dotted lines are abundances of 7Be before its decay
into 7Li in the MJ and MB cases, respectively. Long after
the BBN, 7Be nuclei decay via electron capture to 7Li.
Because of the enhanced destruction rates of D and

3He, their surviving abundances are smaller. On the
other hand, because of the increased production rate of
7Be via 3He(↵,�)7Be along with the slightly decreased de-
struction rate via 7Be(n,p)7Li by the decreased neutron
abundance, the 7Be abundance is significantly higher in
the present work.
The boxes in Fig. 4 show the observational limits on

Yp [14, 15] (2 �), D/H [16] (4 �) and 7Li/H [17] (2 �).
The vertical line shows the 2 � constraint on the baryon-
to-photon ratio adopted from the Planck analysis [18].
The calculated 4He abundance for the Planck ⌘ value is
consistent with the lower observational value [14], and
inconsistent with the higher value given in [15] for both
the present distributions and the MB case. The calcu-
lated D abundance in the present case is much smaller
than the observational constraint, while that for the MB
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FIG. 2: Abundances of 4He (mass fraction), D, 3He, 7Li and
6Li (by number relative to H) as a function of the baryon-to-
photon ratio η or ΩBh2. The dashed and solid curves are re-
spectively the calculated results in the standard BBN and the
X− catalyzed BBN for the case of (YX , τX)=(0.6, 1.6×103s).
There is virtually no difference between the dashed and solid
curves for 4He, D, and 3He. The band of theoretical curve for
each nucleus displays 1 σ limits taken from [14]. The hatched
regions represent the adopted abundance constraints from [15]
for 4He, [16] for D, [12] for 7Li, and [1] for 6Li, respectively.
The vertical stripe represents the 1 σ ΩBh2 limits provided
by WMAP [2].

enhance the reaction rates in BBN, both by reducing the
charge of the resulting X-nuclei, and by enabling trans-
fer reactions of the X− particles. X− particles greatly
enhance the production of 6Li, primarily from the X−

transfer reaction 4HeX(d,X−)6Li. The 7Li abundance,
however, decreases when the X− particle abundance is
larger than 0.1 times the total baryon abundance. In this
case, the 7Li abundance decreases with the X− particle
abundance mainly due to the inclusion of new resonance

channels for 7BeX(p,γ)8BX . It was found to be impor-
tant to predict precisely the binding energies and excited
states of exotic X-nuclei in realistic quantum mechan-
ical calculations. Both abundance ratios of 6Li/H and
7Li/H observed in MPHSs are obtained with an appro-
priate choice for the lifetime and abundance of the X−

particle. These observational constraints imply a lifetime
and abundance roughly in the range of τX ∼ 2×103 s and
YX ∼ 0.1. We deduce that this YX value requires that
mX ∼ 50 GeV in order to guarantee that this abundance
of X− particles survives to the epoch of nucleosynthesis.
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of Hamaguchi et al. (2007) as the most reliable estimate for this rate and assume a factor of

3 uncertainty.

Cyburt et al. (2006) estimated astrophysical S-factors for various transfer reactions

including the 4HeX(t,X�)7Li, 4HeX(3He,X�)7Be, 6LiX(p,X�)7Be reactions by applying a

scaling relation (Pospelov 2007),

SX/S� / pfa0/(!�a0)
2�+1 , (3)

where SX and S� are the S-factors for the X� transfer and normal radiative processes,

respectively. The quantity a0 is the X� Bohr radius of 4HeX or 6LiX , while pf is the linear

momentum of the outgoing 7Li or 7Be. The quantity !� is the energy of the emitted photon

of multipole order � (� = 1 for electric dipole) in the radiative-capture reactions.

In the present work, however, we consider more details of the reaction dynamics in

order to better clarify the di↵erences in these reactions. First, we note that 4He, 6,7Li,

and 7Be occupy an s-wave orbit around the X� particle (assuming the X� particle to be

much heavier than these nuclei). At the same time, the 6Li nucleus is an ↵ + d cluster

system in a relative s-wave orbit, while the A = 7 nuclei are ↵ + t and ↵+3He cluster

systems in relative p-wave orbits. This di↵erence in the orbital angular momentum will

produce a critical di↵erence in the reaction dynamics between the 4HeX(d,X�)6Li reaction

and the 4HeX(t,X�)7Li, 4HeX(3He,X�)7Be, and 6LiX(p,X�)7Be reactions. In particular, the

latter three X� transfer reactions to produce 7Li and 7Be must involve a �l = 1 angular

momentum transfer. This leads to a large hindrance of the overlap matrix element of the

nuclear potential for the X� transfer processes. In the latter three reactions the outgoing
7Li and 7Be in the final state must occupy a scattering p-wave orbit from the X� particle in

order to conserve total angular momentum. Thus, a realistic quantum mechanical calculation

would deduce much smaller SX-factors than those estimated by Cyburt et al. (2006). In this

article, therefore, we have assumed that the above three reaction processes are negligible.

2.3.2. 7BeX+p Resonant Reaction

Bird et al. (2007) have recently suggested that the 7BeX(p,�)8BX resonant reaction

could occur through an atomic excited state of 8BX with a threshold energy of 167 keV.

This channel does destroy a significant amount of 7BeX and is included in our present study.

In the previous study (Kusakabe et al. 2007), we have suggested that a reaction channel

through the 1+, E⇤ = 0.770± 0.010 MeV nuclear excited state of 8B via 7BeX+p !8B⇤(1+,

0.770 MeV)X !8BX+� could also destroy 7BeX . However, we found that this channel

is unimportant from the estimate of binding energies in this study. In Kusakabe et al.
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Fig. 7. Same as in Fig. 6, but the charged-current decay of 7BeX →7Li+X0 is also included.

9. Candidates of the X− particle

We consider possibilities that the long-lived CHAMP X− is a slepton, i.e., a super-
symmetric partner of lepton, or Kaluza-Klein (KK) leptons, i.e., excited states of
leptons realized in models for extra dimensions.116 In the former case, the gravitino
G̃ is the lightest supersymmetric particle (LSP) and the sleptons l̃ are the next-to-
LSP. In the latter case, the KK graviton G1 is the lightest KK particle (LKP) and
the KK leptons l1 are the next-to-LKP. It is not assumed that the sleptons and
the KK leptons can decay into sneutrinos and KK neutrinos via weak interaction,
respectively. Therefore, these models correspond to the case without the decay of
7BeX →7Li+X0 (Fig. 7).

Especially, constraints on the long-lived stau (τ̃ ) scenario have been studied
using the thermal relic abundance.117 The thermal annihilation rate of X− at a
low temperature of T ≪ mX roughly scales as

⟨σannv⟩ ∝
α2
em

m2
X

, (25)

where αem is the fine structure constant.
The relic abundance of stau particles has been calculated in a specific case that

the gravitino is the LSP and the stau is the next-to-LSP and the mass of the bino (B̃)
is 1.1 times as large as the stau mass, i.e., mB̃ = 1.1mτ̃ .117 In the range of 10 GeV
≤ mτ̃ ≤ 104 GeV, the relic abundance is roughly given by nτ̃/s ∼ 10−12(mτ̃/1 TeV),
where s = (2π2/45)g∗ST 3 is the entropy density with g∗S the numbers of massless
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where αem is the fine structure constant.
The relic abundance of stau particles has been calculated in a specific case that

the gravitino is the LSP and the stau is the next-to-LSP and the mass of the bino (B̃)
is 1.1 times as large as the stau mass, i.e., mB̃ = 1.1mτ̃ .117 In the range of 10 GeV
≤ mτ̃ ≤ 104 GeV, the relic abundance is roughly given by nτ̃/s ∼ 10−12(mτ̃/1 TeV),
where s = (2π2/45)g∗ST 3 is the entropy density with g∗S the numbers of massless
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Conclusions 

•  There is no obvious cosmological solution to the 
lithium problem 

 


