Fluctuations in Mechanical Response of Dense Granular System to External Shear Flow

MathAM-OIL, AIST-Tohoku U

Norihiro Oyama

WPI-Advanced Institute for Material Research, Tohoku University Kuniyasu Saitoh

Oct. 26 2018

Introduction

Jamming Transition

Emergence of rigidity in macroscopic disordered materials ex.) Foams, emulsions, colloids, pastes and granular media

Second-order phase transition-like features have been pointed out ^[1] *one example will be explained in detail later

[1] Dinkgreve, Paredes, Michels and Bonn, Phys. Rev. E 92, 012305 (2015)
 [2] https://atgirl.com/
 [3] https://ws-plan.com/
 [4] https://ja.wikipedia.org/wiki/

- Mean field and renormalization group theory approach -

Avalanche Dynamics in Granular Flow

- $c \equiv J/(J + K_L)$: a constant of order unity
- ν : the rescaled packing fraction $\Phi/\Phi_{\rm max}(\simeq \varphi/\varphi_{\rm J})$
- ϵ : difference between effective static and dynamic friction

Dahmen, Ben-Zion and Uhl, Nature Physics 7, 554 (2011)

Fluctuations around Jamming Transition

- Mean field and renormalization group theory approach -

Avalanche Dynamics in Granular Flow

Power-law decay of the avalanche size distribution

- Power-law of the power spectrum of the total slip rate
- Cutoff values are also prediccted

Dahmen, Ben-Zion and Uhl, Nature Physics 7, 554 (2011)

Repulsive Interaction with Dissipation - Linear spring-dashpod model -

$$\boldsymbol{f}_{ij} = \begin{cases} -\left(k_{s}\zeta_{ij} - \eta\dot{\zeta}_{ij}\right)\tilde{\boldsymbol{r}}_{ij} & (\zeta_{ij} > 0) \\ 0 & (\text{otherwise}) \end{cases}$$

$$\zeta_{ij} = \frac{1}{2} \left(d_i + d_j \right) - r_{ij}$$

(k_s :spring constant, η : damping coefficient)

Macroscopic Mechanical Response: Shear Stress

Contact term only $\sigma = \left\langle \frac{1}{2} \left(\sigma_{xy} + \sigma_{yx} \right) \right\rangle$ $\sigma_{\alpha\beta} = \frac{1}{L^3} \sum_{i} \sum_{j \neq i} f_{ij\alpha} r_{ij\beta}$

 $(\alpha, \beta \in \{x, y, z\} \text{ and } i, j \in \{1, 2, \dots N\})$

Flow Curves

Mechanical response to the external shear

Analogy to critical phenomena ...

- The control parameter: volume fraction φ (inverse temperature β in the Ising model)
- The external field: shear rate $\dot{\gamma}$ (magnetic field *h* in the Ising model)
- The order parameter: average shear stress $\langle \sigma \rangle$

Flow Curves

Data collapse by critical scaling^[1]

Scaling by the distance from the critical point $|\varphi - \varphi_J|$ gives distinct two branches: below and above φ_J

• The critical point is determined as $\varphi \simeq 0.6448$

[1] Dinkgreve, Paredes, Michels and Bonn, *Phys. Rev. E* **92**, 012305 (2015) Bonn, Denn, Berthier, Divoux and Manneville, *Rev. Mod. Phys.* **89**, 035005 (2017) etc.

Stress-Strain Curves

Blow the jamming point $\, \varphi = 0.63 < \varphi_{ m J}$

Close to the jamming point $\overline{\varphi} = 0.64 pprox arphi_{ m J}$

Above the jamming point $\overline{\varphi} = 0.65 > \varphi_{\rm J}$

Avalanche Theory for Granular Flows 1

Avalanche size distribution

Power law decay (~ s^{-1.5}) with an exponential cutoff
 The cutoff avalanche size scales as (1 - νc)⁻²

Dahmen, Ben-Zion and Uhl, *Nature Physics* 7, 554 (2011)

Stress Drop Distribution

Avalanche size distribution in the simulation ($\dot{\gamma} = 10^{-6}$)

Qualitative behavior is different from the theory
 Power-law behavior is observed only around φ₁ ^[1]

[1] Hatano, Narteau and Shebalin, Sci. Rep. 5, 12280 (2015)

Why Only at the Critical Point?

Assumptions made by the theory ^[1]

1. Steady State

- 2. High Density (force chain percolation)
- 3. Isotropy and Homogeneity
- 4. Statistical Properties

[1] Dahmen, Ben-Zion and Uhl, Nature Physics 7, 554 (2011)

Anomalies at the Critical Point

Everything becomes homogeneous

- Delta function-like first peak in g(r) ^[1]
- Vanishing elastic heterogeneities ^[2]
- Hyperuniformity^[3]

[1] O'Hern, *et al., Phys. Rev. E* **68**, 011306 (2003) [2] Mizuno, Silbert and Sperl, *Phys. Rev. Lett.* **116**, 068302 (2016) [3] Berthier, *et al., Phys. Rev. Lett.* **106**, 120601 (2011)

For Reference ...

The stress probability distribution

Below: Skewed and broad with negative values

- Around critical: Skewed and broad starting from zero
- Above: Close to Gaussian around the average

For Reference ... 2

The standard deviation of stress $\Sigma \equiv \left(\langle \sigma^2 \rangle - \langle \sigma \rangle^2 \right)^{0.5}$

• Distinct peak around the critical point φ_{J}

Avalanche Theory for Granular Flows 2

Power spectrum of the total slip rate (\simeq the stress fluctuation)

Crossover from plateau to power-law decay (≃ ω⁻²)
 Cutoff frequency scales as ~ (1 − νc) ≃ |φ_J − φ|
 Height of plateau scales as ~ (1 − νc)⁻² ≃ |φ_J − φ|⁻²

Dahmen, Ben-Zion and Uhl, *Nature Physics* 7, 554 (2011)

Power Spectrum of Stress Fluctuations

Another theoretical prediction $P(\omega) = \delta \sigma^2(\omega), \quad \delta \sigma(\omega) = \int \exp i\omega t(\sigma(t) - \langle \sigma \rangle)$

 Qualitative behaviors partly obey theory robustly (from plateau to power-law with ω⁻²) (cutoff frequency does not depend on φ)

Below critical point, there are two regimes

Power Spectrum of Stress Fluctuations

External field dependence

Qualitative behaviors are still very robust

The threshold between the below and transient regime becomes small

Scaling by the Volume Fraction (above φ_{J})

The data above jamming point $\varphi < \varphi_{\rm J}$

The critical value is constant

The exponents are positive

Scaling by the Volume Fraction (below $\phi_{\rm J}$)

The data below jamming point $\varphi < \varphi_{\rm J}$

The critical value is constant

The exponents are negative

Crossover of the Critical Exponent

 $\dot{\gamma}$ dependent critical exponent

- Consistent with theory^[1] for small $\dot{\gamma}$ (if the densest possible packing Φ_{max} in the theory is φ_{J})
- Cross over between different universality class?

Dahmen, Ben-Zion and Uhl, Nature Physics 7, 554 (2011)

Scaling by the shear rate

Rescale of the frequency alone

Data collapse only in the vicinity of the critical point

The scaling exponent is unity

"Phase" Diagram

At least three different regimes

MFT corresponds to the below regime

Meaning of Regimes in Fluctuations?

Differences only in excited states

Can be reflected in dynamics (fluctuations) under external field

- what are done in this work -

- Studied the fluctuations in stress response
- ☑ Many features reveal there are three regimes
- \square MFT captures the properties below $\varphi_{\rm J}$ very well

Future Problems - Issues to be tackled -

□ Dimensionality dependence (studies in 2D)

 \Box Finite size effects

□ Effects of tangential friction between particles

THE END Thank You for Your Kind Attention!!

Appendix

Steady simple shear - with Lees-Edwards boundary condition -

$$\dot{r}_i = u_i = \delta u_i + \dot{\gamma}_{xy} y_i \tilde{e}_y$$

 $\delta \dot{u}_i = \frac{1}{m} \sum_{i \neq i} f_{ij}$

Macroscopic variables will be studied

Parameters

50% : 50% binary mixture	$d_{\rm A}=1$ and $d_{\rm B}=1.4$
Number of particles	N = 1024
Shear rate	$\dot{\gamma}t_{\rm m} = 10^{-7} - 10^{-2}$
Mean volume fraction	$arphi=0.5-0.7$ ($arphi_{ m c}\sim 0.644$)
Spring constant	$k_{\rm s}=2$
Viscosity	$\eta = 2$
Restitution Coefficient	e = 0 (contact overdamp)

Theory vs. Numerical Experiments

Consistency lies below the critical point

The theory is based on the solid state assumption ^[1]

• Consistent with the simulation results under $\varphi_{\rm J}$

[1] Dahmen, Ben-Zion and Uhl, Nature Physics 7, 554 (2011)