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2/25Background:
Vibrational modes in crystals and amorphous solids

Crystals (lattice structure) Amorphous solids (amorphous structure)

Molecules vibrate around lattice structure

Vibrational modes are phonons Some modes are spatially heterogeneous
-> These modes are non-phonons

Molecules vibrate around amorphous 
structure

Tanguy et al., 
EPL 2010



3/25Background:
Phonons and localized modes in amorphous solids

Localized
modes

Phonon 
modes

Mizuno, Shiba, Ikeda, PNAS (2017),
Shimada, Mizuno, Ikeda, PRE (2018)

Phonon modes and localized modes 
coexist in the low-frequency regime



4/25Background:
Phonons and localized modes in amorphous solids

Debye law of 
phonon modes

Non-Debye law of 
localized modes

Mizuno, Shiba, Ikeda, PNAS (2017);
Shimada, Mizuno, Ikeda, PRE (2018)



5/25Background:
Localized modes show “quasi”-localized vibrations

Lerner and Bouchbinder et al., 
PRL (2016)

Vibrational amplitude decays with a power law
→ “Quasi”-localized vibrations



6/25Questions:
Nature of localized modes

lHow do particles vibrate in the core of localized 
modes?

lWhat is the size of the core?

lWhat is the origin?



7/25Simple model amorphous solid:
Harmonic repulsive potential system

Finite-range, harmonic, repulsive potential

Quench from liquid state to glass state at T=0 

l This system models granular materials, 
emulsions, etc.

l But, we consider this system as the “simplest” 
model of glasses

Wyart and co-workers, EPL 2005, PRE 2005, EPL 2010



8/25Simple model amorphous solid:
Phase diagram

l Temperature is zero -> We study “harmonic” vibrations
l Control parameter is pressure P
l With lowering P, the system undergoes jamming transition
l P > 0 above jamming, while P = 0 below jamming

van Hecke, J.Phys.: Condens. Matter (2010)

Solid phase
Above jamming

Fluid phase
Below jamming



9/25Simple model amorphous solid:
MD simulation and vibrational mode analysis

l Mono-disperse, 3D system
l N=1,000,000 particles
l P is from 0.05 to 0.001
l Quench liquid state configuration to zero 

temperature state, T=0, by FIRE algorithm

MD simulation

Vibrational mode analysis
l Diagonal Hessian matrix to obtain eigen-frequency      

and eigen-vector
l Analyze localized modes below the lowest phonon band 



10/25
Vibrational energy of localized mode

fij is force between particles i and j (fij >0 : repulsive)
DeGiuli et al., Soft matter 2014

For a vibrational mode        (an eigenvector), the energy 
between interacting particles i and j is given as



11/25
Simulation results at P = 0.05

van Hecke, J.Phys.: Condens. Matter (2010)

Solid phase
Above jamming

Fluid phase
Below jamming



12/25Simulation results at P = 0.05:
Vibrational amplitude vs energy

Vibrational energy for particle i:

In the core, vibrational energy is negative 
-> vibrational motions are unstable



13/25Simulation results at P = 0.05:
Integrated radial energy distribution function

Partial system is unstable up to 



14/25
Simulation results at P -> 0 (approach to jamming)

van Hecke, J.Phys.: Condens. Matter (2010)

Solid phase
Above jamming

Fluid phase
Below jamming



15/25Simulation results at P -> 0 (approach to jamming):
Integrated radial energy distribution function

Negative unstable region becomes large with P -> 0



16/25Simulation results at P -> 0 (approach to jamming):
Pressure dependences of two length scales

Two length scales show a same power-law scaling with P:



17/25Simulation results at P -> 0 (approach to jamming):
Pressure dependence of characteristic volume

Averaged volume of localized modes:

: participation ratio



18/25
Comparison with anomalous modes

10-2

10-1

100

10-2 10-1 100

a

ω

g(
ω
)

ω∗ ω∗ ω∗

l vDOS shows a characteristic plateau above
l Modes at the plateau are called “Anomalous modes”

generically occur at e s 0. (iii) The proposed framework allows
one to classify vibrational and transport properties in various
glasses, such as silica and covalent networks, based on their
structure, as shown in the phase diagram of Fig. 2. As we will
see, this comparison is rich and non-trivial. We argue that the
two-parameter theory of linear vibrational properties in amor-
phous solids we propose, while still reasonably simple, is
necessary to obtain a framework unifying observations in
systems as different as covalent networks and colloidal glasses.

In this work we extend the effective medium approximation
to describe at a microscopic level systems under compression,
where contacts carry a force. Although we provide a simplied
description where all contacts have the same stiffness, our
formalism is readily extendable to heterogeneous contacts.53

Our simplied description can, however, capture the presence
of weak interactions. Our central results are:

(1) Our effective medium approximation captures the phase
diagram of Fig. 1a. At a compressive strain ec ! (z " zc)2 an
instability occurs.

(2) The shear modulus remains nite at elastic instability,
and simply decreases by a factor of 2 as e is increased toward ec.

(3) We can compute four frequencies: the onset frequency
u0 !

ffiffiffiffiffiffiffiffiffiffiffiffi
ec " e

p
where strongly-scattered modes appear in the

vibrational spectrum, the pressure-independent frequency u*

where the density of states displays a plateau, the boson peak
frequency uBP ! ffiffiffiffiffiffiffiffiffiffiffi

u0u*
p

, and the Ioffe–Regel frequency uIR ! u*

where scattering length and wavelength become equal. These
four frequencies are nearly identical only for e # ec or negative
e, and display three distinct scalings as e / ec, as shown in
Fig. 1b.

(4) The sound attenuation G(u)! u4 for u < u0 and G(u)! u2

for u0 < u < u*.
(5) The speed of sound is minimal at u0.
(6) Our analysis indicates that to infer transport properties

like diffusivity from scattering data, it is more convenient to
analyze the dynamical structure factor at xed u rather than at

xed wave number q. This approach allows one to compute a
frequency-dependent speed of sound n(u) and scattering length
‘s(u). We argue that above the boson peak, these quantities
differ signicantly from the approximation used in the litera-
ture to extract them. In the intermediate and high frequency
regime, capturing correctly these quantities is important to
describe transport. Their scaling with frequency is predicted.

(7) We build a theory of transport that applies to non-local-
ized modes. In particular we nd that the mode diffusivity does
not depend on frequency as soon as the density of states devi-
ates from the Debye behaviour (i.e. for u > u0), in agreement
with previous numerical observations in sphere packings.6,7

(8) The length scale below which continuum elasticity breaks
down is ‘c ! u0

"1/2, as shown in a companion paper.54

Results 2, 4 and 5 have been previously obtained in different
models, see e.g. ref. 29 and 55. These approaches however
assume that the boson peak stems from spatial uctuations in
elasticity, at odds with our work.

Finally, we compare these predictions to experimental and
numerical observations in glasses and particle packings, where
many of our scaling results agree with observations. We discuss
where certain glasses, such as silica, chalcogenides, colloids
and so particles are placed in our phase diagram, allowing us
to make predictions on their transport properties. Overall, our
approach unies sound attenuation, transport, elastic length
scales (discussed in a companion paper) and the boson peak in
a framework where disorder is secondary in controlling the
peak amplitude, in agreement with observations in many
materials.

2 Model
2.1 Ingredients to be incorporated

We seek to compute how salient aspects of the microscopic
structure of glasses affect their vibrational properties. The
following features have been argued to control the boson peak
in a variety of materials:34,36,41,56

(i) The connectedness z, or more precisely the excess
connectedness dz h z " zc with respect to the minimal
connectedness zc required for rigidity. The notion that struc-
tures must be sufficiently connected to bemechanically stable is
fundamental in engineering since the work of Maxwell.57 For an
elastic network, for example as shown in Fig. 3a, the connect-
edness is simply the coordination, i.e. the average number of
springs per node. In a packing of purely repulsive, short-range
particles, it is the average number of contacts per particle. For
radial interactions in general, Maxwell showed57 that zc ¼2d.
When interactions have a long-range component such as in a
Lennard-Jones glass, a distinction must be made between
strongly and weakly interacting particles,36,56 which allows to
dene z as the coordination of the network of strong interac-
tions. In general, the denition of connectedness depends on
the system. For example, for generic covalent networks, z is the
valence; if elements of different valences are present, z can be
changed continuously by monitoring the composition. For such
multi-body interactions one nds58 zc ¼2.4.

Fig. 2 Schematic placement of amorphous solids (dashed lines) in
stability diagram, where e includes the effect of weak interactions, as
discussed in the main text. In the red region (1 " e/ec # 1), vibrational
properties are characterized by several distinct frequency scales, as
shown in Fig. 1b, and proximity to elastic instability strongly affects
transport. In the blue region, there is a single frequency scale. In the
green region, there is a gap in the density of vibrational states at
intermediate frequency. No solids can lie in the white region, which is
unstable.

5630 | Soft Matter, 2014, 10, 5628–5644 This journal is © The Royal Society of Chemistry 2014
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Localized modes exist 
in much lower 
frequency regime



19/25
Comparison with anomalous modes

However, spatial correlation of displacements shows
l Characteristic length
l Characteristic volume

Anomalous modes are spatially extended modes:

Silbert et al., PRE 2009

Ikeda et al., JCP 2013
Silbert et al., PRL 2006

-> Localized modes show the same scaling laws as 
anomalous modes !!!



20/25
Comparison with anomalous modes

Anomalous modes
(higher frequency regime)

Localized modes
(lower frequency regime)

generically occur at e s 0. (iii) The proposed framework allows
one to classify vibrational and transport properties in various
glasses, such as silica and covalent networks, based on their
structure, as shown in the phase diagram of Fig. 2. As we will
see, this comparison is rich and non-trivial. We argue that the
two-parameter theory of linear vibrational properties in amor-
phous solids we propose, while still reasonably simple, is
necessary to obtain a framework unifying observations in
systems as different as covalent networks and colloidal glasses.

In this work we extend the effective medium approximation
to describe at a microscopic level systems under compression,
where contacts carry a force. Although we provide a simplied
description where all contacts have the same stiffness, our
formalism is readily extendable to heterogeneous contacts.53

Our simplied description can, however, capture the presence
of weak interactions. Our central results are:

(1) Our effective medium approximation captures the phase
diagram of Fig. 1a. At a compressive strain ec ! (z " zc)2 an
instability occurs.

(2) The shear modulus remains nite at elastic instability,
and simply decreases by a factor of 2 as e is increased toward ec.

(3) We can compute four frequencies: the onset frequency
u0 !

ffiffiffiffiffiffiffiffiffiffiffiffi
ec " e

p
where strongly-scattered modes appear in the

vibrational spectrum, the pressure-independent frequency u*

where the density of states displays a plateau, the boson peak
frequency uBP ! ffiffiffiffiffiffiffiffiffiffiffi

u0u*
p

, and the Ioffe–Regel frequency uIR ! u*

where scattering length and wavelength become equal. These
four frequencies are nearly identical only for e # ec or negative
e, and display three distinct scalings as e / ec, as shown in
Fig. 1b.

(4) The sound attenuation G(u)! u4 for u < u0 and G(u)! u2

for u0 < u < u*.
(5) The speed of sound is minimal at u0.
(6) Our analysis indicates that to infer transport properties

like diffusivity from scattering data, it is more convenient to
analyze the dynamical structure factor at xed u rather than at

xed wave number q. This approach allows one to compute a
frequency-dependent speed of sound n(u) and scattering length
‘s(u). We argue that above the boson peak, these quantities
differ signicantly from the approximation used in the litera-
ture to extract them. In the intermediate and high frequency
regime, capturing correctly these quantities is important to
describe transport. Their scaling with frequency is predicted.

(7) We build a theory of transport that applies to non-local-
ized modes. In particular we nd that the mode diffusivity does
not depend on frequency as soon as the density of states devi-
ates from the Debye behaviour (i.e. for u > u0), in agreement
with previous numerical observations in sphere packings.6,7

(8) The length scale below which continuum elasticity breaks
down is ‘c ! u0

"1/2, as shown in a companion paper.54

Results 2, 4 and 5 have been previously obtained in different
models, see e.g. ref. 29 and 55. These approaches however
assume that the boson peak stems from spatial uctuations in
elasticity, at odds with our work.

Finally, we compare these predictions to experimental and
numerical observations in glasses and particle packings, where
many of our scaling results agree with observations. We discuss
where certain glasses, such as silica, chalcogenides, colloids
and so particles are placed in our phase diagram, allowing us
to make predictions on their transport properties. Overall, our
approach unies sound attenuation, transport, elastic length
scales (discussed in a companion paper) and the boson peak in
a framework where disorder is secondary in controlling the
peak amplitude, in agreement with observations in many
materials.

2 Model
2.1 Ingredients to be incorporated

We seek to compute how salient aspects of the microscopic
structure of glasses affect their vibrational properties. The
following features have been argued to control the boson peak
in a variety of materials:34,36,41,56

(i) The connectedness z, or more precisely the excess
connectedness dz h z " zc with respect to the minimal
connectedness zc required for rigidity. The notion that struc-
tures must be sufficiently connected to bemechanically stable is
fundamental in engineering since the work of Maxwell.57 For an
elastic network, for example as shown in Fig. 3a, the connect-
edness is simply the coordination, i.e. the average number of
springs per node. In a packing of purely repulsive, short-range
particles, it is the average number of contacts per particle. For
radial interactions in general, Maxwell showed57 that zc ¼2d.
When interactions have a long-range component such as in a
Lennard-Jones glass, a distinction must be made between
strongly and weakly interacting particles,36,56 which allows to
dene z as the coordination of the network of strong interac-
tions. In general, the denition of connectedness depends on
the system. For example, for generic covalent networks, z is the
valence; if elements of different valences are present, z can be
changed continuously by monitoring the composition. For such
multi-body interactions one nds58 zc ¼2.4.

Fig. 2 Schematic placement of amorphous solids (dashed lines) in
stability diagram, where e includes the effect of weak interactions, as
discussed in the main text. In the red region (1 " e/ec # 1), vibrational
properties are characterized by several distinct frequency scales, as
shown in Fig. 1b, and proximity to elastic instability strongly affects
transport. In the blue region, there is a single frequency scale. In the
green region, there is a gap in the density of vibrational states at
intermediate frequency. No solids can lie in the white region, which is
unstable.

5630 | Soft Matter, 2014, 10, 5628–5644 This journal is © The Royal Society of Chemistry 2014
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21/25Discussion on origin of localized modes:
Introduce “unstressed” system

l Unstressed system = the system with zero interparticle 
forces fij = 0 for all the pairs of particles i and j

l Vibrational modes in the unstressed system have higher
vibrational energies than those in the original system



22/25Discussion on origin of localized modes:
Introduce “unstressed” system

Anomalous 
modes

Localized 
modes Unstressed 

system

Unstressed system has anomalous modes 
but does NOT have localized modes !!!

P = 0.05

Mizuno, Shiba, Ikeda, PNAS (2017)



23/25Discussion on origin of localized modes:
Theoretical argument for anomalous modes

Yan and Wyart, EPL 2016

Anomalous modes in the unstressed system can be 
constructed from the localized vibrations with 
the length scale
the volume scale

Anomalous modes
in

the unstressed system 



24/25
Discussion on origin of localized modes

Localized modes are anomalous modes destabilized 
by the second term of vibrational energy fij

Anomalous modes
in the unstressed system

Localized modes
in the original system



25/25
Conclusion

lHow do particles vibrate in the core of localized 
modes?

-> Particles move perpendicularly to bonds

lWhat is the size of the core?
-> It shows the characteristic size of anomalous modes that 
diverges at the jamming transition

lWhat is the origin?
-> Localized modes are the anomalous modes destabilized 
by the perpendicular motions in the cores (buckling-like 
mechanism) Shimada, Mizuno, Ikeda, Wyart, arXiv:1804.08865


