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Vibrational modes in crystals and amorphous solids

Crystals (lattice structure)
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Molecules vibrate around lattice structure
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Vibrational modes are phonons

Amorphous solids (amorphous structure)

Molecules vibrate around amorphous
structure

= Tanguy et al.,
== & EPL 2010

Some modes are spatially heterogeneous
-> These modes are non-phonons




Background: g

Phonons and localized modes in amorphous solids
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Localized
modes

Phonon modes and localized modes
coexist in the low-frequency regime

Mizuno, Shiba, lkeda, PNAS (2017),
Shimada, Mizuno, lkeda, PRE (2018)




Background: A

Phonons and localized modes in amorphous solids
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Mizuno, Shiba, lkeda, PNAS (2017);
", Shimada, Mizuno, |keda, PRE (2018)
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Debye law of Non-Debye law of
phonon modes localized modes



Background: sl
Localized modes show “quasi”-localized vibrations

Vibrational amplitude decays with a power law

— “Quasi”-localized vibrations Lerner and Bouchbinder et al.,
PRL (2016)



Questions:

Nature of localized modes

® How do particles vibrate in the core of localized
modes?

® \What is the size of the core?

® \What is the origin?




Simple model amorphous solid: 7125

Harmonic repulsive potential system

Finite-range, harmonic, repulsive potential
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® This system models granular materials,
emulsions, etc.
® But, we consider this system as the “simplest”
model of glasses

Wyart and co-workers, EPL 2005, PRE 2005, EPL 2010




Simple model amorphous solid: el

Phase diagram

® Temperature is zero -> We study “harmonic” vibrations

® Control parameter is pressure P
® \With lowering P, the system undergoes jamming transition
® P > (0 above jamming, while P = 0 below jamming
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van Hecke, J.Phys.: Condens. Matter (2010)



Simple model amorphous solid: A

MD simulation and vibrational mode analysis

MD simulation
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® Mono-disperse, 3D system
® N=1,000,000 particles
® P is from 0.05 to 0.001

® Quench liquid state configuration to zero
temperature state, T=0, by FIRE algorithm

Vibrational mode analysis

k

® Diagonal Hessian matrix to obtain eigen-frequency w
and eigen-vector ek

® Analyze localized modes below the lowest phonon band



Vibrational energy of localized mode

For a vibrational mode e* (an eigenvector), the energy
between interacting particles i andj is given as
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fij is force between particlesiandj (fij >0 : repulsive)
DeGiuli et al., Soft matter 2014
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Simulation results at P = 0.05

p = 0.05
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van Hecke, J.Phys.: Condens. Matter (2010)



Simulation results at P = 0.05:

Vibrational amplitude vs energy
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Vibrational energy for particle i: 5E,-k - 5 Z (5E,-jf.
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Amplltude in a core.

In the core, vibrational energy is negative
-> vibrational motions are unstable



Simulation results at P = 0.05:
Integrated radial energy distribution function
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Simulation results at P -> 0 (approach to jamming)

Solid phase
Above jamming

van Hecke, J.Phys.: Condens. Matter (2010)



Simulation results at P -> 0 (approach to jamming}?/#°
Integrated radial energy distribution function
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Negative unstable region becomes large with P -> 0




Simulation results at P -> 0 (approach to jamming)é/°

Pressure dependences of two length scales
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Two length scales show a same power-law scaling with P:
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Simulation results at P -> 0 (approach to jamming)*2°

Pressure dependence of characteristic volume

Averaged volume of localized modes: <NPk>k
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Comparison with anomalous modes

® vDOS shows a characteristic plateau above (W=
® Modes at the plateau are called “Anomalous modes”

W x

Localized modes exist

in much lower 102
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frequency regime 10




Comparison with anomalous modes

Anomalous modes are spatlally extended modes:

5| Silbert et al., PRE 2009

However, spatlal correlat|on of dlsplacements shows

) a—1/4
® Characteristic length /. ~ p keda et al.. JCP 2013
® Characteristic volume \/ ~ p=1/2  Sibertetal., PRL 2006

-> Localized modes show the same scaling laws as
ahomalous modes !!!




Comparison with anomalous modes
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Discussion on origin of localized modes: 2"

Introduce “unstressed” system

® Unstressed system = the system with zero interparticle
forces fij = 0 for all the pairs of particles i and j

® Vibrational modes in the unstressed system have higher
vibrational energies than those in the original system
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Discussion on origin of localized modes:  %%9%

Introduce “unstressed” system
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Unstressed system has anomalous modes
but does NOT have localized modes !!!
Mizuno, Shiba, Ikeda, PNAS (2017)



Discussion on origin of localized modes: %%

Theoretical argument for anomalous modes

Anomalous modes in the unstressed system can be

constructed from the localized vibrations with

the length scale (. ~ p~1/%

the volume scale V/ ~ p_1/2 Yan and Wyart, EPL 2016

Anomalous modes
in
the unstressed system

W~ W,y



Discussion on origin of localized modes

Anomalous modes Localized modes
in the unstressed system in the original system

Stressed

_—I?j(u¥)2<0 \/

Localized modes are anomalous modes destabilized
by the second term of vibrational energy fij



. 25/25
Conclusion

® How do particles vibrate in the core of localized
modes?

-> Particles move perpendicularly to bonds U-J-‘
l
® \What is the size of the core?

-> |t shows the characteristic size of anomalous modes that
diverges at the jamming transition

® \What is the origin?

-> Localized modes are the anomalous modes destabilized
by the perpendicular motions in the cores (buckling-like

mechanism) Shimada, Mizuno, Ikeda, Wyart, arXiv:1804.08865



