Physics of Jammed Matter, Yukawa Institute for Theoretical Physics, Kyoto, Japan

Rheology laws in the pressure controlled dense granular system under an oscillatory shear

Daisuke Ishima, Hisao Hayakawa YITP, Kyoto Univ. Oct. 27th, 2018

Introduction

Characteristic properties of granular matters

They have a liquid and solid region.

"https://www.youtube.com/watch?v=50_-zqsgDA4"

In the liquid region we use the viscosity η .

$$\eta := \frac{\sigma_{xy}}{\dot{\gamma}} \qquad \begin{array}{c} \sigma_{xy}: \text{ shear stress} \\ \dot{\gamma}: \text{ shear rate} \end{array}$$

In the solid region we use the shear modulus G.

 $\underline{G} := \frac{\sigma_{xy}}{\gamma} \qquad \gamma: \text{ shear strain}$

Rheology laws

Oscillatory shear

Volume controlled system

Dilatancy exists.

What is an appropriate rheology law?

Discrete element method

Contact force: linear spring and dash pod

$$\vec{f}_{ij} = \left(\vec{f}_{ij,n} + \vec{f}_{ij,t}\right)\Theta(r_{ij} - x_{ij})$$

Normal part

$$\vec{f}_{ij,n} = k_n \xi_{ij} \overrightarrow{n}_{ij} - \eta_n \overrightarrow{v}_{ij,n}$$

Tangential part

$$\vec{f}_{ij,t} = \begin{cases} k_t \zeta_{ij} \vec{t}_{ij} - \eta_t \vec{v}_{ij,t} & (f_{ij,t} < \mu_c f_{ij,n}) \\ \mu_c f_{ij,n} \vec{t}_{ij} & (\text{otherwise}) \end{cases}$$

S. Luding, Granular Matter **10**, 235 (2008).

Normal damping constant

$$\eta_n / \sqrt{mk_n} = 1$$
 (restitution coefficient $\simeq 0.043$)

Tangential spring constant

 $k_t / k_n = 0.25$

Tangential damping constant

$$\eta_t/\eta_n = 0.5$$

Friction coefficient $\mu_c=0\sim 1$

Oscillatory shear system

We explain how to apply oscillatory shear.

Set up of oscillatory shear

In our protocol of oscillatory state, each physical quantity is averaged over 10 cycles after initial 10 cycles.

Scaling laws for storage and loss modulus

G'' has a peak.

M. Otsuki & H. Hayakawa, Phys. Rev. E 95, 062902 (2017).

c.f. *G*'might be scaled by *P* using $P \propto (\phi - \phi_J)$?

M. Otsuki & H. Hayakawa, Phys. Rev. E 80, 011308 (2009).

Influence of friction coefficient

 $\max \tilde{\sigma}(t) \simeq \text{const} \quad (\overline{\gamma}_0 > \overline{\gamma}_{0,c}) \,.$ **The shear stress yields.**

$$\Rightarrow \quad G' = \lim_{\gamma \to \overline{\gamma}_0} \frac{\overline{\sigma}}{\gamma} \propto \overline{\gamma_0}^{-1}$$

Discussion - G'' < 0

G'' < 0 due to the phase delay, but G''_{eff} satisfies the scaling law.

Discussion - Peak of the loss modulus

1×10 **0~1** G'' is constant. 1×10 G'/k_n Coordination number(Z)is constant. 1×10 1×10 1×10⁻² 1×10^{-4} 1×10^{6} 1×10^{4} 1~2 G'' increases. 1×10⁻ Z decreases. The system begins to flow. 1×10 1×10 1×10⁰ 1×10⁻⁴ 1×10^{-2} **2~3** G'' decreases. The contact network is completely broken. N It's easy to flow. * Phase delay exists 1×10^{-4} 1×10⁰ 1×10⁻⁴ $\overline{\gamma_0}$

Discussion - Shear jamming

Otsuki & Hayakawa, arXiv:1810.03846

In our cases

$$G'|_{\phi < \phi_J} > 0.$$

. Shear jamming appears.

Conclusion

We investigate the rheology in the oscillatory shear. <u>Rheology law</u>

- Storage modulus … The scaling laws exist.
- Loss modulus \cdots G'' has a peak.

Shear Jamming

 The dilatancy is related to the Shear Jamming.

Scaling laws in frictional systems

Appendixes

Scaling laws in the frictionless systems

M. Otsuki, H. Hayakawa, Phys. Rev. E 90, 042202 (2014). M. Otsuki, H. Hayakawa, Phys. Rev. E 95, 062902 (2017).

c.f. G' might be scaled by P using $P \propto (\phi - \phi_I)$?

M. Otsuki, H. Hayakawa, Phys. Rev. E 80, 011308 (2009).

Discussion - Shear jamming in the frictionless system

In both cases

$$G'|_{\phi < \phi_J} > 0.$$

∴ Shear jamming appears.

Pressure dependence of $G'_{\rm res}$

$$G'_{\text{res}} := \lim_{\overline{\gamma_0} \searrow 0} G'.$$

$$G'_{\text{res}} \simeq a \log P + b,$$

$$a = 0.04 \pm 0.01,$$

$$b = 0.62 \pm 0.03.$$

$$O_{1} = 0.04 = 0.04$$

$$O_{1} = 0.04$$

$$O_{2} = 0.04$$

$$O_{1} = 0.04$$

$$O_{2} = 0.04$$

$$O_{1} = 0.04$$

$$O_{2} = 0.04$$

$$O_{2} = 0.04$$

$$O_{1} = 0.04$$

$$O_{2} = 0.04$$

$$O$$