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Fracture of random media involves power law

e.g. event-size distribution

this talk = power law In the time domain

two example: earthquakes and creep



earthquakes: aftershocks

an earthquake triggers more earthquakes
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Omori law for aftershocks

number of aftershocks per unit time at time t
(time elapsed from mainshock)

no(t+c)?

p - 08 to ]5 N Icisaterrl1poral Iimlit
c ~ O(1) to O(100) min. i

some relaxation process after the E
abrupt change of stresses(?)

Time  (yrs)

time constant ¢ may depend on stress?
stress increases —> ¢ decreases TC
(Narteau et al. 2009; TH 2015)

If so, one can infer the stress level in the crust from the c-value!



creep is the tendency of a solid material to move slowly or deform
permanently under the influence of mechanical stresses. It can occur as
a result of long-term exposure to high levels of stress that are still below

the vield strength of the material. (Wikipedia)
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strain rate vs time: power laws
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micro-fracture event rate vs time in creep

creep test of a glass cylinder  \jajiick et al. 2009)
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—> essentially the same with Omori law!



our problem here

creep: thermal activation process is essential

earthquake: athermal (?7 always some time delay)

very different details but same empirical law n (t + C) I

Time constant c is important in earthquakes but not investigated in creep tests

1. what determines the c-value?

(may give some hint to earthquakes)

2. A range of exponent is obtained for p. What causes this variation?
(0.6 - 1.0)



Our approach: toy models (Self-Organized Criticality)

internal variable = fijj (interpreted as stress)

4_-_, each site has its own fracture strength fj©

(randomness)

it fij > f;(©) —> rupture —> redistribution of internal variable fij
fi = 0 (no longer support load)

Redistribution rule:
e.g. short range (nearest neighbors), long range (power-law), etc---

F = Z fi;  external load
1,]

kept constant —> more unstable if some elements are killed



time evolution:

1. Scan each element: if stress is above its threshold, it is broken.

2. Broken fibers redistribute their load

Fracture of a fiber and redistribution of stress take some time
—> time scale —> a single time step



1. Mean-field model

2. Nearest-neighbor model

3. effect of thermal activation process



mean-field model = stretching bundle of brittle fibers

Fibers are coupled in parallel

FT F:T

Global Load Sharing

After
Redistribution B
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L intact fibers
i Stress per fiber:c i

L—1 intact fibers i $
Stress per fiber:cL/(L—-1)

mean field model: force is equally redistributed to all the sites

fij 1Is uniform : fij=f = F/L

#fibers L fibers —> (L-1) fibers
force per fiber F/L — F/(LT)



time evolution equation

(remaining fibers) = (initial) - (broken ones)

fi—1
Li= Lo— / Lop(y)dy
0

p(x) = probability distribution of failure threshold

fi—1
n, =1 —fO p(y)dy.
n; = Li/Lo = fo/ i

_ fo _ fo
1= I poydy [, POy

f‘i

recursive relation



T : time needed for load redistribution and failure

(fir1 — f)/t=f
1 — fof p(x)dx

fi= — 7S
1— 7" p(y)dy

—f

obtain mean-field time evolution equation for f(t)

(force per fiber)



the case of uniform threshold distribution

o p(f) = 1/06 S € [frmax =0, fruas]
D ; =0 otherwise
fmax
7 T = f/fmax
) o Fa) A
1 —x _ Jod 1
¢ =m T

max

<0 —> two fixed points - O: foor ¢
{ =0 —> saddle-node bifurcation ‘
>0 —> runaway (breakdown) stable

unstable

f
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can obtain exact solution for ¢ >0

f_f_110 (l—x)z—l-g“ + : tan_l(l/z_x>
w—t=clog| |3 N e

tm : constant

1/2 |- e
. resembles strain-time relation in creep experiments
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derivation of creep laws

x = 3+ /can2y/c(t —t,)]

primary creep

1
2t + ¢(xp)

~ L
t~0 — ZE_Z
—— e~ ft+e(xg)]?

1

c(xg) = o

tertiary creep

Vet —a) ~m/2 expansion around tf
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case of general threshold distribution

fi =% fz o = Jo — fO
+1 ( ) (f) | _ fOf plz)dz ffoo p(ilf)dﬂ?

® (0) = fo
P (f) is a monotonically increasing function
—> the sign of 92d/df2 is crucial.

if 02 /0f2> 0 (concave case)

1. For sufficiently small fo

—> two fixed points

(stable & unstable)




concave case (02Q/of2 > 0)

2. At critical fo fi=fi+1

fi+1A
two fixed points merge at fc

—> saddle-node bifurcation fo |

> i
fe

3. If fo only slightly larger than the critical value
(I)(f) 2€+fc+(f_f0)+a(f_f0)2‘|’”'

rf = ®(f)— f~e+a(f— f.)?.  condition to neglect
third order term?

T/a
t+7/a(f. — fo)]2 obtain Omori law

. f=




case of 92Q/of2< 0

only one fixed point fir1]
(irrespective of fo)

No breakdown —> desirable materials?  fo

f
what kind of p(x) satisfies this condition? °

—> It Is concave most plausible distributions



the c-value in Omori law

we obtained & ~ [t + c(x9)] % for primary creep

so dx/dt does not diverge at t=0

c(xo) defines a characteristic time for creep

1
T = = o] P

increasing function of initial force

cf. opposite to granular avalanche / earthquakes

decreasing function of fmax

more disorder —> smaller c-value



check other types of distribution

Weibull distribution
p(z) x 2°Lexp(—z”) —— 920/0f2> 0
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should be universal as long as 920/of2> 0



stress dependence of c-value (Weibull distribution case)

Af  Af=fo— ]

total load increases —> c-value increases

B Increases —> c-value decreases
(more variance in strength distribution)

more disorder —> small c-value
(same as uniform distribution case)



case of nearest-neighbor interaction

the load is redistributed within +- R nearest-neighbors

R=1 case
1 1 1 1 1

R > Rc — mean-field
m Rc ~ L3/2 (Biswas et al. PRE 2015)

1 32 l 3/2 1

.-. Here R < Rc is investigated

parameter for interaction range
Ire
2 l

; p=R/R.

€



primary creep for nearest-neighbor model
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even larger exponent! (p>2)

(cannot regarded as power law)

shorter interaction range —> large exponent




effect of disorder

7 %_ (@) 6=0.5 —+— 1 more disorder

—> smaller exponent

& smaller c-value

larger interaction range



partial summary: athermal case

1. Mean-field fiber bundle model reproduces three stages of creep
power-law slow dynamics is due to saddle-node bifurcation

large exponent: 2

2 Nearest-neighbor models exhibit even larger exponent, p>2.

3 The c-value is increasing function of the total load

but decreases with the degree of disorder in strength



ongoing work: thermal case (mean-field)

rupture probability (rate) of fiber i

Po(t.i) = Plexp [— “th(i)T_ “(i)]

—> time-evolution is stochastic

probability distribution for time of failure
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ongoing work: thermal case (mean-field)

primary creep
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however, we cannot find inverse Omori law for tertiary creep



ongoing work: thermal case (mean-field)

c-value decreases with disorder (again)
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the c-value in Omori law: granular avalanche

TH, Narteau, & Shebalin, Scientific Reports 5, 12280 (2015)
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summary
1. An SOC-like mean-field model resembles creep behaviors
2. Omori law and inverse Omori law are reproduced.
3. Exponent is -2 irrespective of the threshold distribution

due to saddle-node bifurcation for mean-field model

Nearest-Neighbor models exhibit even larger exponent

4. Nonzero c-value Is obtained. Larger disorder leads to smaller c-value

5. Thermally-activated rupture reduces the exponent for Omori law
(ongoing work)

S. Roy and TH, PHYSICAL REVIEW E 97,062149 (2018)



