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Jamming Transition

» Emergence of rigidity in macroscopic disordered materials
ex.) Foams, emulsions, colloids, pastes and granular media

» Second-order phase transition-like features have been pointed out []
*one example will be explained in detail later

[2] Foams BIlENGE [4] Granular Matter

[1] Dinkgreve, Paredes, Michels and Bonn, Phys. Rev. E 92, 012305 (2015)
[2] https://atgirl.com/

[3] https://ws-plan.com/

[4] https://ja.wikipedia.org/wiki/




- Mean field and renormalization group theory approach -

Avalanche Dynamics in Granular Flow

'Solid' (Mode switching between
power law and quasiperiodic
avalanche statistics)

(Small avalanches)
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» ¢ = J/(J + K;): a constant of order unity
» o therescaled packing fraction ®/®,,,, (=~ ¢@/@y)

» ¢ difference between effective static and dynamic friction

Dahmen, Ben-Zion and Uhl, Nature Physics 7, 554 (2011)




Fluctuations around Jamming Transition

- Mean field and renormalization group theory approach -

Avalanche Dynamics in Granular Flow

Cutoffw ;,~ (1-vc)

Decreasing v

100 1,000 10,000
Avalanche slip size s

» Power-law decay of the avalanche size distribution
» Power-law of the power spectrum of the total slip rate

» Cutoff values are also prediccted

Dahmen, Ben-Zion and Uhl, Nature Physics 7, 554 (2011)




System Setups




Repulsive Interaction with Dissipation
- Linear spring-dashpod model -

fi = { - <ksCij — néij) Fi (£ >0)
y O

(otherwise)
Gy = 5 (di +dj) =1y

(ks :spring constant, # : damping coefficient)

005~ Q0
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L)

P Frictionless system




Macroscopic Mechanical Response: Shear Stress

Contact term only
0 =(3(00 +0u))

Oap = Ll_s 2 Z#iﬁ'ja”ljﬂ
(aaﬁ S {X,y,Z} and l,.] S {192,N})

Dense system Dilute system
Shear Shear
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Elongational Direction

Comp1 essional Du ection
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Positive value (can be) Negative value

P Systems are three dimensional




Results




Flow Curves
Mechanical response to the external shear
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Analogy to critical phenomena ...
» The control parameter: volume fraction ¢
(inverse temperature /3 in the Ising model)

P The external field: shear rate y

(magnetic field 4 in the Ising model)

» The order parameter: average shear stress (o)




Flow Curves

Data collapse by critical scaling!']

dilute

unjam
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P Scaling by the distance from the critical point | — ¢
gives distinct : below and above ¢,

P The critical point is determined as ¢ ~ 0.6448

[1] Dinkgreve, Paredes, Michels and Bonn, Phys. Rev. E 92, 012305 (2015)
Bonn, Denn, Berthier, Divoux and Manneville, Rev. Mod. Phys. 89, 035005 (2017)
etc.




Stress-Strain Curves
Blow the jamming point ¢ = 0.63 < @;

Fluctuations around zero

Fluctuations with
very big positive spikes

Slip avalanche-like
sudden drops




Avalanche Theory for Granular Flows 1

Avalanche size distribution

Cutoff s, ~(-vc) 2

Decreasing v

100 1,000 10,000
Avalanche slip size s

» Power law decay (~ s~ 1) with an exponential cutoff

» The cutoff avalanche size scales as (1 — UC)_2

Dahmen, Ben-Zion and Uhl, Nature Physics 7, 554 (2011)




Stress Drop Distribution

Avalanche size distribution in the simulation (y = 107°)

dilute dense

» Qualitative behavior is different from the theory
» Power-law behavior is observed (1]

[1] Hatano, Narteau and Shebalin, Sci. Rep. 5, 12280 (2015)




Why Only at the Critical Point?

Assumptions made by the theory ']

1. Steady State

2. High Density
(force chain percolation)

3. Isotropy and Homogeneity

4, Statistical Properties

[1] Dahmen, Ben-Zion and Uhl, Nature Physics 7, 554 (2011)




Anomalies at the Critical Point
Everything becomes homogeneous

e Delta function-like first peak in g(r) "

e Vanishing elastic heterogeneities [

e Hyperuniformity 2!

Shear modulus

0.02 0.04 0.06 0.08 0.
am

(2]

[1]1 O'Hern, et al., Phys. Rev. E 68, 011306 (2003)
[2] Mizuno, Silbert and Sperl, Phys. Rev. Lett. 116, 068302 (2016)
[3] Berthier, et al., Phys. Rev. Lett. 106, 120601 (2011)




For Reference ..
The stress probability distribution

» Below: Skewed and broad with negative values
» Around critical: Skewed and broad starting from zero

» Above: Close to Gaussian around the average




For Reference ... 2

The standard deviation of stress ¥ = ((02) — {(0)?

)O.S

P Distinct peak around the critical point ¢




Avalanche Theory for Granular Flows 2
Power spectrum of the total slip rate (~ the stress fluctuation)

Cutoffw ,~ (1-vo)

Decreasing v

» Crossover from plateau to power-law decay (~ @~?)
» Cutoff frequency scalesas ~ (1 — ve) ~ |y — ¢|
> Sca|eS as ~ (1 —_ VC)_z ~ |€0J _ g0|—2

Dahmen, Ben-Zion and Uhl, Nature Physics 7, 554 (2011)




Power Spectrum of Stress Fluctuations
Another theoretical prediction

P(w) = 66%(w), bo(w) = / expiwt(o(t) — (o))

» Qualitative behaviors partly obey theory robustly

(from plateau to power-law with ¢ =2)
(cutoff frequency does ot depend on )

» Below critical point, there are two regimes




Power Spectrum of Stress Fluctuations

External field dependence

» Qualitative behaviors are still very robust

» The threshold between the below and transient
regime becomes small




Scaling by the Volume Fraction ( ®j)
The data above jamming point ¢ < @;

v=16 '\‘; 7 v=20.5
py = 0.6448 i 1013 py = 0.6448

107° 10!
w = 2m/(t/t)

» The critical value is constant

» The exponents are




Scaling by the Volume Fraction ( ®5)
The data below jamming point ¢ < ¢y

Q

v=—2 M‘\\\ v =—0.8 ‘\ v=-03
by = 0.6448 ¥ py = 0.6448 Y )16 py = 0.6448
2 . ¥ i

1073 10!
w=2m/(t/ty)

» The critical value is constant

» The exponents are




Crossover of the Critical Exponent
y dependent critical exponent

Theoretical Prediction

—UVhelow

» Consistent with theory!!! for small y

(if the densest possible packing ®,,,., in the theory is ¢y)

max

» Cross over between different universality class?

Dahmen, Ben-Zion and Uhl, Nature Physics 7, 554 (2011)




Scaling by the shear rate

Rescale of the frequency alone

» Data collapse only in the vicinity of the critical point

» The scaling exponent is unity




"Phase" Diagram

At least three different regimes

transient above

» MFT corresponds to the below regime




Meaning of Regimes in Fluctuations?

Differences only in excited states

Control
parameter

» Can be reflected in dynamics (fluctuations)
under external field




Summary
- what are done in this work -

Studied the fluctuations in stress response
Many features reveal there are

MFT captures the properties below ¢y very well




Future Problems
- Issues to be tackled -

0 Dimensionality dependence (studies in 2D)
O Finite size effects

0 Effects of tangential friction between particles




THE END

Thank You for Your Kind Attention!!




Appendix




Steady simple shear
- with Lees-Edwards boundary condition -

Fi =u;
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Standard BC - - ‘ees—Edwards BC

» Macroscopic variables will be studied




Parameters

50% : 50% binary mixture da = landdg = 1.4

Number of particles NERIY
Shear rate Jim = 10~7 — 102
Mean volume fraction Q)(qozc 9/50_64?43
Spring constant ke =2
Viscosity n=2
e=20

Restitution Coefficient
(contact overdamp)




Theory vs. Numerical Experiments

Consistency lies below the critical point
,.'y — 10—6
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» The theory is based on the assumption !
» Consistent with the simulation results

[1] Dahmen, Ben-Zion and Uhl, Nature Physics 7, 554 (2011)




