LARGE FRICTIONAL DRAG BY SHEAR-INDUCED SOLIDIFICATION OF GRANULAR LAYER

T. FURUTA, S. KUMAR, K. ANKI REDDY, H. NIIYA,

<u>H. KATSURAGI</u>

DEPT. EARTH & ENVIRON. SCI., NAGOYA UNIV.

CENTER FOR TRANSDISCIPLINARY RESARCH, NIIGATA UNIV.

DEPT. CHEM. ENG., IIT GUWAHATI, INDIA

GRANULAR FRICTION

PREVIOUS STUDIES ON $\mu-I$ RHEOLOGY

PENETRATION AND WITHDRAWING

WITH GRANULAR FRICTION

EXPERIMENTAL SETUP

PROTOCOL & MATERIALS

Setup:

Protocol:

- 1. Preparing a glass beads layer
- 2. Making a porous granular layer by air fluidization
- 3. Controlling a compaction degree by vibration
- 4. Measuring packing fraction
- 5. Withdrawing a rod and measuring force

Parameters:

Grain diameter: $D_g = 0.4 - 2.0 \text{ mm}$

Rod diameter: D = 0.3 - 3.2 mm

Size ratio: $D_g/D = 0.13 - 2.7$

Packing fraction: $\phi = 0.58 - 0.62$

Vessel diameter: 51 mm

Initial buried depth: 45 mm

RAW DATA OF FRICTION FORCE

IN STEADY STATE

SIZE DISTRIBUTION OF FORCE DROPS

(IN STEADY REGIME)

FORCE VS PACKING FRACTION

IN STEADY STATE

SOLIDIFIED NORMAL FORCE MODEL

BY SHEAR JAMMING

$$F = \mu N$$

$$F = \mu \kappa \rho g V$$

$$\mu' = \mu \kappa \simeq 0.18 \times 0.5 \simeq 0.1$$

glass - stainless friction (San Jose delta Inc.)

 κ : Janssen parameter

$$F = \mu' \rho g h \pi \left[\left(n D_g + \frac{D}{2} \right)^2 - \left(\frac{D}{2} \right)^2 \right]$$

$$n = \frac{-AD + \sqrt{(AD)^2 + 4AF}}{2AD_g}$$

$$A = \mu' \rho g h \pi$$

DATA COLLAPSE CRITICAL DIVERGENCE

4 fitting parameters, but 2 or 3 are (hopefully) universal...

SUMMARY

- The empirical granular friction law for withdrawing an object from a relatively porous granular layer was experimentally obtained.
- From the experimental and numerical results, a shear-induced solidification could be triggered by the withdrawing.
- Using the obtained empirical law, we can easily estimate the granular frictional resistance force in various situation including probe extraction from regolith layer.