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Fracture of random media involves power law
e.g. event-size distribution

this talk = power law in the time domain

two example: earthquakes and creep



an earthquake triggers more earthquakes

Are the statistical parameters controlled by geology ?

loading rate / seismic cyclelog (N ) = a − bM

Λ(t) =
K

(c + t)p

due to abrupt stress change  
caused by the “mainshock”
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earthquakes: aftershocks
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off-fault lobes can be seen at distances from the fault of 
the order of one fault length, again with comparable 
strength. For the long faults the off-fault lobes have es- 
sentially disappeared. 

Stress Changes  Associa ted  with 
the Landers  Ear thquake  

Regional Stress Field Driving Rupture 
For all subsequent calculations, we take the regional 

stress to be a simple compression of 100 bars, orientated 
at N7°E. As we demonstrate earlier, only the deviatoric 
part of the stress tensor is important and the amplitude 
hardly matters, provided that we can assume primarily 
strike-slip mechanisms, a reasonable assumption for the 
Landers region. Figure 4 shows that Coulomb stress 
changes are modestly sensitive to the orientation of the 
principal axes, and hence our choice of N7°E needs to 
be justified. 

The principal strain axes can be used as an indica- 
tion of stress orientation, with the direction of maximum 
shortening being taken to be the same as the axis of max- 
imum compressive stress. Using geodetic data, Lisowski 
et al. (1991) found maximum shortening orientated at 
N7 --- I°E during the pre-earthquake period 1979 to 1991 
for the Joshua geodetic network, which includes most of 
the Landers rupture. They also found the same direction 
during the period 1934 to 1991 for the Landers and 
southern San Andreas regions. Across the north half of 
the Landers rupture, Sauber et al. (1986) found maxi- 
mum shortening between 1934 and 1982 to lie at N4 -+ 
5°E. These values are all close to the maximum short- 
ening axis predicted for simple shear between the Pacific 
and North America plates N9°E, given a relative plate 
motion direction in central California of N36°W (DeMets 
et al.,  1990). 

Seismic focal mechanisms also supply information 
on the principal stress. The mean principal stress direc- 
tion derived from small shocks along the 50 to 150 km 
of the San Andreas fault nearest to the Landers region 
(Banning and Indio segments) is N6 -+ 2°E (Jones, 1988). 
Williams et al. (1990) found that the average principal 
stress direction for the 50-km stretch of the San Andreas 
fault adjacent to Landers (San Gregorio Pass and Eastern 
Transverse Range-I regions) to be N8 - 5°E. Thus, sev- 
eral independent techniques yield a stress direction within 
a few degrees of our adopted value. Only data from the 
borehole at Cajon Pass (Zoback and Lachenbruch, 1992) 
gives a different orientation (N57 --- 19°E), but this could 
not drive local or regional right-lateral motion on the San 
Andreas fault and may instead be attributable to local 
effects (Shamir and Zoback, 1992). 

Coulomb Stress Changes Preceding 
the Landers Rupture 
In Figure 9 we show the Coulomb stress changes 

caused by the four M > 5 earthquakes within 50 km of  
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Figure 9. Coulomb stress changes calculated 
for the four M > 5 earthquakes in the Caltech- 
USGS catalog within 50 km of the future Landers 
epicenter. Each earthquake raised the stress at the 
future Landers epicenter (star). All ruptures (en- 
closed white lines) except the North Palm Springs 
shock are modeled as vertical right-lateral rup- 
tures. The ML = 5.2 Galway Lake earthquake is 
modeled with 0.07 m of slip on a 6-kin-long fault, 
for a moment of 6.3 × 1023 dyne-cm (Hill and 
Beeby, 1977; Lindh et al., 1978). The North Palm 
Springs fault dips 45 ° NE and has 0.42 m of right- 
lateral and 0.27 m of reverse slip, following Jones 
et al., (1986), Pacheco and Nfibelek (1988), and 
Savage et al. (1993). 

Landers that preceded the Landers earthquake. The 1975 
ML = 5.2 Galway Lake, 1979 ML = 5.2 Homestead Val- 
ley, 1986 ML = 6 North Palm Springs, and 1992 Mc = 
6.1 Joshua Tree earthquakes progressively increased 
Coulomb stresses by about 1 bar at the future Landers 
epicenter. Together they also produced a narrow zone of 
Coulomb stress increase of 0.7 to 1 bars, which the fu- 
ture 70-km-long Landers rupture followed for 70% of its 
length. The Landers fault is also nearly optimally ori- 
ented for failure along most of its length. The four mod- 
erate earthquakes may themselves have been part of a 
larger process of earthquake preparation within the 

inferred stress change by Landers earthquake
(King et al. 1994)



number of aftershocks per unit time at time t

c ~ O(1) to O(100) min.
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p = 0.8 to 1.5

c

some relaxation process after the 
abrupt change of stresses(?)
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ṅ / (t+ c)�p

ṅ ⇠ t�p

Omori law for aftershocks

time constant c may depend on stress?
stress increases ̶> c decreases

(Narteau et al. 2009; TH 2015)

If so, one can infer the stress level in the crust from the c-value!



creep is the tendency of a solid material to move slowly or deform 
permanently under the influence of mechanical stresses. It can occur as 
a result of long-term exposure to high levels of stress that are still below 
the yield strength of the material. 

strain

stress

σ σ<σY

time

̶> rupture
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(Wikipedia)

t0
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strain rate vs time: power laws

primary

α=0.6 to 1.0“Andrade creep”

tertiary

secondary
almost constant strain rate 

(but very slow)

α’ is not necessarily identical to α

Leocmach et al 
PRL 2014 tf = time of breakdown

α’=0.6 to 1.0
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micro-fracture event rate vs time in creep
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In equation (5) for long enough times, the main contribution to the variation of 
dn/dt is the t-1 term, the log-terms becoming too slow. This shows how a thermal 
activation process can lead to an Omori law. In order to test this approximate 
solution, we compare it to a direct simulation of the model (figure 10). There is a 
very good agreement between the simulation and the model. We find that dn/dt 
goes like t-k with k close to 1 (between 0.9 and 1.1 depending on the input 
parameters). This is the so-called generalized Omori law, introduced in the sixties 
and observed for aftershocks when going beyond the simple Omori law. We 
checked that the approximations we made are valid for T > (1-f0)2) and Td > T.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10: Average ruptures rate versus time (log-log plot) for the approached 
solution (crosses) and direct simulations (circles). For simulations the points are 
obtained over 50 realisations of the numerical experiment. The slope is .1.05 +/- 
0.03. N = 1000, f0 = 0.75, T = 0.005, Td = 0.02. 
 

7. Conclusion 
 
In this article, we showed that the microfractures occurring at constant 
deformation in an indentation experiment on glass follow an Omori law, we also 
computed the distribution of waiting times between events and energies of these 
events, that are both power laws, as usually observed. We introduced a detection 
technique that permitted us to improve statistics by detecting weaker events. We 
also showed how to define properly the energy of an acoustic event, whereas this 
was an open question. Finally, we established that a thermally activated rupture 
process can lead to an Omori law. This result could explain our experimental 
observations. 

(Mallick et al. 2009)creep test of a glass cylinder

ṅ / t�↵
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̶> essentially the same with Omori law!



our problem here

creep: thermal activation process is essential

earthquake: athermal (?? always some time delay)

very different details but same empirical law ṅ / (t+ c)�p

Time constant c is important in earthquakes but not investigated in creep tests

1. what determines the c-value?

(may give some hint to earthquakes)

2. A range of exponent is obtained for p. What causes this variation? 
(0.6 - 1.0)



Our approach: toy models (Self-Organized Criticality)

internal variable = fij (interpreted as stress)

if fij > fij(c) ̶> rupture ̶> redistribution of internal variable fij

each site has its own fracture strength fij(c)

fij = 0

Redistribution rule:
e.g. short range (nearest neighbors), long range (power-law), etc…

(no longer support load)

(randomness)

external loadF =
X

i,j

fij

kept constant ̶> more unstable if some elements are killed
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time evolution:

1. Scan each element: if stress is above its threshold, it is broken.

2. Broken fibers redistribute their load

Fracture of a fiber and redistribution of stress take some time 
̶> time scale ̶> a single time step



1. Mean-field model

2. Nearest-neighbor model

3. effect of thermal activation process
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mean-field model = stretching bundle of brittle fibers

epl draft

To be included

Subhadeep Roy and Takahiro Hatano

Earthquake Research Institute, University of Tokyo, 1-1-1 Yayoi, Bunkyo, 113-0032 Tokyo, Japan.

*** Missing PACS ***

Abstract – tbi

Introduction. –

Description of the Model. – Fiber bundle model
[1, 2] consists of vertical fibers attached in between two
parallel bars. The lower bar is pulled by a stress F , cre-
ating a stress per fiber � = F/L on L intact fibers. Dis-
order is introduced in the model in terms of fluctuation
of strength of individual fiber. The strengths are chosen
randomly from a certain distribution. The width of the
distribution is the measure of disorder in the bundle. If
the applied stress crosses any of the threshold values, that
fiber breaks irreversibly. The stress of the broken fiber is
then redistributed among rest of the model. In literature
mainly two kind of redistribution schemes are being used:
(i) Global load sharing (GLS), where the stress is redis-
tributed among all other surviving fibers (see Fig.1) [3, 4]
and (ii) Local load sharing scheme (LLS), where only the
nearest surviving neighbors carry the extra stress [5–10].
After such redistribution, the local stress profile of the un-

L intact fibers

L−1 intact fibers
Stress per fiber: σ

Stress per fiber:σL/(L−1)

Redistribution

After

Global Load Sharing

Fig. 1: (Color online) Fiber bundle model with global load

sharing scheme. The stress applied on the fibers are shown

before and after redistribution, due to rupture of a single fiber.

broken fibers move to a higher value which might lead to
further breaking and redistribution. This might break all
the fibers or the model comes to a stable state. In the
later case the stress is increased externally and run the
same cycle of breaking and redistribution until all fibers
break.

In this letter we have mainly worked in the GLS scheme.

The GLS scheme is also the mean field limit of the model.
We did not consider the LLS scheme or any other local-
ization to eliminate the artefact might caused by it (see
reference [11]). The di↵erence of our algorithm from the
conventional one is, in our case we apply the critical stress
to the bundle, that might break an initial chunk of fibers,
instead of breaking the weakest link only. The critical
stress depends on the disorder value � (this we will discuss
again later). After applying the critical stress, the redis-
tribution starts and number of fibers broken (also known
as number of events) at each redistributing step is ob-
served. The increasing redistribution steps are treated as
increasing time in the model.

The motivation for the work is to study the after shocks
like events during the fiber rupturing, when an initial
shock is given to the bundle by applying critical stress
and breaking a bunch of fibers in some cases (depending
on disorder value). After the collapse of the big cluster the
model evolves until all fibers are broken. We have studied
this evolution of the model at di↵erent disorder values.

Numerical Results. – We have studied the model
numerically in the mean field limit. An uniform distribu-
tion with mean at 0.5 and half width � is used to assign
strength to individual fiber. A bundle of length 105 is used
for numerical simulation. For the sake of universality we
have also studied with truncated Gaussian and Power law
threshold distribution. Our findings stands well irrespec-
tive of this distribution change.

Figure 2 shows that the dynamics of fiber bundle model
under application of critical stress can be divided roughly
in three di↵erent parts: the initial and final part, where
number of events per time N(t) shows systematic behav-
ior, along with the intermediate fluctuation. In this letter
we have mainly concentrated on the systematics of initial
and final part. We already know about the existence of
a critical disorder �c in the model at which a brittle to
quasi-brittle like transition takes place [12, 13]. Taking

p-1

F F

Fibers are coupled in parallel

 12

L fibers  ̶> (L-1) fibers
F / L  ̶>  F / (L-1)force per fiber

#fibers

mean field model: force is equally redistributed to all the sites

fij is uniform : fij = f = F/L
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(i = 1,2, . . . ) redistribution is

Li = L0 −
∫ fi−1

0
L0p(y)dy. (3)

where L0 is the initial number of fibers, Li is the number
survived after the ith redistribution, and fi−1 is the force per
fiber at the previous time step i − 1. This can be rewritten in
terms of fraction ni = Li/L0

ni = 1 −
∫ fi−1

0
p(y)dy. (4)

Using ni = f0/fi , where f0 is the strain at t = 0, the above
equation is rewritten in terms of f :

fi = f0

1 −
∫ fi−1

0 p(y)dy
= f0∫ ∞

fi−1
p(y)dy

. (5)

This is the recursive relation for f . One can also consider a
differential equation by using (fi+1 − fi)/τ ≃ḟ , where τ is
the duration of one time step, i to i + 1:

τ ḟ = f0

1 −
∫ f

0 p(y)dy
− f. (6)

Therefore, the time evolution of the present system is solely
determined by the threshold distribution p(f ) and the initial
condition f0. As f0 = F/L0, choosing f0 is identical to deter-
mine the external load F . Note that f should be proportional to
the strain of the system as the elastic modulus is supposed to be
identical to all the fibers. Therefore, ḟ should be proportional
to the strain rate.

A. Uniform threshold distribution

For a uniform threshold distribution defined in [fmax − δ,
fmax], the integral in Eq. (6) is easily solved to give

τ ḟ = f0δ

fmax − f
− f. (7)

This is rewritten as

τ ḟ =
(
f − fmax

2

)2 + f0δ − f 2
max
4

fmax − f
. (8)

This is more simplified as

τ ẋ =
(
x − 1

2

)2 + ζ

1 − x
, (9)

where

x := f

fmax
, (10)

ζ := f0δ

f 2
max

− 1
4
. (11)

By choosing τ as the time unit, we realize that there is only one
nondimensional parameter ζ that controls the time evolution
of x .

(1) If ζ is nonpositive, Eq. (9) has steady-state solutions
of x = 1/2 ±

√
−ζ : x = 1/2 −

√
−ζ is the stable fix point

and the other is the unstable fix point. Starting from the initial
condition x 0 < 1/2 −

√
−ζ , the system relaxes to the stable

fixed point exponentially. Although the time derivative of x
is negative for x between these two fixed points, it should
be interpreted as ḟ = 0 because the system is essentially
irreversible.

(2) At ζ = 0, the saddle-node bifurcation occurs. Namely,
these two fixed points merge together and annihilate. This
bifurcation is actually present for more general threshold
distributions, and therefore they yield common behaviors near
the bifurcation point.

(3) For positive ζ , there is no fixed point and the system
undergoes breakdown. The exact solution of Eq. (9) is given
as

tm − t = 1
2

log

[(
1
2

− x

)2

+ ζ

]

+ 1
2
√

ζ
tan−1

(
1/2 − x√

ζ

)
,

(12)

where tm is an integral constant. Here we consider a system
close to the bifurcation point, ζ ≪ 1. Then the first term is
negligible and one gets the following expression:

x ≃ 1
2 +

√
ζ tan[2

√
ζ (t − tm)]. (13)

Because the above equation should give x = x 0 at t = 0,

tm ≃ 1
2
√

ζ
tan−1

(
1/2 − x 0√

ζ

)
. (14)

The time evolution of the system is fully described by
Eqs. (12) or (13). A practically important quantity is the time
of breakdown, tf , where the surviving fibers vanish: Namely,
the force per fiber diverges. Considering Eq. (12), the time of
the breakdown is given by

2
√

ζ (tf − tm) = π/2. (15)

Importantly, Eq. (12) implies both the Omori-Utsu and
inverse Omori laws for the primary and the tertiary stages,
respectively.

1. The Omori law

The primary stage is characterized by x 0 < 1/2. In this case
(1/2 − x 0)/

√
ζ ≫ 1 and therefore tm ≃π/4

√
ζ . We can thus

write

2
√

ζ tm = π

2
− f (x 0), (16)

where f (x 0) > 0. By inserting Eq. (16) into Eq. (12),

x ≃ 1
2

−
√

ζ

tan[2
√

ζ t + f (x 0)]
≃ 1

2
− 1

2t + f (x 0)/
√

ζ
(17)

for small t . Taking the initial condition into account, this leads
to

x ≃ 1
2

− 1
2[t + 1/(1 − 2x 0)]

. (18)

Therefore,

ẋ ≃ 1
2[t + 1/(1 − 2x 0)]2

. (19)

062149-3

(remaining fibers) = (initial) - (broken ones)

CREEPLIKE BEHAVIOR IN ATHERMAL THRESHOLD … PHYSICAL REVIEW E 97, 062149 (2018)

(i = 1,2, . . . ) redistribution is

Li = L0 −
∫ fi−1

0
L0p(y)dy. (3)
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the duration of one time step, i to i + 1:
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1 −
∫ f
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Therefore, the time evolution of the present system is solely
determined by the threshold distribution p(f ) and the initial
condition f0. As f0 = F/L0, choosing f0 is identical to deter-
mine the external load F . Note that f should be proportional to
the strain of the system as the elastic modulus is supposed to be
identical to all the fibers. Therefore, ḟ should be proportional
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A. Uniform threshold distribution
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fmax], the integral in Eq. (6) is easily solved to give
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By choosing τ as the time unit, we realize that there is only one
nondimensional parameter ζ that controls the time evolution
of x .

(1) If ζ is nonpositive, Eq. (9) has steady-state solutions
of x = 1/2 ±

√
−ζ : x = 1/2 −

√
−ζ is the stable fix point

and the other is the unstable fix point. Starting from the initial
condition x 0 < 1/2 −

√
−ζ , the system relaxes to the stable

fixed point exponentially. Although the time derivative of x
is negative for x between these two fixed points, it should
be interpreted as ḟ = 0 because the system is essentially
irreversible.

(2) At ζ = 0, the saddle-node bifurcation occurs. Namely,
these two fixed points merge together and annihilate. This
bifurcation is actually present for more general threshold
distributions, and therefore they yield common behaviors near
the bifurcation point.

(3) For positive ζ , there is no fixed point and the system
undergoes breakdown. The exact solution of Eq. (9) is given
as

tm − t = 1
2

log

[(
1
2

− x

)2

+ ζ

]

+ 1
2
√

ζ
tan−1

(
1/2 − x√

ζ

)
,

(12)

where tm is an integral constant. Here we consider a system
close to the bifurcation point, ζ ≪ 1. Then the first term is
negligible and one gets the following expression:

x ≃ 1
2 +

√
ζ tan[2

√
ζ (t − tm)]. (13)

Because the above equation should give x = x 0 at t = 0,

tm ≃ 1
2
√

ζ
tan−1

(
1/2 − x 0√

ζ

)
. (14)

The time evolution of the system is fully described by
Eqs. (12) or (13). A practically important quantity is the time
of breakdown, tf , where the surviving fibers vanish: Namely,
the force per fiber diverges. Considering Eq. (12), the time of
the breakdown is given by

2
√

ζ (tf − tm) = π/2. (15)

Importantly, Eq. (12) implies both the Omori-Utsu and
inverse Omori laws for the primary and the tertiary stages,
respectively.

1. The Omori law

The primary stage is characterized by x 0 < 1/2. In this case
(1/2 − x 0)/

√
ζ ≫ 1 and therefore tm ≃π/4

√
ζ . We can thus

write

2
√

ζ tm = π

2
− f (x 0), (16)

where f (x 0) > 0. By inserting Eq. (16) into Eq. (12),

x ≃ 1
2

−
√

ζ

tan[2
√

ζ t + f (x 0)]
≃ 1

2
− 1

2t + f (x 0)/
√

ζ
(17)

for small t . Taking the initial condition into account, this leads
to

x ≃ 1
2

− 1
2[t + 1/(1 − 2x 0)]

. (18)

Therefore,

ẋ ≃ 1
2[t + 1/(1 − 2x 0)]2

. (19)
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(i = 1,2, . . . ) redistribution is

Li = L0 −
∫ fi−1

0
L0p(y)dy. (3)

where L0 is the initial number of fibers, Li is the number
survived after the ith redistribution, and fi−1 is the force per
fiber at the previous time step i − 1. This can be rewritten in
terms of fraction ni = Li/L0

ni = 1 −
∫ fi−1

0
p(y)dy. (4)

Using ni = f0/fi , where f0 is the strain at t = 0, the above
equation is rewritten in terms of f :

fi = f0

1 −
∫ fi−1

0 p(y)dy
= f0∫ ∞

fi−1
p(y)dy

. (5)

This is the recursive relation for f . One can also consider a
differential equation by using (fi+1 − fi)/τ ≃ḟ , where τ is
the duration of one time step, i to i + 1:

τ ḟ = f0

1 −
∫ f

0 p(y)dy
− f. (6)

Therefore, the time evolution of the present system is solely
determined by the threshold distribution p(f ) and the initial
condition f0. As f0 = F/L0, choosing f0 is identical to deter-
mine the external load F . Note that f should be proportional to
the strain of the system as the elastic modulus is supposed to be
identical to all the fibers. Therefore, ḟ should be proportional
to the strain rate.

A. Uniform threshold distribution

For a uniform threshold distribution defined in [fmax − δ,
fmax], the integral in Eq. (6) is easily solved to give

τ ḟ = f0δ

fmax − f
− f. (7)

This is rewritten as

τ ḟ =
(
f − fmax

2

)2 + f0δ − f 2
max
4

fmax − f
. (8)

This is more simplified as

τ ẋ =
(
x − 1

2

)2 + ζ

1 − x
, (9)

where

x := f

fmax
, (10)

ζ := f0δ

f 2
max

− 1
4
. (11)

By choosing τ as the time unit, we realize that there is only one
nondimensional parameter ζ that controls the time evolution
of x .

(1) If ζ is nonpositive, Eq. (9) has steady-state solutions
of x = 1/2 ±

√
−ζ : x = 1/2 −

√
−ζ is the stable fix point

and the other is the unstable fix point. Starting from the initial
condition x 0 < 1/2 −

√
−ζ , the system relaxes to the stable

fixed point exponentially. Although the time derivative of x
is negative for x between these two fixed points, it should
be interpreted as ḟ = 0 because the system is essentially
irreversible.

(2) At ζ = 0, the saddle-node bifurcation occurs. Namely,
these two fixed points merge together and annihilate. This
bifurcation is actually present for more general threshold
distributions, and therefore they yield common behaviors near
the bifurcation point.

(3) For positive ζ , there is no fixed point and the system
undergoes breakdown. The exact solution of Eq. (9) is given
as

tm − t = 1
2

log

[(
1
2

− x

)2

+ ζ

]

+ 1
2
√

ζ
tan−1

(
1/2 − x√

ζ

)
,

(12)

where tm is an integral constant. Here we consider a system
close to the bifurcation point, ζ ≪ 1. Then the first term is
negligible and one gets the following expression:

x ≃ 1
2 +

√
ζ tan[2

√
ζ (t − tm)]. (13)

Because the above equation should give x = x 0 at t = 0,

tm ≃ 1
2
√

ζ
tan−1

(
1/2 − x 0√

ζ

)
. (14)

The time evolution of the system is fully described by
Eqs. (12) or (13). A practically important quantity is the time
of breakdown, tf , where the surviving fibers vanish: Namely,
the force per fiber diverges. Considering Eq. (12), the time of
the breakdown is given by

2
√

ζ (tf − tm) = π/2. (15)

Importantly, Eq. (12) implies both the Omori-Utsu and
inverse Omori laws for the primary and the tertiary stages,
respectively.

1. The Omori law

The primary stage is characterized by x 0 < 1/2. In this case
(1/2 − x 0)/

√
ζ ≫ 1 and therefore tm ≃π/4

√
ζ . We can thus

write

2
√

ζ tm = π

2
− f (x 0), (16)

where f (x 0) > 0. By inserting Eq. (16) into Eq. (12),

x ≃ 1
2

−
√

ζ

tan[2
√

ζ t + f (x 0)]
≃ 1

2
− 1

2t + f (x 0)/
√

ζ
(17)

for small t . Taking the initial condition into account, this leads
to

x ≃ 1
2

− 1
2[t + 1/(1 − 2x 0)]

. (18)

Therefore,

ẋ ≃ 1
2[t + 1/(1 − 2x 0)]2

. (19)
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(i = 1,2, . . . ) redistribution is

Li = L0 −
∫ fi−1

0
L0p(y)dy. (3)

where L0 is the initial number of fibers, Li is the number
survived after the ith redistribution, and fi−1 is the force per
fiber at the previous time step i − 1. This can be rewritten in
terms of fraction ni = Li/L0

ni = 1 −
∫ fi−1

0
p(y)dy. (4)

Using ni = f0/fi , where f0 is the strain at t = 0, the above
equation is rewritten in terms of f :

fi = f0

1 −
∫ fi−1

0 p(y)dy
= f0∫ ∞

fi−1
p(y)dy

. (5)

This is the recursive relation for f . One can also consider a
differential equation by using (fi+1 − fi)/τ ≃ḟ , where τ is
the duration of one time step, i to i + 1:

τ ḟ = f0

1 −
∫ f

0 p(y)dy
− f. (6)

Therefore, the time evolution of the present system is solely
determined by the threshold distribution p(f ) and the initial
condition f0. As f0 = F/L0, choosing f0 is identical to deter-
mine the external load F . Note that f should be proportional to
the strain of the system as the elastic modulus is supposed to be
identical to all the fibers. Therefore, ḟ should be proportional
to the strain rate.

A. Uniform threshold distribution

For a uniform threshold distribution defined in [fmax − δ,
fmax], the integral in Eq. (6) is easily solved to give

τ ḟ = f0δ

fmax − f
− f. (7)

This is rewritten as

τ ḟ =
(
f − fmax

2

)2 + f0δ − f 2
max
4

fmax − f
. (8)

This is more simplified as

τ ẋ =
(
x − 1

2

)2 + ζ

1 − x
, (9)

where

x := f

fmax
, (10)

ζ := f0δ

f 2
max

− 1
4
. (11)

By choosing τ as the time unit, we realize that there is only one
nondimensional parameter ζ that controls the time evolution
of x .

(1) If ζ is nonpositive, Eq. (9) has steady-state solutions
of x = 1/2 ±

√
−ζ : x = 1/2 −

√
−ζ is the stable fix point

and the other is the unstable fix point. Starting from the initial
condition x 0 < 1/2 −

√
−ζ , the system relaxes to the stable

fixed point exponentially. Although the time derivative of x
is negative for x between these two fixed points, it should
be interpreted as ḟ = 0 because the system is essentially
irreversible.

(2) At ζ = 0, the saddle-node bifurcation occurs. Namely,
these two fixed points merge together and annihilate. This
bifurcation is actually present for more general threshold
distributions, and therefore they yield common behaviors near
the bifurcation point.

(3) For positive ζ , there is no fixed point and the system
undergoes breakdown. The exact solution of Eq. (9) is given
as

tm − t = 1
2

log

[(
1
2

− x

)2

+ ζ

]

+ 1
2
√

ζ
tan−1

(
1/2 − x√

ζ

)
,

(12)

where tm is an integral constant. Here we consider a system
close to the bifurcation point, ζ ≪ 1. Then the first term is
negligible and one gets the following expression:

x ≃ 1
2 +

√
ζ tan[2

√
ζ (t − tm)]. (13)

Because the above equation should give x = x 0 at t = 0,

tm ≃ 1
2
√

ζ
tan−1

(
1/2 − x 0√

ζ

)
. (14)

The time evolution of the system is fully described by
Eqs. (12) or (13). A practically important quantity is the time
of breakdown, tf , where the surviving fibers vanish: Namely,
the force per fiber diverges. Considering Eq. (12), the time of
the breakdown is given by

2
√

ζ (tf − tm) = π/2. (15)

Importantly, Eq. (12) implies both the Omori-Utsu and
inverse Omori laws for the primary and the tertiary stages,
respectively.

1. The Omori law

The primary stage is characterized by x 0 < 1/2. In this case
(1/2 − x 0)/

√
ζ ≫ 1 and therefore tm ≃π/4

√
ζ . We can thus

write

2
√

ζ tm = π

2
− f (x 0), (16)

where f (x 0) > 0. By inserting Eq. (16) into Eq. (12),

x ≃ 1
2

−
√

ζ

tan[2
√

ζ t + f (x 0)]
≃ 1

2
− 1

2t + f (x 0)/
√

ζ
(17)

for small t . Taking the initial condition into account, this leads
to

x ≃ 1
2

− 1
2[t + 1/(1 − 2x 0)]

. (18)

Therefore,

ẋ ≃ 1
2[t + 1/(1 − 2x 0)]2

. (19)
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(i = 1,2, . . . ) redistribution is

Li = L0 −
∫ fi−1

0
L0p(y)dy. (3)

where L0 is the initial number of fibers, Li is the number
survived after the ith redistribution, and fi−1 is the force per
fiber at the previous time step i − 1. This can be rewritten in
terms of fraction ni = Li/L0

ni = 1 −
∫ fi−1

0
p(y)dy. (4)

Using ni = f0/fi , where f0 is the strain at t = 0, the above
equation is rewritten in terms of f :

fi = f0

1 −
∫ fi−1

0 p(y)dy
= f0∫ ∞

fi−1
p(y)dy

. (5)

This is the recursive relation for f . One can also consider a
differential equation by using (fi+1 − fi)/τ ≃ḟ , where τ is
the duration of one time step, i to i + 1:

τ ḟ = f0

1 −
∫ f

0 p(y)dy
− f. (6)

Therefore, the time evolution of the present system is solely
determined by the threshold distribution p(f ) and the initial
condition f0. As f0 = F/L0, choosing f0 is identical to deter-
mine the external load F . Note that f should be proportional to
the strain of the system as the elastic modulus is supposed to be
identical to all the fibers. Therefore, ḟ should be proportional
to the strain rate.

A. Uniform threshold distribution

For a uniform threshold distribution defined in [fmax − δ,
fmax], the integral in Eq. (6) is easily solved to give

τ ḟ = f0δ

fmax − f
− f. (7)

This is rewritten as

τ ḟ =
(
f − fmax

2

)2 + f0δ − f 2
max
4

fmax − f
. (8)

This is more simplified as

τ ẋ =
(
x − 1

2

)2 + ζ

1 − x
, (9)

where

x := f

fmax
, (10)

ζ := f0δ

f 2
max

− 1
4
. (11)

By choosing τ as the time unit, we realize that there is only one
nondimensional parameter ζ that controls the time evolution
of x .

(1) If ζ is nonpositive, Eq. (9) has steady-state solutions
of x = 1/2 ±

√
−ζ : x = 1/2 −

√
−ζ is the stable fix point

and the other is the unstable fix point. Starting from the initial
condition x 0 < 1/2 −

√
−ζ , the system relaxes to the stable

fixed point exponentially. Although the time derivative of x
is negative for x between these two fixed points, it should
be interpreted as ḟ = 0 because the system is essentially
irreversible.

(2) At ζ = 0, the saddle-node bifurcation occurs. Namely,
these two fixed points merge together and annihilate. This
bifurcation is actually present for more general threshold
distributions, and therefore they yield common behaviors near
the bifurcation point.

(3) For positive ζ , there is no fixed point and the system
undergoes breakdown. The exact solution of Eq. (9) is given
as

tm − t = 1
2

log

[(
1
2

− x

)2

+ ζ

]

+ 1
2
√

ζ
tan−1

(
1/2 − x√

ζ

)
,

(12)

where tm is an integral constant. Here we consider a system
close to the bifurcation point, ζ ≪ 1. Then the first term is
negligible and one gets the following expression:

x ≃ 1
2 +

√
ζ tan[2

√
ζ (t − tm)]. (13)

Because the above equation should give x = x 0 at t = 0,

tm ≃ 1
2
√

ζ
tan−1

(
1/2 − x 0√

ζ

)
. (14)

The time evolution of the system is fully described by
Eqs. (12) or (13). A practically important quantity is the time
of breakdown, tf , where the surviving fibers vanish: Namely,
the force per fiber diverges. Considering Eq. (12), the time of
the breakdown is given by

2
√

ζ (tf − tm) = π/2. (15)

Importantly, Eq. (12) implies both the Omori-Utsu and
inverse Omori laws for the primary and the tertiary stages,
respectively.

1. The Omori law

The primary stage is characterized by x 0 < 1/2. In this case
(1/2 − x 0)/

√
ζ ≫ 1 and therefore tm ≃π/4

√
ζ . We can thus

write

2
√

ζ tm = π

2
− f (x 0), (16)

where f (x 0) > 0. By inserting Eq. (16) into Eq. (12),

x ≃ 1
2

−
√

ζ

tan[2
√

ζ t + f (x 0)]
≃ 1

2
− 1

2t + f (x 0)/
√

ζ
(17)

for small t . Taking the initial condition into account, this leads
to

x ≃ 1
2

− 1
2[t + 1/(1 − 2x 0)]

. (18)

Therefore,

ẋ ≃ 1
2[t + 1/(1 − 2x 0)]2

. (19)
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the case of uniform threshold distribution

p(f) = 1/δ
= 0

if

otherwise

(2)
x ⌘ f/fmax

ζ< 0  ̶> two fixed points

stable unstable

F or f0 or ζ

f

ζ=0 ̶> saddle-node bifurcation

ζ> 0 ̶> runaway (breakdown)

fmax

p(f) f 2 [fmax � �, fmax]

f

δ

CREEPLIKE BEHAVIOR IN ATHERMAL THRESHOLD … PHYSICAL REVIEW E 97, 062149 (2018)

(i = 1,2, . . . ) redistribution is

Li = L0 −
∫ fi−1

0
L0p(y)dy. (3)

where L0 is the initial number of fibers, Li is the number
survived after the ith redistribution, and fi−1 is the force per
fiber at the previous time step i − 1. This can be rewritten in
terms of fraction ni = Li/L0

ni = 1 −
∫ fi−1

0
p(y)dy. (4)

Using ni = f0/fi , where f0 is the strain at t = 0, the above
equation is rewritten in terms of f :

fi = f0

1 −
∫ fi−1

0 p(y)dy
= f0∫ ∞

fi−1
p(y)dy

. (5)

This is the recursive relation for f . One can also consider a
differential equation by using (fi+1 − fi)/τ ≃ḟ , where τ is
the duration of one time step, i to i + 1:

τ ḟ = f0

1 −
∫ f

0 p(y)dy
− f. (6)

Therefore, the time evolution of the present system is solely
determined by the threshold distribution p(f ) and the initial
condition f0. As f0 = F/L0, choosing f0 is identical to deter-
mine the external load F . Note that f should be proportional to
the strain of the system as the elastic modulus is supposed to be
identical to all the fibers. Therefore, ḟ should be proportional
to the strain rate.

A. Uniform threshold distribution

For a uniform threshold distribution defined in [fmax − δ,
fmax], the integral in Eq. (6) is easily solved to give

τ ḟ = f0δ

fmax − f
− f. (7)

This is rewritten as

τ ḟ =
(
f − fmax

2

)2 + f0δ − f 2
max
4

fmax − f
. (8)

This is more simplified as

τ ẋ =
(
x − 1

2

)2 + ζ

1 − x
, (9)

where

x := f

fmax
, (10)

ζ := f0δ

f 2
max

− 1
4
. (11)

By choosing τ as the time unit, we realize that there is only one
nondimensional parameter ζ that controls the time evolution
of x .

(1) If ζ is nonpositive, Eq. (9) has steady-state solutions
of x = 1/2 ±

√
−ζ : x = 1/2 −

√
−ζ is the stable fix point

and the other is the unstable fix point. Starting from the initial
condition x 0 < 1/2 −

√
−ζ , the system relaxes to the stable

fixed point exponentially. Although the time derivative of x
is negative for x between these two fixed points, it should
be interpreted as ḟ = 0 because the system is essentially
irreversible.

(2) At ζ = 0, the saddle-node bifurcation occurs. Namely,
these two fixed points merge together and annihilate. This
bifurcation is actually present for more general threshold
distributions, and therefore they yield common behaviors near
the bifurcation point.

(3) For positive ζ , there is no fixed point and the system
undergoes breakdown. The exact solution of Eq. (9) is given
as

tm − t = 1
2

log

[(
1
2

− x

)2

+ ζ

]

+ 1
2
√

ζ
tan−1

(
1/2 − x√

ζ

)
,

(12)

where tm is an integral constant. Here we consider a system
close to the bifurcation point, ζ ≪ 1. Then the first term is
negligible and one gets the following expression:

x ≃ 1
2 +

√
ζ tan[2

√
ζ (t − tm)]. (13)

Because the above equation should give x = x 0 at t = 0,

tm ≃ 1
2
√

ζ
tan−1

(
1/2 − x 0√

ζ

)
. (14)

The time evolution of the system is fully described by
Eqs. (12) or (13). A practically important quantity is the time
of breakdown, tf , where the surviving fibers vanish: Namely,
the force per fiber diverges. Considering Eq. (12), the time of
the breakdown is given by

2
√

ζ (tf − tm) = π/2. (15)

Importantly, Eq. (12) implies both the Omori-Utsu and
inverse Omori laws for the primary and the tertiary stages,
respectively.

1. The Omori law

The primary stage is characterized by x 0 < 1/2. In this case
(1/2 − x 0)/

√
ζ ≫ 1 and therefore tm ≃π/4

√
ζ . We can thus

write

2
√

ζ tm = π

2
− f (x 0), (16)

where f (x 0) > 0. By inserting Eq. (16) into Eq. (12),

x ≃ 1
2

−
√

ζ

tan[2
√

ζ t + f (x 0)]
≃ 1

2
− 1

2t + f (x 0)/
√

ζ
(17)

for small t . Taking the initial condition into account, this leads
to

x ≃ 1
2

− 1
2[t + 1/(1 − 2x 0)]

. (18)

Therefore,

ẋ ≃ 1
2[t + 1/(1 − 2x 0)]2

. (19)
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(i = 1,2, . . . ) redistribution is

Li = L0 −
∫ fi−1

0
L0p(y)dy. (3)

where L0 is the initial number of fibers, Li is the number
survived after the ith redistribution, and fi−1 is the force per
fiber at the previous time step i − 1. This can be rewritten in
terms of fraction ni = Li/L0

ni = 1 −
∫ fi−1

0
p(y)dy. (4)

Using ni = f0/fi , where f0 is the strain at t = 0, the above
equation is rewritten in terms of f :

fi = f0

1 −
∫ fi−1

0 p(y)dy
= f0∫ ∞

fi−1
p(y)dy

. (5)

This is the recursive relation for f . One can also consider a
differential equation by using (fi+1 − fi)/τ ≃ḟ , where τ is
the duration of one time step, i to i + 1:

τ ḟ = f0

1 −
∫ f

0 p(y)dy
− f. (6)

Therefore, the time evolution of the present system is solely
determined by the threshold distribution p(f ) and the initial
condition f0. As f0 = F/L0, choosing f0 is identical to deter-
mine the external load F . Note that f should be proportional to
the strain of the system as the elastic modulus is supposed to be
identical to all the fibers. Therefore, ḟ should be proportional
to the strain rate.

A. Uniform threshold distribution

For a uniform threshold distribution defined in [fmax − δ,
fmax], the integral in Eq. (6) is easily solved to give

τ ḟ = f0δ

fmax − f
− f. (7)

This is rewritten as

τ ḟ =
(
f − fmax

2

)2 + f0δ − f 2
max
4

fmax − f
. (8)

This is more simplified as

τ ẋ =
(
x − 1

2

)2 + ζ

1 − x
, (9)

where

x := f

fmax
, (10)

ζ := f0δ

f 2
max

− 1
4
. (11)

By choosing τ as the time unit, we realize that there is only one
nondimensional parameter ζ that controls the time evolution
of x .

(1) If ζ is nonpositive, Eq. (9) has steady-state solutions
of x = 1/2 ±

√
−ζ : x = 1/2 −

√
−ζ is the stable fix point

and the other is the unstable fix point. Starting from the initial
condition x 0 < 1/2 −

√
−ζ , the system relaxes to the stable

fixed point exponentially. Although the time derivative of x
is negative for x between these two fixed points, it should
be interpreted as ḟ = 0 because the system is essentially
irreversible.

(2) At ζ = 0, the saddle-node bifurcation occurs. Namely,
these two fixed points merge together and annihilate. This
bifurcation is actually present for more general threshold
distributions, and therefore they yield common behaviors near
the bifurcation point.

(3) For positive ζ , there is no fixed point and the system
undergoes breakdown. The exact solution of Eq. (9) is given
as

tm − t = 1
2

log

[(
1
2

− x

)2

+ ζ

]

+ 1
2
√

ζ
tan−1

(
1/2 − x√

ζ

)
,

(12)

where tm is an integral constant. Here we consider a system
close to the bifurcation point, ζ ≪ 1. Then the first term is
negligible and one gets the following expression:

x ≃ 1
2 +

√
ζ tan[2

√
ζ (t − tm)]. (13)

Because the above equation should give x = x 0 at t = 0,

tm ≃ 1
2
√

ζ
tan−1

(
1/2 − x 0√

ζ

)
. (14)

The time evolution of the system is fully described by
Eqs. (12) or (13). A practically important quantity is the time
of breakdown, tf , where the surviving fibers vanish: Namely,
the force per fiber diverges. Considering Eq. (12), the time of
the breakdown is given by

2
√

ζ (tf − tm) = π/2. (15)

Importantly, Eq. (12) implies both the Omori-Utsu and
inverse Omori laws for the primary and the tertiary stages,
respectively.

1. The Omori law

The primary stage is characterized by x 0 < 1/2. In this case
(1/2 − x 0)/

√
ζ ≫ 1 and therefore tm ≃π/4

√
ζ . We can thus

write

2
√

ζ tm = π

2
− f (x 0), (16)

where f (x 0) > 0. By inserting Eq. (16) into Eq. (12),

x ≃ 1
2

−
√

ζ

tan[2
√

ζ t + f (x 0)]
≃ 1

2
− 1

2t + f (x 0)/
√

ζ
(17)

for small t . Taking the initial condition into account, this leads
to

x ≃ 1
2

− 1
2[t + 1/(1 − 2x 0)]

. (18)

Therefore,

ẋ ≃ 1
2[t + 1/(1 − 2x 0)]2

. (19)
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(i = 1,2, . . . ) redistribution is

Li = L0 −
∫ fi−1

0
L0p(y)dy. (3)

where L0 is the initial number of fibers, Li is the number
survived after the ith redistribution, and fi−1 is the force per
fiber at the previous time step i − 1. This can be rewritten in
terms of fraction ni = Li/L0

ni = 1 −
∫ fi−1

0
p(y)dy. (4)

Using ni = f0/fi , where f0 is the strain at t = 0, the above
equation is rewritten in terms of f :

fi = f0

1 −
∫ fi−1

0 p(y)dy
= f0∫ ∞

fi−1
p(y)dy

. (5)

This is the recursive relation for f . One can also consider a
differential equation by using (fi+1 − fi)/τ ≃ḟ , where τ is
the duration of one time step, i to i + 1:

τ ḟ = f0

1 −
∫ f

0 p(y)dy
− f. (6)

Therefore, the time evolution of the present system is solely
determined by the threshold distribution p(f ) and the initial
condition f0. As f0 = F/L0, choosing f0 is identical to deter-
mine the external load F . Note that f should be proportional to
the strain of the system as the elastic modulus is supposed to be
identical to all the fibers. Therefore, ḟ should be proportional
to the strain rate.

A. Uniform threshold distribution

For a uniform threshold distribution defined in [fmax − δ,
fmax], the integral in Eq. (6) is easily solved to give

τ ḟ = f0δ

fmax − f
− f. (7)

This is rewritten as

τ ḟ =
(
f − fmax

2

)2 + f0δ − f 2
max
4

fmax − f
. (8)

This is more simplified as

τ ẋ =
(
x − 1

2

)2 + ζ

1 − x
, (9)

where

x := f

fmax
, (10)

ζ := f0δ

f 2
max

− 1
4
. (11)

By choosing τ as the time unit, we realize that there is only one
nondimensional parameter ζ that controls the time evolution
of x .

(1) If ζ is nonpositive, Eq. (9) has steady-state solutions
of x = 1/2 ±

√
−ζ : x = 1/2 −

√
−ζ is the stable fix point

and the other is the unstable fix point. Starting from the initial
condition x 0 < 1/2 −

√
−ζ , the system relaxes to the stable

fixed point exponentially. Although the time derivative of x
is negative for x between these two fixed points, it should
be interpreted as ḟ = 0 because the system is essentially
irreversible.

(2) At ζ = 0, the saddle-node bifurcation occurs. Namely,
these two fixed points merge together and annihilate. This
bifurcation is actually present for more general threshold
distributions, and therefore they yield common behaviors near
the bifurcation point.

(3) For positive ζ , there is no fixed point and the system
undergoes breakdown. The exact solution of Eq. (9) is given
as

tm − t = 1
2

log

[(
1
2

− x

)2

+ ζ

]

+ 1
2
√

ζ
tan−1

(
1/2 − x√

ζ

)
,

(12)

where tm is an integral constant. Here we consider a system
close to the bifurcation point, ζ ≪ 1. Then the first term is
negligible and one gets the following expression:

x ≃ 1
2 +

√
ζ tan[2

√
ζ (t − tm)]. (13)

Because the above equation should give x = x 0 at t = 0,

tm ≃ 1
2
√

ζ
tan−1

(
1/2 − x 0√

ζ

)
. (14)

The time evolution of the system is fully described by
Eqs. (12) or (13). A practically important quantity is the time
of breakdown, tf , where the surviving fibers vanish: Namely,
the force per fiber diverges. Considering Eq. (12), the time of
the breakdown is given by

2
√

ζ (tf − tm) = π/2. (15)

Importantly, Eq. (12) implies both the Omori-Utsu and
inverse Omori laws for the primary and the tertiary stages,
respectively.

1. The Omori law

The primary stage is characterized by x 0 < 1/2. In this case
(1/2 − x 0)/

√
ζ ≫ 1 and therefore tm ≃π/4

√
ζ . We can thus

write

2
√

ζ tm = π

2
− f (x 0), (16)

where f (x 0) > 0. By inserting Eq. (16) into Eq. (12),

x ≃ 1
2

−
√

ζ

tan[2
√

ζ t + f (x 0)]
≃ 1

2
− 1

2t + f (x 0)/
√

ζ
(17)

for small t . Taking the initial condition into account, this leads
to

x ≃ 1
2

− 1
2[t + 1/(1 − 2x 0)]

. (18)

Therefore,

ẋ ≃ 1
2[t + 1/(1 − 2x 0)]2

. (19)
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(i = 1,2, . . . ) redistribution is

Li = L0 −
∫ fi−1

0
L0p(y)dy. (3)

where L0 is the initial number of fibers, Li is the number
survived after the ith redistribution, and fi−1 is the force per
fiber at the previous time step i − 1. This can be rewritten in
terms of fraction ni = Li/L0

ni = 1 −
∫ fi−1

0
p(y)dy. (4)

Using ni = f0/fi , where f0 is the strain at t = 0, the above
equation is rewritten in terms of f :

fi = f0

1 −
∫ fi−1

0 p(y)dy
= f0∫ ∞

fi−1
p(y)dy

. (5)

This is the recursive relation for f . One can also consider a
differential equation by using (fi+1 − fi)/τ ≃ḟ , where τ is
the duration of one time step, i to i + 1:

τ ḟ = f0

1 −
∫ f

0 p(y)dy
− f. (6)

Therefore, the time evolution of the present system is solely
determined by the threshold distribution p(f ) and the initial
condition f0. As f0 = F/L0, choosing f0 is identical to deter-
mine the external load F . Note that f should be proportional to
the strain of the system as the elastic modulus is supposed to be
identical to all the fibers. Therefore, ḟ should be proportional
to the strain rate.

A. Uniform threshold distribution

For a uniform threshold distribution defined in [fmax − δ,
fmax], the integral in Eq. (6) is easily solved to give

τ ḟ = f0δ

fmax − f
− f. (7)

This is rewritten as

τ ḟ =
(
f − fmax

2

)2 + f0δ − f 2
max
4

fmax − f
. (8)

This is more simplified as

τ ẋ =
(
x − 1

2

)2 + ζ

1 − x
, (9)

where

x := f

fmax
, (10)

ζ := f0δ

f 2
max

− 1
4
. (11)

By choosing τ as the time unit, we realize that there is only one
nondimensional parameter ζ that controls the time evolution
of x .

(1) If ζ is nonpositive, Eq. (9) has steady-state solutions
of x = 1/2 ±

√
−ζ : x = 1/2 −

√
−ζ is the stable fix point

and the other is the unstable fix point. Starting from the initial
condition x 0 < 1/2 −

√
−ζ , the system relaxes to the stable

fixed point exponentially. Although the time derivative of x
is negative for x between these two fixed points, it should
be interpreted as ḟ = 0 because the system is essentially
irreversible.

(2) At ζ = 0, the saddle-node bifurcation occurs. Namely,
these two fixed points merge together and annihilate. This
bifurcation is actually present for more general threshold
distributions, and therefore they yield common behaviors near
the bifurcation point.

(3) For positive ζ , there is no fixed point and the system
undergoes breakdown. The exact solution of Eq. (9) is given
as

tm − t = 1
2

log

[(
1
2

− x

)2

+ ζ

]

+ 1
2
√

ζ
tan−1

(
1/2 − x√

ζ

)
,

(12)

where tm is an integral constant. Here we consider a system
close to the bifurcation point, ζ ≪ 1. Then the first term is
negligible and one gets the following expression:

x ≃ 1
2 +

√
ζ tan[2

√
ζ (t − tm)]. (13)

Because the above equation should give x = x 0 at t = 0,

tm ≃ 1
2
√

ζ
tan−1

(
1/2 − x 0√

ζ

)
. (14)

The time evolution of the system is fully described by
Eqs. (12) or (13). A practically important quantity is the time
of breakdown, tf , where the surviving fibers vanish: Namely,
the force per fiber diverges. Considering Eq. (12), the time of
the breakdown is given by

2
√

ζ (tf − tm) = π/2. (15)

Importantly, Eq. (12) implies both the Omori-Utsu and
inverse Omori laws for the primary and the tertiary stages,
respectively.

1. The Omori law

The primary stage is characterized by x 0 < 1/2. In this case
(1/2 − x 0)/

√
ζ ≫ 1 and therefore tm ≃π/4

√
ζ . We can thus

write

2
√

ζ tm = π

2
− f (x 0), (16)

where f (x 0) > 0. By inserting Eq. (16) into Eq. (12),

x ≃ 1
2

−
√

ζ

tan[2
√

ζ t + f (x 0)]
≃ 1

2
− 1

2t + f (x 0)/
√

ζ
(17)

for small t . Taking the initial condition into account, this leads
to

x ≃ 1
2

− 1
2[t + 1/(1 − 2x 0)]

. (18)

Therefore,

ẋ ≃ 1
2[t + 1/(1 − 2x 0)]2

. (19)
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(i = 1,2, . . . ) redistribution is

Li = L0 −
∫ fi−1

0
L0p(y)dy. (3)

where L0 is the initial number of fibers, Li is the number
survived after the ith redistribution, and fi−1 is the force per
fiber at the previous time step i − 1. This can be rewritten in
terms of fraction ni = Li/L0

ni = 1 −
∫ fi−1

0
p(y)dy. (4)

Using ni = f0/fi , where f0 is the strain at t = 0, the above
equation is rewritten in terms of f :

fi = f0

1 −
∫ fi−1

0 p(y)dy
= f0∫ ∞

fi−1
p(y)dy

. (5)

This is the recursive relation for f . One can also consider a
differential equation by using (fi+1 − fi)/τ ≃ḟ , where τ is
the duration of one time step, i to i + 1:

τ ḟ = f0

1 −
∫ f

0 p(y)dy
− f. (6)

Therefore, the time evolution of the present system is solely
determined by the threshold distribution p(f ) and the initial
condition f0. As f0 = F/L0, choosing f0 is identical to deter-
mine the external load F . Note that f should be proportional to
the strain of the system as the elastic modulus is supposed to be
identical to all the fibers. Therefore, ḟ should be proportional
to the strain rate.

A. Uniform threshold distribution

For a uniform threshold distribution defined in [fmax − δ,
fmax], the integral in Eq. (6) is easily solved to give

τ ḟ = f0δ

fmax − f
− f. (7)

This is rewritten as

τ ḟ =
(
f − fmax

2

)2 + f0δ − f 2
max
4

fmax − f
. (8)

This is more simplified as

τ ẋ =
(
x − 1

2

)2 + ζ

1 − x
, (9)

where

x := f

fmax
, (10)

ζ := f0δ

f 2
max

− 1
4
. (11)

By choosing τ as the time unit, we realize that there is only one
nondimensional parameter ζ that controls the time evolution
of x .

(1) If ζ is nonpositive, Eq. (9) has steady-state solutions
of x = 1/2 ±

√
−ζ : x = 1/2 −

√
−ζ is the stable fix point

and the other is the unstable fix point. Starting from the initial
condition x 0 < 1/2 −

√
−ζ , the system relaxes to the stable

fixed point exponentially. Although the time derivative of x
is negative for x between these two fixed points, it should
be interpreted as ḟ = 0 because the system is essentially
irreversible.

(2) At ζ = 0, the saddle-node bifurcation occurs. Namely,
these two fixed points merge together and annihilate. This
bifurcation is actually present for more general threshold
distributions, and therefore they yield common behaviors near
the bifurcation point.

(3) For positive ζ , there is no fixed point and the system
undergoes breakdown. The exact solution of Eq. (9) is given
as

tm − t = 1
2

log

[(
1
2

− x

)2

+ ζ

]

+ 1
2
√

ζ
tan−1

(
1/2 − x√

ζ

)
,

(12)

where tm is an integral constant. Here we consider a system
close to the bifurcation point, ζ ≪ 1. Then the first term is
negligible and one gets the following expression:

x ≃ 1
2 +

√
ζ tan[2

√
ζ (t − tm)]. (13)

Because the above equation should give x = x 0 at t = 0,

tm ≃ 1
2
√

ζ
tan−1

(
1/2 − x 0√

ζ

)
. (14)

The time evolution of the system is fully described by
Eqs. (12) or (13). A practically important quantity is the time
of breakdown, tf , where the surviving fibers vanish: Namely,
the force per fiber diverges. Considering Eq. (12), the time of
the breakdown is given by

2
√

ζ (tf − tm) = π/2. (15)

Importantly, Eq. (12) implies both the Omori-Utsu and
inverse Omori laws for the primary and the tertiary stages,
respectively.

1. The Omori law

The primary stage is characterized by x 0 < 1/2. In this case
(1/2 − x 0)/

√
ζ ≫ 1 and therefore tm ≃π/4

√
ζ . We can thus

write

2
√

ζ tm = π

2
− f (x 0), (16)

where f (x 0) > 0. By inserting Eq. (16) into Eq. (12),

x ≃ 1
2

−
√

ζ

tan[2
√

ζ t + f (x 0)]
≃ 1

2
− 1

2t + f (x 0)/
√

ζ
(17)

for small t . Taking the initial condition into account, this leads
to

x ≃ 1
2

− 1
2[t + 1/(1 − 2x 0)]

. (18)

Therefore,

ẋ ≃ 1
2[t + 1/(1 − 2x 0)]2

. (19)
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case of general threshold distribution

�(f) ⌘ f0

1�
R f
0 p(x)dx

fi+1 = �(fi) =
f0R1

f p(x)dx

fi

fi+1

f0

fi=fi+1

Φ(0) = f0 
Φ(f) is a monotonically increasing function 
̶> the sign of ∂2Φ/∂f2 is crucial.

1. For sufficiently small f0

if ∂2Φ/∂f2 > 0 (concave case)

̶> two fixed points 

(stable & unstable)

Φ(f)
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fi

fi+1

f0

fi=fi+1

concave case (∂2Φ/∂f2 > 0)

2. At critical f0

̶> saddle-node bifurcation

fc
3. If f0 only slightly larger than the critical value

�(f) ' ✏+ fc + (f � fc) + a(f � fc)
2 + · · ·

⌧ ḟ = �(f)� f ' ✏+ a(f � fc)
2.

ḟ =
⌧/a

[t+ ⌧/a(fc � f0)]
2 obtain Omori law

two fixed points merge at fc

condition to neglect 
third order term?
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case of ∂2Φ/∂f2 < 0

fi

fi+1

f0

fi=fi+1
Φ(f)only one fixed point 

(irrespective of f0)

f0

No breakdown ̶> desirable materials?

what kind of p(x) satisfies this condition?

̶> it is concave most plausible distributions 
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the c-value in Omori law

ẋ ' [t+ c(x0)]
�2we obtained for primary creep

so dx/dt does not diverge at t=0

c(x0) defines a characteristic time for creep

c(f0)/⌧ ' 1

1/2� f0/fmax

increasing function of initial force
cf. opposite to granular avalanche / earthquakes

decreasing function of fmax

more disorder ̶> smaller c-value
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Weibull distribution
p(x) / x��1 exp(�x�)

check other types of distribution

∂2Φ/∂f2 > 0

should be universal as long as ∂2Φ/∂f2 > 0
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FIG. 3. Time evolution of the model with Weibull threshold
distribution. (a) Omori-like behavior in the primary stage with a
continuous variation of disorder. (b) Variation of c value with disorder
at different loading conditions. (c) Inverse-Omori-like behavior close
to the failure point.

Both exponents p and p′ show satisfactory match with the
analytical results. In the primary stage, the value of c changes
with a continuous variation of β. The applied stress is kept
constant here at the critical value. Strain rate produced in
the model at critical stress and corresponding to different β
values [see Fig. 3(a)] in the primary stage are fitted with the
Omori law for different c values. The variation of c value with
β is shown in Fig. 3(b) at different loading condition. "f
shows the deviation in applied stress from the critical value
fc. "f = 0 corresponds to the critically loading condition.
A positive "f tells us that the model is overloaded, while a
negative value of "f leads to situation where the applied load
is less than the critical one. c attains a higher value at both
low- and high-β values and hence at low-disorder limit. This
nonmonotonic behavior is very prominent where the system is
more overloaded ("f > 0). For "f ≈ 0 or "f < 0, we have
to go to relatively higher value of β to observe this increment

 1

 2

 3

 4

-0.2 -0.1  0  0.1

c

∆f

(c)

β=0.5
β=1.0
β=1.5
β=2.0

10-5

10-4

10-3

10-2

10-1

100 101 102

ε.

t

(a)
β=2.0

∆f=+0.1
∆f=+0.05
∆f=-0.05
∆f=-0.1

100 101 102

t

(b)β=1.0
∆f=+0.2
∆f=+0.1
∆f=-0.1
∆f=-0.2

FIG. 4. Omori-like behavior at different loading conditions. [(a),
(b)] ϵ̇ vs t for two different disorder values β = 2.0 and β = 1.0. (c)
Variation of c value with "f for 0.5 < β < 2.0.

in c value. Finally, Fig. 3(c) shows the strain rate, close to the
failure point. When t approaches tf , ϵ̇ increases in a scalefree
manner with an exponent − 2, independent of the disorder
introduced in the model. Also, as discussed before, we have a
zero c value here.

3. Dependence on the applied stress

Next we have investigated the effect of applied stress more
closely focusing on the primary stage only.

Figures 4(a) and 4(b) show the Omori-like behavior under
different loading conditions. At high-β value, the system
responses quite well with varying applied stress. On the other
hand, at low-β value, c changes very slowly with "f . These
different responses can be expressed through a continuous
variation of c value with "f . Figure 4(c) shows the c value
vs "f variation at different β (hence at different disorder
values). As previously discussed, at low β, c starts with a
relatively higher value and gradually increases with "f . For
higher β value, c attains a lower value initially but increases
more quickly with "f . Hence, the rate of change of such c
value is relatively higher for high disorder values.

4. Variation of c value on ! f -δ plane

Finally we have reached a point where we can explain the
behavior of the c value with respect to the parameters β and
"f . In Figs. 5(a) and 5(b), we have shown the c value in the
primary stage as function of both disorder and applied stress
in case of the uniform and the Weibull distributions.

The value of c is higher at less disorder (low δ for uniform
distribution and very low or very high β for Weibull distribu-
tion) and gradually deceases when we go to higher disorder.
At any particular δ or β, the c value increases with increas-
ing "f .

C. Power-law threshold distribution

Next, we have carried out the numerical simulation where the
thresholds are chosen randomly from a power-law distribution
with a variable exponent. Following the analytical results, we
introduce some cutoff values for the distribution depending on
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Both exponents p and p′ show satisfactory match with the
analytical results. In the primary stage, the value of c changes
with a continuous variation of β. The applied stress is kept
constant here at the critical value. Strain rate produced in
the model at critical stress and corresponding to different β
values [see Fig. 3(a)] in the primary stage are fitted with the
Omori law for different c values. The variation of c value with
β is shown in Fig. 3(b) at different loading condition. "f
shows the deviation in applied stress from the critical value
fc. "f = 0 corresponds to the critically loading condition.
A positive "f tells us that the model is overloaded, while a
negative value of "f leads to situation where the applied load
is less than the critical one. c attains a higher value at both
low- and high-β values and hence at low-disorder limit. This
nonmonotonic behavior is very prominent where the system is
more overloaded ("f > 0). For "f ≈ 0 or "f < 0, we have
to go to relatively higher value of β to observe this increment
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in c value. Finally, Fig. 3(c) shows the strain rate, close to the
failure point. When t approaches tf , ϵ̇ increases in a scalefree
manner with an exponent − 2, independent of the disorder
introduced in the model. Also, as discussed before, we have a
zero c value here.

3. Dependence on the applied stress

Next we have investigated the effect of applied stress more
closely focusing on the primary stage only.

Figures 4(a) and 4(b) show the Omori-like behavior under
different loading conditions. At high-β value, the system
responses quite well with varying applied stress. On the other
hand, at low-β value, c changes very slowly with "f . These
different responses can be expressed through a continuous
variation of c value with "f . Figure 4(c) shows the c value
vs "f variation at different β (hence at different disorder
values). As previously discussed, at low β, c starts with a
relatively higher value and gradually increases with "f . For
higher β value, c attains a lower value initially but increases
more quickly with "f . Hence, the rate of change of such c
value is relatively higher for high disorder values.

4. Variation of c value on ! f -δ plane

Finally we have reached a point where we can explain the
behavior of the c value with respect to the parameters β and
"f . In Figs. 5(a) and 5(b), we have shown the c value in the
primary stage as function of both disorder and applied stress
in case of the uniform and the Weibull distributions.

The value of c is higher at less disorder (low δ for uniform
distribution and very low or very high β for Weibull distribu-
tion) and gradually deceases when we go to higher disorder.
At any particular δ or β, the c value increases with increas-
ing "f .

C. Power-law threshold distribution

Next, we have carried out the numerical simulation where the
thresholds are chosen randomly from a power-law distribution
with a variable exponent. Following the analytical results, we
introduce some cutoff values for the distribution depending on
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ẋ ' [t+ c(x0)]
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Both exponents p and p′ show satisfactory match with the
analytical results. In the primary stage, the value of c changes
with a continuous variation of β. The applied stress is kept
constant here at the critical value. Strain rate produced in
the model at critical stress and corresponding to different β
values [see Fig. 3(a)] in the primary stage are fitted with the
Omori law for different c values. The variation of c value with
β is shown in Fig. 3(b) at different loading condition. "f
shows the deviation in applied stress from the critical value
fc. "f = 0 corresponds to the critically loading condition.
A positive "f tells us that the model is overloaded, while a
negative value of "f leads to situation where the applied load
is less than the critical one. c attains a higher value at both
low- and high-β values and hence at low-disorder limit. This
nonmonotonic behavior is very prominent where the system is
more overloaded ("f > 0). For "f ≈ 0 or "f < 0, we have
to go to relatively higher value of β to observe this increment
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in c value. Finally, Fig. 3(c) shows the strain rate, close to the
failure point. When t approaches tf , ϵ̇ increases in a scalefree
manner with an exponent − 2, independent of the disorder
introduced in the model. Also, as discussed before, we have a
zero c value here.

3. Dependence on the applied stress

Next we have investigated the effect of applied stress more
closely focusing on the primary stage only.

Figures 4(a) and 4(b) show the Omori-like behavior under
different loading conditions. At high-β value, the system
responses quite well with varying applied stress. On the other
hand, at low-β value, c changes very slowly with "f . These
different responses can be expressed through a continuous
variation of c value with "f . Figure 4(c) shows the c value
vs "f variation at different β (hence at different disorder
values). As previously discussed, at low β, c starts with a
relatively higher value and gradually increases with "f . For
higher β value, c attains a lower value initially but increases
more quickly with "f . Hence, the rate of change of such c
value is relatively higher for high disorder values.

4. Variation of c value on ! f -δ plane

Finally we have reached a point where we can explain the
behavior of the c value with respect to the parameters β and
"f . In Figs. 5(a) and 5(b), we have shown the c value in the
primary stage as function of both disorder and applied stress
in case of the uniform and the Weibull distributions.

The value of c is higher at less disorder (low δ for uniform
distribution and very low or very high β for Weibull distribu-
tion) and gradually deceases when we go to higher disorder.
At any particular δ or β, the c value increases with increas-
ing "f .

C. Power-law threshold distribution

Next, we have carried out the numerical simulation where the
thresholds are chosen randomly from a power-law distribution
with a variable exponent. Following the analytical results, we
introduce some cutoff values for the distribution depending on
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FIG. 7. Schematic diagram of fiber bundle model, showing the
effect of memory during the rupture events. The dashed line shows
a ruptured fiber. (a) In the case of the conventional model, the local
stresses on the crack tips are uneven. (b) After memory is removed
from the model, both the tips carries the same stress.

fibers on the right side will carry a stress of [1 + (nl + nr )/2]f ,
where f is the stress per fiber applied externally. Note that nr

and nl are the cumulative number of broken fibers from t = 0.
Figure 7(b) shows the rupture events when the external stress
per fiber is unity (f = 1). After one fiber breaks (denoted by the
dotted line) in the first rupture event, the stress on the fiber on
its left will be 3/2 as in this case nr = 1 (the broken fiber
itself) and nl = 0. At the same time, the stress on the fiber on
its right will also be 3/2 but here nl = 1 (the broken fiber
itself) and nr = 0. After the second rupture event that yields
two consecutive broken fibers, the fiber on the left side of the
patch will have the stress of 2. In this case, nr = 2 (two broken
fibers) and nl = 0. The fiber on the right side of the patch will
also have the stress of 2. Here, nr = 0 and nl = 2 (two broken
fibers). Following this algorithm, we get equal local stress of
2 on the crack tips and the failure events are no longer history
dependent.

Let us assume that Lm
t is the number of unbroken bonds at

time t in the conventional algorithm and Lwm
t is the number for

the memoryless algorithm. As the symmetric stress distribution
results in more stable dynamics, we can expect Lwm

t > Lm
t

if the external load F is the same. As the strain is given by
ϵ = F/Lt , the system with the memoryless algorithm will be
less strained at a certain time t . Therefore, the strain ϵ and
the strain rate ϵ̇ may generally depend on the time-evolution
algorithm under the same external load.

B. Critical stress

Importantly, the time evolution of strain rate is rather
insensitive to a specific algorithm as long as the critical
load is applied to the system. The comparison of the above
two algorithms is shown in Fig. 8(a) with L = 104, δ =
0.5, and R = 1. Note that the two curves are obtained at
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FIG. 8. (a) Time evolution of strain rates in the conventional
algorithm and the memory-free algorithm. Each curve is obtained
at the critical stress, which depends on the algorithm. (b) System-size
effect on the critical stress (fc) for each algorithm. In both cases,
it is described by fc = a− m/ log L, where log denotes the natural
logarithm. For the conventional algorithm, m = 1.0 and a= 0. The
coefficient m decreases to 0.5 for the memoryless algorithm, where
the critical stress is higher. The constant a also shifts to a nonzero
value (≈0.1).

different external loads, as each algorithm has different critical
stress.

Since the model is stabilized when the memory is removed,
we need to increase the external load in order to break the
whole bundle. Namely, the critical stress is affected by the
memory. This is shown in Fig. 8(b) for R = 1 and δ = 0.5.
The numerical result indicates that fc ∼ a− m/ log L, where
L denotes the system size. Such a behavior was observed in
the literature of fiber bundle model, both analytically [34] and
numerically [20]. The only difference is the slope m of above
equation shifts from 1.0 to 0.5 as the memory is removed.
Additionally, a vanishes for the conventional model while it
takes a nonzero value (a≈ 0.1) when memory is removed.
This means that a higher critical stress is required for the
memoryless algorithm at any system size L. Namely, we obtain
f wm

c > f m
c , where f m

c and f wm
c are the critical stress values

with and without memory, respectively. However, the strain
ϵ = fc/(Lt/L) may be less sensitive to the specific choice
of algorithm as both fc and Lt increase (or decrease) in the
memoryless (or conventional) algorithm. This might be the
possible reason behind the algorithm-independent results for
strain rate in our present work.

C. Time evolution of strain rate

Below we have studied the time evolution of ϵ̇ at the critical
stress fc with local load-sharing scheme for different disorder
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FIG. 9. Variation of strain rate with time (in the primary stage)
for disorder δ, ranging in between 0.2 and 0.5, while a critical stress
is applied on it. The study is repeated for ρ = 0.93, 0.46, and 0.05.

strength δ and stress-release range ρ. We observe the strain
rate to independent of memory at R = 1. As R increases,
the model gradually approaches the mean-field limit. Also the
effect of memory vanishes gradually at the same time. As ϵ̇
is independent of memory for R = 1, we can expect that the
results will hardly be affected by the memory for higher R
values. Since the strain rate is not affected by memory, it does
not matter whether the memory for the following results are
removed or not.

1. Role of disorder

Figure 9 shows the behavior of strain rate in the primary
stage with different values of local stress concentration pa-
rameter ρ: 0.93, 0.46, and 0.05. In the case of ρ = 0.05, the
stress is redistributed up to a small range, whereas ρ = 0.93 is
close to the mean-field limit. As a result, it is expected to obtain
the Omori-Utsu law in the primary stage when the ρ is close to
1 [see Fig. 9(c)]. Interestingly, we observe this behavior to be
sustained even for lower ρ, namely more stress localization.
The c value also changes with disorder in this limit. The extra
feature that we get with stress localization is a varying exponent
p in the Omori-Utsu law.
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FIG. 10. Plot for ϵ̇ vs t in the primary stage at three different
disorder values (δ = 0.3, 0.4, and 0.5). The stress is kept constant at
the critical value while ρ is continuously varied.

2. Role of stress-release range

Here we have studied the model at a constant disorder but
with varying stress-release range. By changing a variable ρ, the
model shifts from the mean-field limit to another limit where
stress redistribution is extremely localized.

Figure 10 shows the time evolution of the strain rate with
several values of ρ. The study is repeated for three different
disorder values. The slope in the Omori-like behavior clearly
shows an increment while ρ is decreased. Also at very low ρ,
the exponent p changes with disorder. This variation of p with
disorder was absent in the mean-field limit.

3. Variation of c value and exponent p

To understand the effect of such stress localization, we have
studied the c value and the exponent p with a continuous
variation of stress-release range ρ between 0 and 1.5 (see
Fig. 11). As we have already mentioned, for ρ ! 1 the model
enters its mean-field limit.

For smaller interaction range (ρ < 1), both p and c take
large values. As ρ is increased, these two quantities decrease
gradually. Throughout the stage 0 < ρ " 1.5, the c value
remains a function of disorder δ and increases as we go to
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FIG. 11. Variation of the c value and and the exponent p with
increasing stress localization. The model approaches the mean-field
limit toward ρ = 1, and p approaches its mean-field value 1.8
gradually with increasing ρ.

lower δ values. So, c can be expressed as follows: c = #(ρ,δ)
for 0 < ρ ! 1.5, where # is an decreasing function of both
stress-release range ρ and disorder δ. On the other hand,
the exponent of p is function of both disorder δ and stress
localization ρ for ρ < 1.0. For ρ > 1.0, p takes a value 1.8
independent of δ and ρ, which is the mean-field exponent for
Omori law we obtained previously.

With local stress concentration (the LLS scheme), the strain
rate increases rapidly in the tertiary region until all the fibers
break. Though, unlike the mean-field limit, the strain rate does
not show the inverse Omori behavior here.

The results in the mean-field limit are already shown for
three different distributions: uniform, Weibull, and power law.
An universal behavior is observed in the time evolution of
strain rate (or force per fiber) for all these three distributions.
With local stress concentration, we have shown the results with
uniform distribution. The universality of these results are also
checked with a Weibull distribution with shape parameter β
and a power-law distribution with exponent −1 ranging from
10−η to 10η. The parameters η and β control the disorder here.

VI. DISCUSSION

Here we discuss the relevance of the Omori-Utsu and the
inverse Omori laws in a more general context. Although our
results are presented in terms of the strain rate, they should
apply to more general cases if there is a relation between
the rate of microfracture events and the strain rate, such as
n(t) ∝ ϵ̇(t)q, where n(t) is the rate of microfracture events
and q is a positive exponent. As the rupture of a single
fiber may correspond to a single microfracture event in the
present system, n(t) ∝ ϵ̇(t)L2(t), where L(t) is the number of
remaining fibers at time t .

Noting that aftershocks are caused by the abrupt stress
change caused by a main shock, the algorithm adopted here,
in which a finite stress is applied to the system at t = 0,
may model such a stress change caused by a main shock. In

this sense, the Omori-Utsu law obtained in the present model
mimics the dynamics after a main shock for earthquakes to
some extent. We obtain the exponent p ≃ 2 in the mean-field
model irrespective of the other details such as the threshold
distribution, whereas p ranges from 0.6 to 0.8 in the creep
test and from 0.7 to 1.6 for earthquakes. The difference is
significant but the quantitative agreement is not necessarily
here because of the simplicity of the mean-field model. In
contrast, the difference is even larger for the LLS model.
Noting that the LLS model is generally more unstable than the
GLS model, we may obtain smaller exponent for more stable
systems. For instance, introducing a probabilistic rule for the
elementary fracture process might lead to smaller exponent
because it can inhibit the cascade-like instability of fracture
caused by the load redistribution to slow down the relaxation.

The c value is a characteristic time for the power-law
relaxation that results from the abrupt stress loading and
therefore it is regarded as a relaxation time for stress. The
elementary stress relaxation time in our model is τ , which
makes a single time step. It is indeed the only intrinsic time
constant in our model and therefore the c value should be
scaled with τ from dimensional analysis. The c value is thus
mostly dominated by the nature of τ . For instance, if the stress
relaxation time depends on the total load F , the analysis given
in this study still applies and yields the load-dependent c value.

In the GLS model, the analytical expression for the c value
is obtained for a class of threshold distributions. Apart from the
trivial dependence on τ , the c value depends on three parame-
ters:a,fc, andf0. Among them,aandfc are determined mostly
by the threshold distribution via Eqs. (24) and (26) but they also
depend on f0 because #(f ) is proportional to f0. Therefore,
a should be proportional to f0. Noting that f0 is proportional
to the total load F as f0 = F/L0, Eq. (31) implies the load
dependence of the c value. Although the c value is found to
increase with the load in this study, in view of Eq. (31), it
can be a decreasing function of the external load if fc > 2f0.
This actually means fc > 2f ∗

0 and therefore it depends on the
threshold distribution. This condition is not satisfied for the
distribution functions investigated here and hence the c value
exhibits only positive dependence on the external load.

VII. CONCLUSIONS

We have studied the time evolution of fiber bundle model
under a constant external load being slightly above the critical
value with some variations in the load redistribution process:
the global load-sharing and the local load-sharing models.
The strain rate in the primary and the tertiary stages follows
the Omori-Utsu and the inverse Omori laws respectively. In
the local load-sharing model, both the exponent p and the c
value are decreasing functions of disorder and the interaction
range. Above a certain stress-release range (ρ > 1), the local
load-sharing model exhibits essentially the same behavior as
that of the mean-field limit; namely, the exponent for the
Omori-Utsu law attains a constant value (≈ 1.8) and c is still a
decreasing function of disorder. Despite the simplicity of the
model and the absence of any thermal activation process, the
system exhibits creeplike behaviors with all the three stages:
primary, secondary, and tertiary. This in turn implies that the
probabilistic rule is not essential for a power-law behavior in
creep deformation.
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partial summary: athermal case

1. Mean-field fiber bundle model reproduces three stages of creep

power-law slow dynamics is due to saddle-node bifurcation

3 The c-value is increasing function of the total load

but decreases with the degree of disorder in strength

large exponent: 2

2 Nearest-neighbor models exhibit even larger exponent, p>2.
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experiments like acoustic emissions (34). Also, some recent papers deals with disorder dependent temporal29
correlation (35; 36) and stress release range independent spatial correlation (36; 37) in microscopic rupture30
events of the fibers.31

In this work we have studied the creep failure at a non-zero temperature and for different strength of32
disorder and applied stress values. In the next section we have explained the conventional fiber bundle33
model followed by the modifications done in the model for the present work. Next, the numerical results,34
in presence of temperature has been explored. Finally in the last section we have provided the discussions35
on the work along with the concluding remarks.36

2 DESCRIPTION OF THE MODEL

The fiber bundle model consist of a L vertical fibers in between two parallel bars. A force F is applied on37
the bars to create a stress � = F/L per fiber. Each fiber has an individual strength chosen from a threshold38
distribution. The dispersion of such distribution is the measure of disorder introduced in the model. When39
the applied stress crosses any one threshold value that fiber breaks irreversibly and stress of that fiber is40
redistributed within the model; either among all surviving fibers (global load sharing model) or among the41
surviving nearest neighbors only (local load sharing scheme). Due to such redistribution the local stress42
values of some fibers get increased and that might cause an avalanche leading to further breaking and43
avalanches. After a certain number of avalanches either the model breaks completely of comes to a stable44
state where further increment of stress is required to break the next weakest fiber and make the model45
evolve further. This process continues until all fibers are broken. The force applied on the model just before46
the global failure is known as the critical stress Fc for the bundle.47

The model we have adopted for our paper is different from the conventional fiber bundle model from48
the point of view of its ability to create probabilistic rupture events. Temperature is considered to be the49
main parameter that controls such probability. Due to the probabilistic approach the bundle can break at50
any non-zero applied stress as a fiber can rupture even if the external stress is less than its threshold value.51
Besides temperature, such probability will be determined by some other variables like applied stress, local52
stress profile and fraction of broken fibers. We will next discuss the modifications we have done for our53
present work. Let’s assume a certain non-zero stress � is applied on the bundle at temperature T . The54
threshold of an individual fiber is chosen from an uniform distribution with mean at 0.5 and half width �.55
The fibers are broken with a certain probability. For a certain temperature T , the probability at time t for56
the ith fiber to be ruptured will be:57

Pr(t, i) = P 0exp


��th(i)� �(i)

T

�
(1)

where �(i) and �th(i) are respectively the local stress and threshold strength of ith fiber and P 0 is a constant58
and chosen to be unity. At �(i) > �th(i), Pr reaches 1 and the fiber breaks deterministically. At time t = 059
a stress � > 0 is applied on the model creating a non-zero stress profile and hence a non-zero Pr(t = 0).60
This Pr(t = 0) is then compared with a random probability P ⇤(t = 0) chosen in between 0 and 1. If61
Pr(t = 0) > P ⇤(t = 0), that fiber is considered as broken and the stress is redistributed. At the next time62
step (t=1) a different rupture probability is calculated, depending on the new local stress profile and the63
external parameter T . At each time the two probabilities, Pr(t) and P ⇤(t), are compared and the model64
keeps evolving. Eq.1 suggests that Pr increases with temperature T as well as with local stress profile �(i)65
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Figure 2. (a) Distribution of creep time at applied stress � = 0.14 and temperature T = 0.08, 0.1 and
0.12. (b) Distribution of creep time at temperature T = 0.08 and applied stress � = 0.1, 0.12, 0.14 and
0.16. The distributions are fitted to Gamma distributions with parameters (⇢, �, �).

where �, ⇢ and � are respectively the position, shape and scale parameters. A recent study shows similar85
distribution of failure time for a particular limit T ! 0 and � ! �c (39). The distribution for creep time is86
fitted with above distribution for a constant applied stress and different temperature (see Fig.2a) as well as87
for a constant temperature and different applied stresses (see Fig.2b). The fitting parameters for a particular88
set of (�, T ) is shown in the figure in form of (⇢, �, �). Both � and � decreases with increasing applied89
stress or temperature. On the other hand, the parameter ⇢ either increases or remains constant depending90
on whether T or � is increased.91

3.2 Time evolution of strain rate92

Next we have studied the time evolution of the strain rate ✏̇ at a certain temperature T and applied stress �.93
At time t if Lt fibers are intact then the strain ✏ generated in the bundle (with a force F applied on it) at that94

time will be given by F/Lt. The strain rate will then be given by ✏̇ =
d✏

dt
=
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Figure 3. (a) Time evaluation of ✏̇ for different temperatures at � = 0.05 and � = 0.5. We observe ✏̇ ⇠ t�p,
where p is a decreasing function of T . (b) Time evolution ✏̇ for different applied stress at T = 0.04 and
� = 0.5. The exponent does not responses to �. (c) Time evolution ✏̇ for different strength of disorder at
T = 0.05 and � = 0.05. We observe ✏̇ ⇠ (t+ c)�p. Here both c and p are decreasing function of �.
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in fiber bundle model shows that a creep like behavior is observed in the model even in the absence of96
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T = 0.05 and � = 0.05. We observe ✏̇ ⇠ (t+ c)�p. Here both c and p are decreasing function of �.
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however, we cannot find inverse Omori law for tertiary creep
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ṅ / (t+ c)�1

c is a decreasing function of stress, f

c / exp(�f/f⇤)

TH, Narteau, & Shebalin, Scientific Reports 5, 12280 (2015)

the c-value in Omori law: granular avalanche

www.nature.com/scientificreports/

3Scientific RepoRts | 5:12280 | DOi: 10.1038/srep12280

Following the literature of earthquake studies31, we define the magnitude of avalanche as  
M ∫ log10[E(t1) −  E(t2)] +  m0, where m0 =  11 is chosen so that the magnitude of the smallest avalanches is 
approximately zero. Note that, with this definition of magnitude, the GR law reads P(M) ∝  10−2/3bM, as the 
moment magnitude for earthquake31 is defined as Mw ≃  2/3 log10[E(t1) −  E(t2)] +  const. Hereafter, we use 
β ∫ 2/3b instead of b. Other important quantities that characterise an avalanche are the initial stress 
σ σ≡ ( )ˆ t1  and the stress drop σ σ σ∆ ≡ ( ) − ( )ˆ ˆt t1 2 . The definition of the shear stress and other technical 
remarks on avalanches are described in the Methods section.

Magnitude-frequency distribution. First, we discuss the nature of the avalanche magnitude-frequency 
distribution with respect to the two control parameters, the shear rate γ�  and the volume fraction φ. 
Figure 3a,b show these distributions at several shear rates for φ =  0.644 and φ =  0.650, respectively. Both 
parameters control the shape of the magnitude-frequency distribution. For example, one can observe a 
break in scale-invariance for high shear rates at low volume fraction (φ =  0.644 and γ = −� 10 5 in Fig. 3a). 
Similarly, characteristic-size distribution (i.e, peaked at a single magnitude) are observed for high volume 
fraction (Fig.  3b). However, the distribution is independent of the shear rate below a characteristic γ�
-value, which may be interpreted as the inverse of the structural relaxation time. Not surprisingly, this 
threshold value is a decreasing function of the volume fraction. In the volume fraction range investigated 
here, it is approximately 10−6 for φ =  0.644 (Fig. 3a) and 10−8 for φ =  0.650 (Fig. 3b). Hereafter, we dis-
cuss such rate-independent behaviours by choosing sufficiently low shear rates.

Figure  3c shows rate-independent magnitude-frequency distributions at several volume fractions. 
They may be regarded as the GR law in the proximity of a critical volume fraction (φ ≃  0.644), whereas 
they no longer obey the GR law at higher volume fractions. At much lower volume fractions (φ <  0.64), 
we can hardly obtain a sufficient number of avalanches that ensures statistical significance. It should be 
noted that the β-value in the proximity of a critical volume fraction is sensitive to the minute changes in 
volume fraction. The β-value is a decreasing function of the volume fraction ranging from 0.47 to 0.78. 
We obtain the smallest value (0.47) at the largest volume fraction (φ =  0.645) and the largest value (0.78) 

Figure 2. Typical time series of the elastic energy for a constant shear rate γ = −� 10 7 and different 
volume fraction φ: (top) φ =  0.630, (middle) φ =  0.644, (bottom) φ =  0.650. As shown by the normalization 
constant of the vertical axes, the total energy and the energy releases explore different ranges of magnitude 
according to volume fraction. Inset in the middle panel shows how we estimate the energy release associated 
with a single avalanche.
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Next, we analyse how the time constant c depends on the magnitude of the shear stress. We define 
for aftershocks the stress range [σmin, σmax] and select only aftershocks that belong to this stress range 
and the magnitude range ,M M[ ]A

min
A

max . The aftershock rates are shown in Figure 7a, in which the MOL 
(with p =   1) holds clearly and c is a decreasing function of shear stress. We estimate the c-values by fitting 
the data with A/(τ +   c) using the maximum-likelihood method. As shown in Fig. 7b, the c-value has a 

Figure 6. The aftershock decay rate. (a) Occurence rate of magnitude MA ∈  [1, 3] aftershocks for different 
mainshock magnitude ranges and a volume fraction φ =   0.644. The dashed line is proportional to 1/t (i.e., 
the Omori Law). (b) Occurence rate of MA ∈  [1, 3] aftershocks for different volume fractions and magnitude 
MM ∈  [3, 4] mainshocks. (c) Occurence rate of MA  ∈  [2, 4] aftershocks for different volume fractions and 
magnitude MM ∈  [4, 5]. In all cases, the shear rate γ = −� 10 7 and individual aftershocks are stacked according 
to their main shock times to compensate for the small number of events in each sequence. There are at least 
10 mainshocks and 1000 aftershocks in each sequence. Note the time delay before the onset of a power-law 
aftershock decay rate.

Figure 7. Dependency of the aftershock decay rate on the global shear stress. (a) Occurence rate of 
MA ∈  [1, 3] aftershocks for different ranges of shear stress value and a volume fraction φ =   0.644. Aftershocks 
i ∈  {0, 1, 2, 3} are classify according to the global shear stress value σi ∈  [exp(i −   10), exp(i −   9)] at the 
inititation of the avalanches. The time delay before the onset of the power-law decay rate is systematically 
decreasing with the level of stress (i.e., an increasing i-value). (b) Negative dependence of the c-value on 
the global shear stress. Circles: φ =   0.644, MM ∈  [3, 4], and MA ∈  [1, 3]; Squares: φ =   0.645, MM ∈  [3, 4], and 
MA ∈  [1, 3]. Diamonds: φ =   0.644, MM ∈  [2, 3], and MA ∈  [1, 2].
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inititation of the avalanches. The time delay before the onset of the power-law decay rate is systematically 
decreasing with the level of stress (i.e., an increasing i-value). (b) Negative dependence of the c-value on 
the global shear stress. Circles: φ =   0.644, MM ∈  [3, 4], and MA ∈  [1, 3]; Squares: φ =   0.645, MM ∈  [3, 4], and 
MA ∈  [1, 3]. Diamonds: φ =   0.644, MM ∈  [2, 3], and MA ∈  [1, 2].

(same tendency with earthquakes)
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1. An SOC-like mean-field model resembles creep behaviors

2. Omori law and inverse Omori law are reproduced.

3. Exponent is -2 irrespective of the threshold distribution

4. Nonzero c-value is obtained. Larger disorder leads to smaller c-value

summary

due to saddle-node bifurcation for mean-field model

 Nearest-Neighbor models exhibit even larger exponent

5. Thermally-activated rupture reduces the exponent for Omori law
(ongoing work)
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