

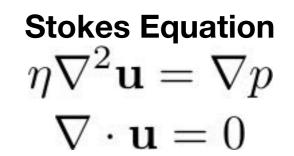
Rheology of dense suspensions under oscillatory shear with lattice Boltzmann Method

Pradipto and Hisao Hayakawa

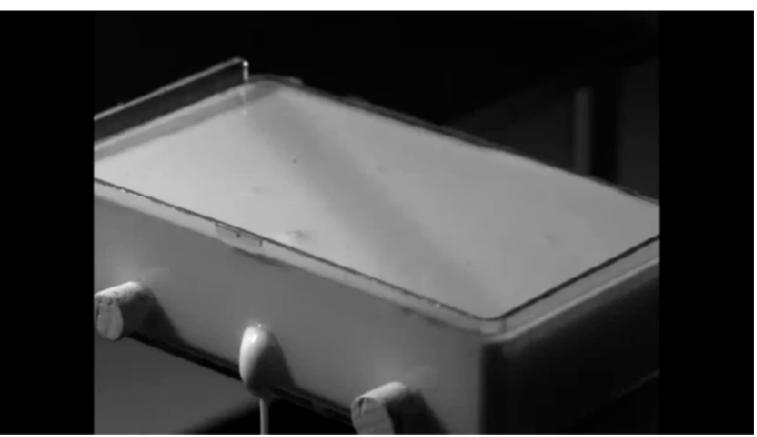
Yukawa Institute for Theoretical Physics, Kyoto University Physics of Jammed Matter @YITP 10/27/2018

Suspensions

particle radius



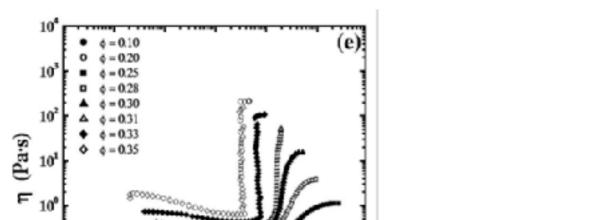
Discontinuous shear thickening!



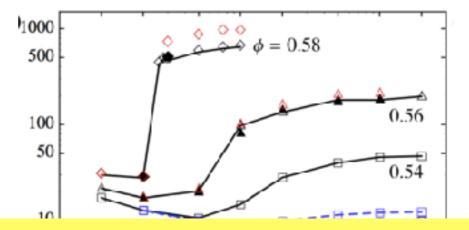
source: https://www.youtube.com/watch?v=hP88C-_LgnE&list=PLVjiIPzFTOLpxiwdwrFuPYSIBpr6jFm32

STEADY SHEAR

Experimental Observation:

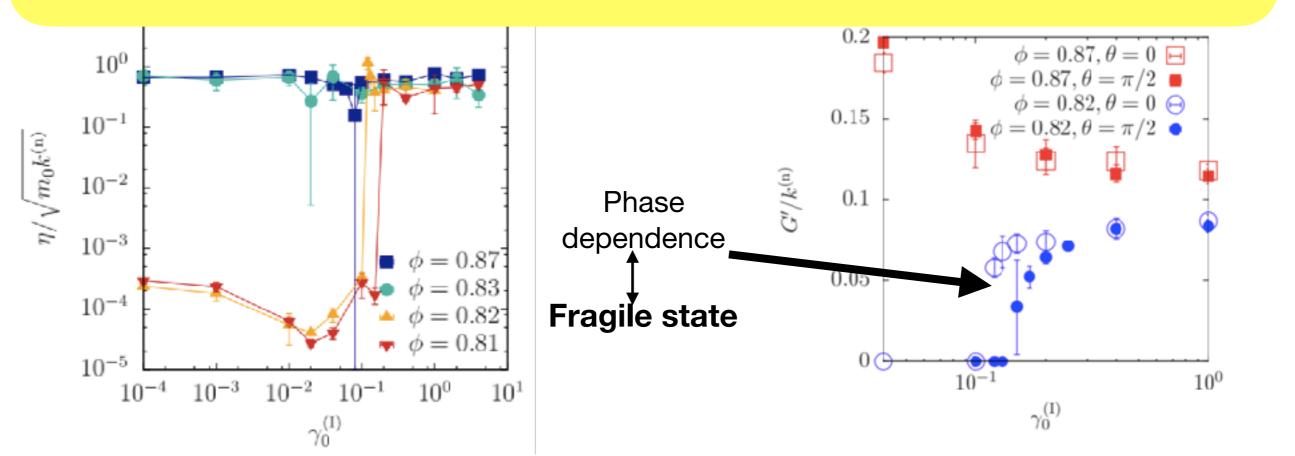


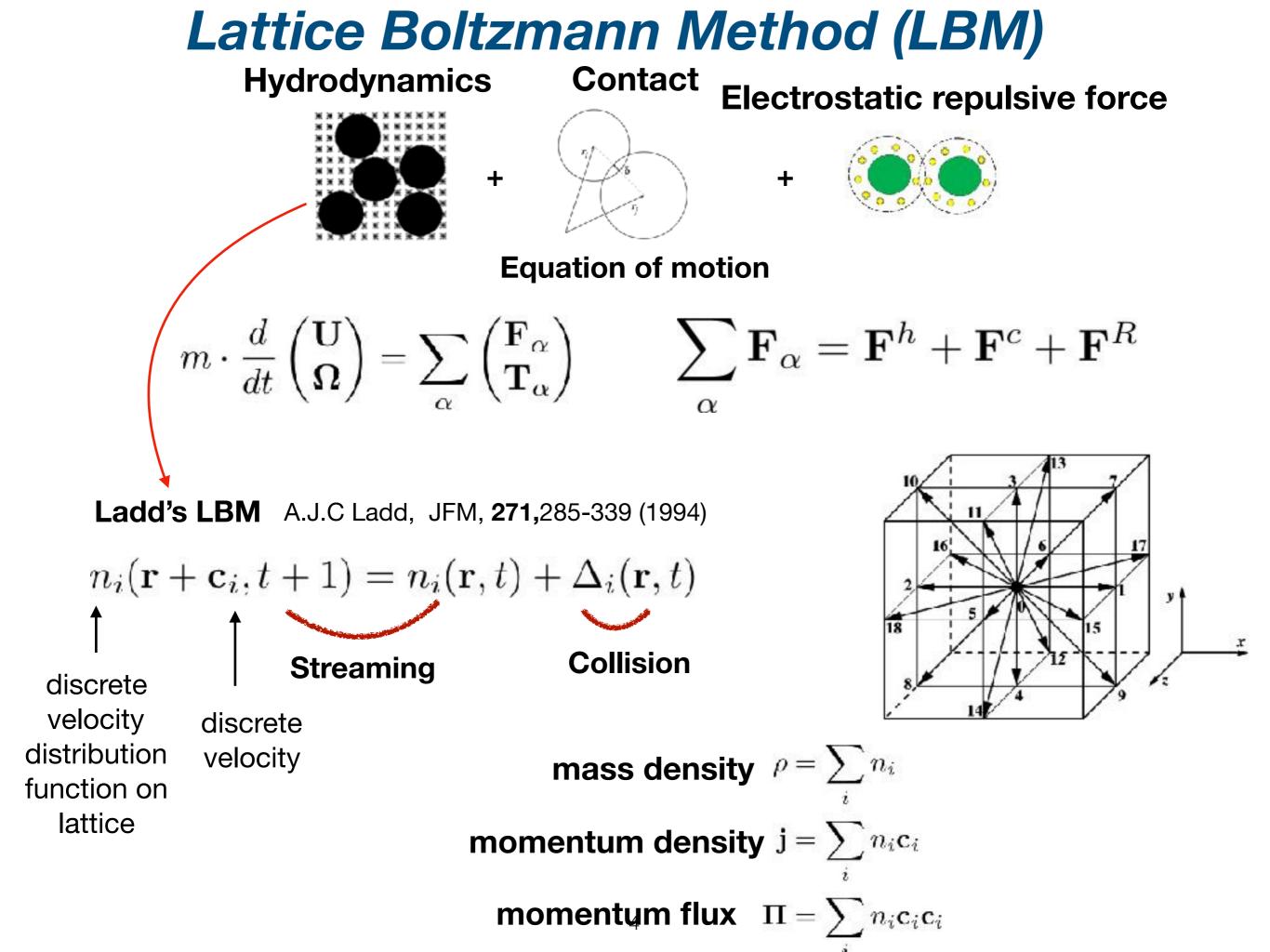
Numerical Simulations:



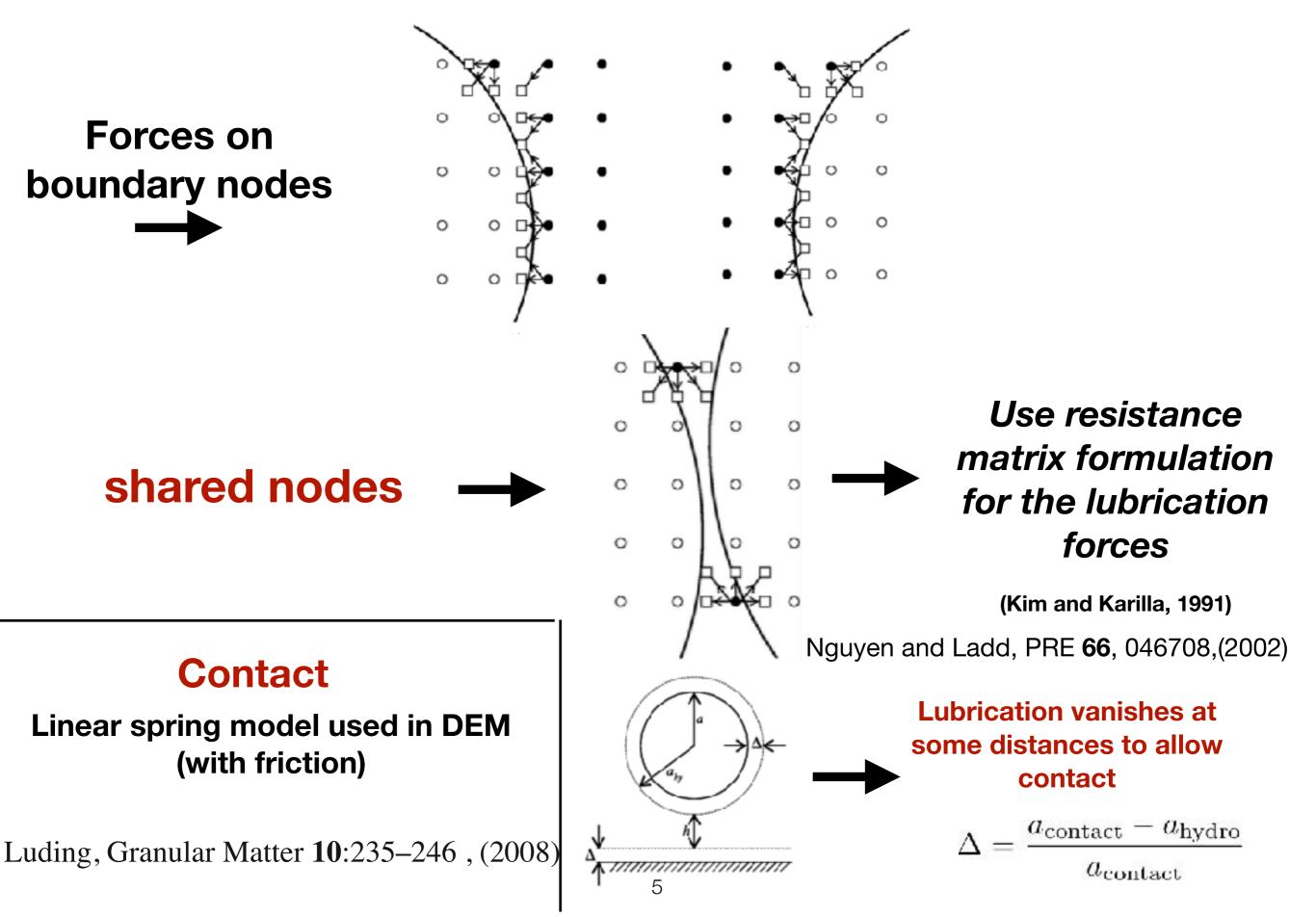
З

WHAT HAPPEN IF WE IMPOSE OSCILLATORY SHEAR TO SUSPENSIONS?



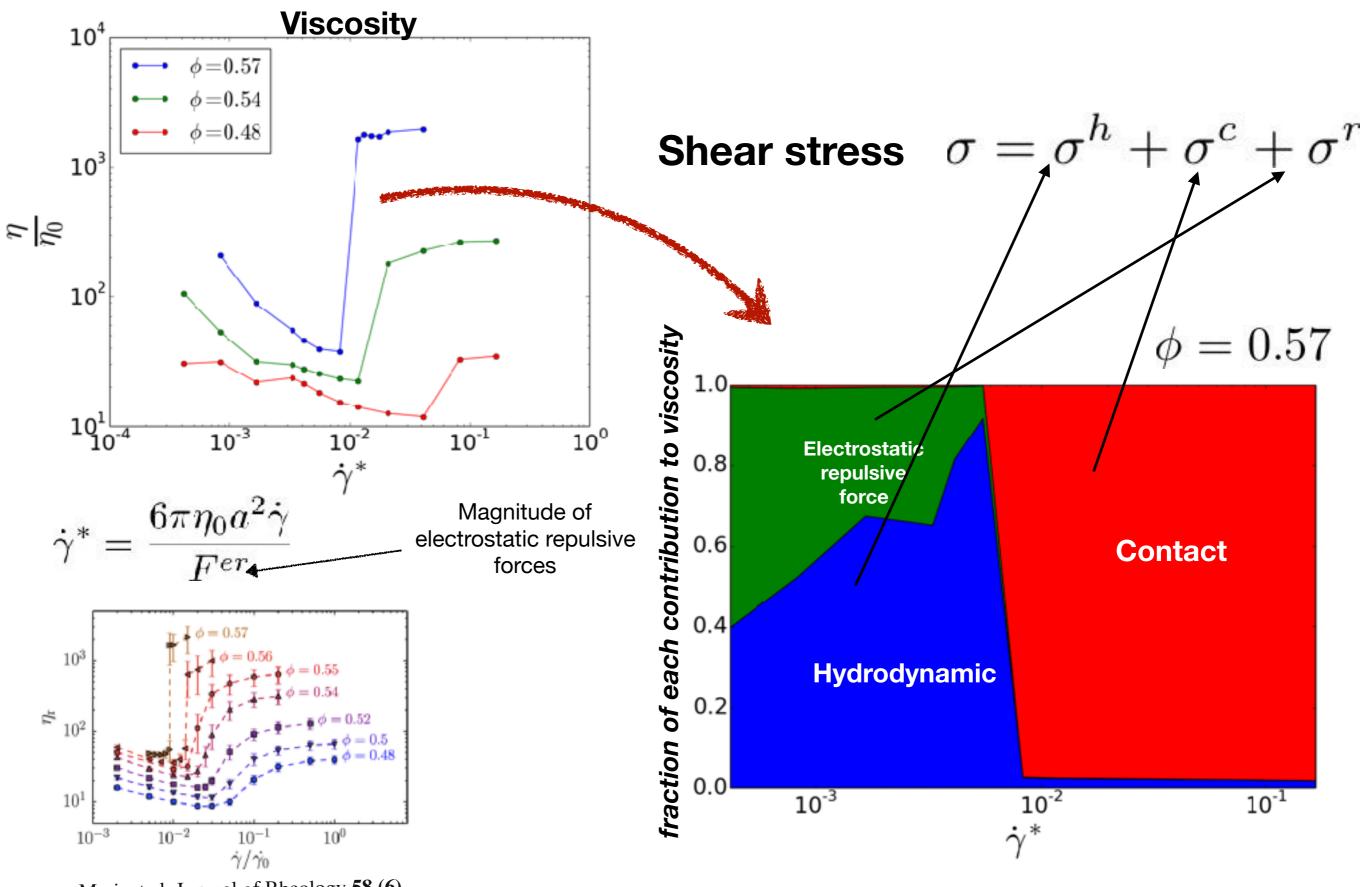


Treatment of hydrodynamics and contact forces



Steady shear simulation

N=512 particles



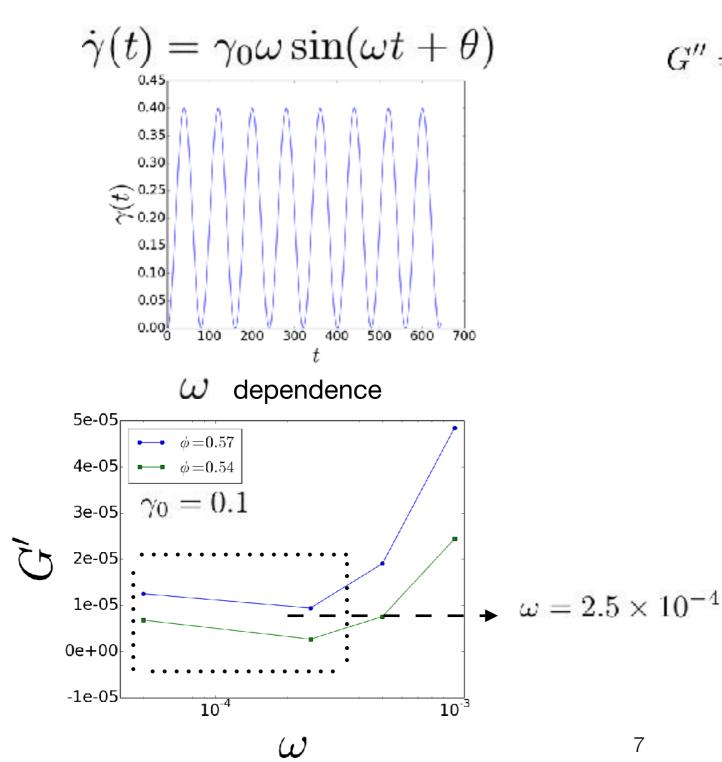
Mari, et al, Journal of Rheology **58** (**6**) , 1693-1724(2014)

Oscillatory shear simulation

Strain

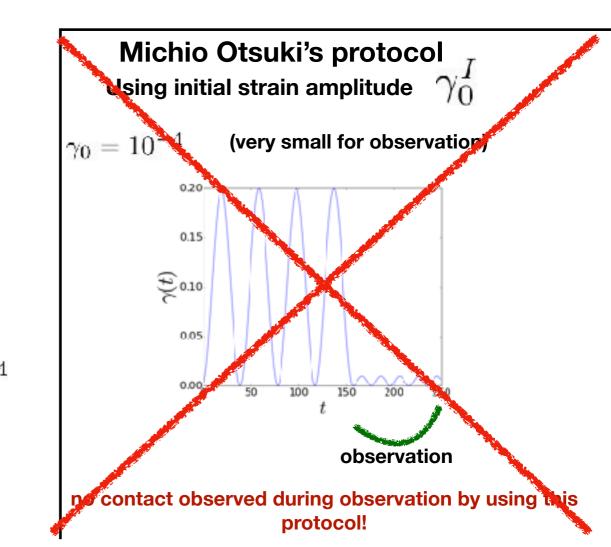
$$\gamma(t) = \gamma_0(\cos\theta - \cos(\omega t + \theta))$$

Strain rate



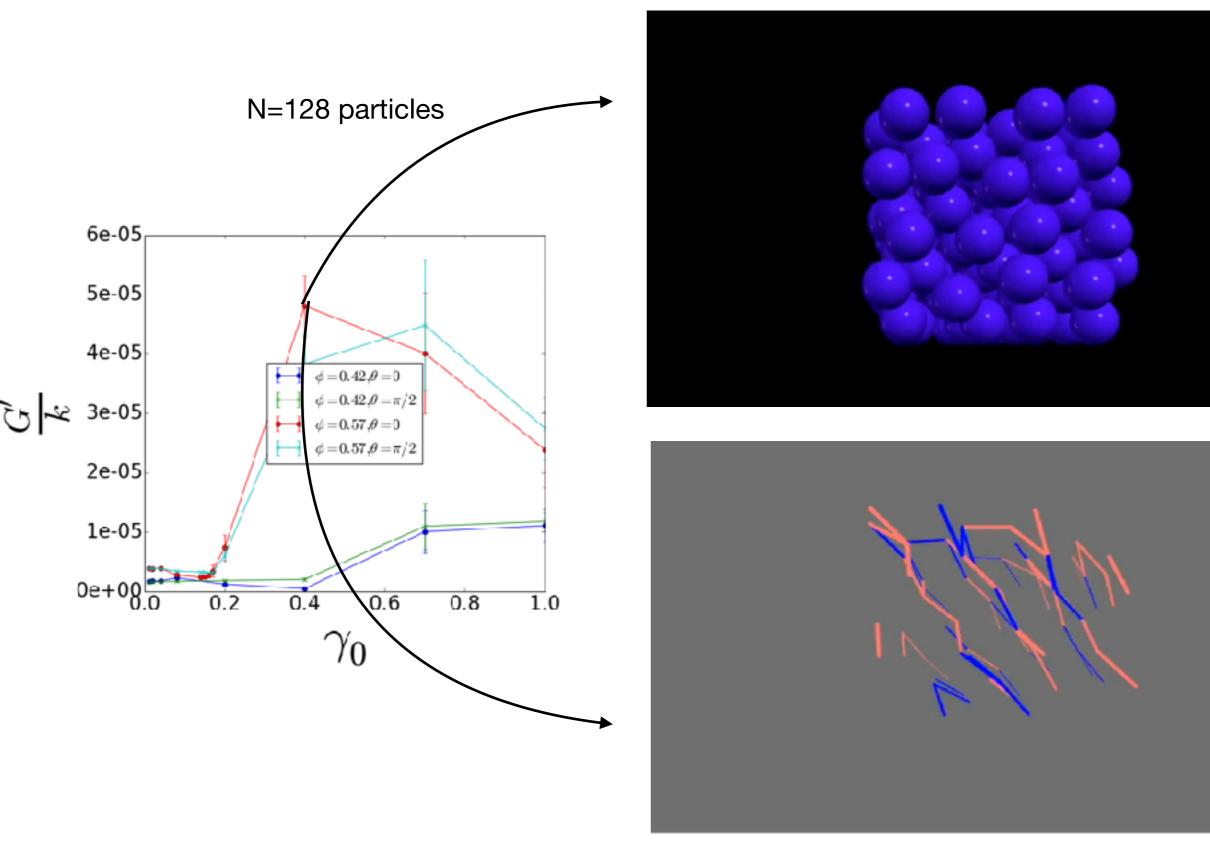
$G' = -\frac{\omega}{\pi} \int_{0}^{2\pi/\omega} dt \frac{\sigma(t) \cos(\omega t + \theta)}{\gamma_0} \qquad \text{rigidity}$ Loss modulus $G'' = \frac{\omega}{\pi} \int_{0}^{2\pi/\omega} dt \frac{\sigma(t) \sin(\omega t + \theta)}{\gamma_0} \quad \text{viscosity}$

Storage modulus

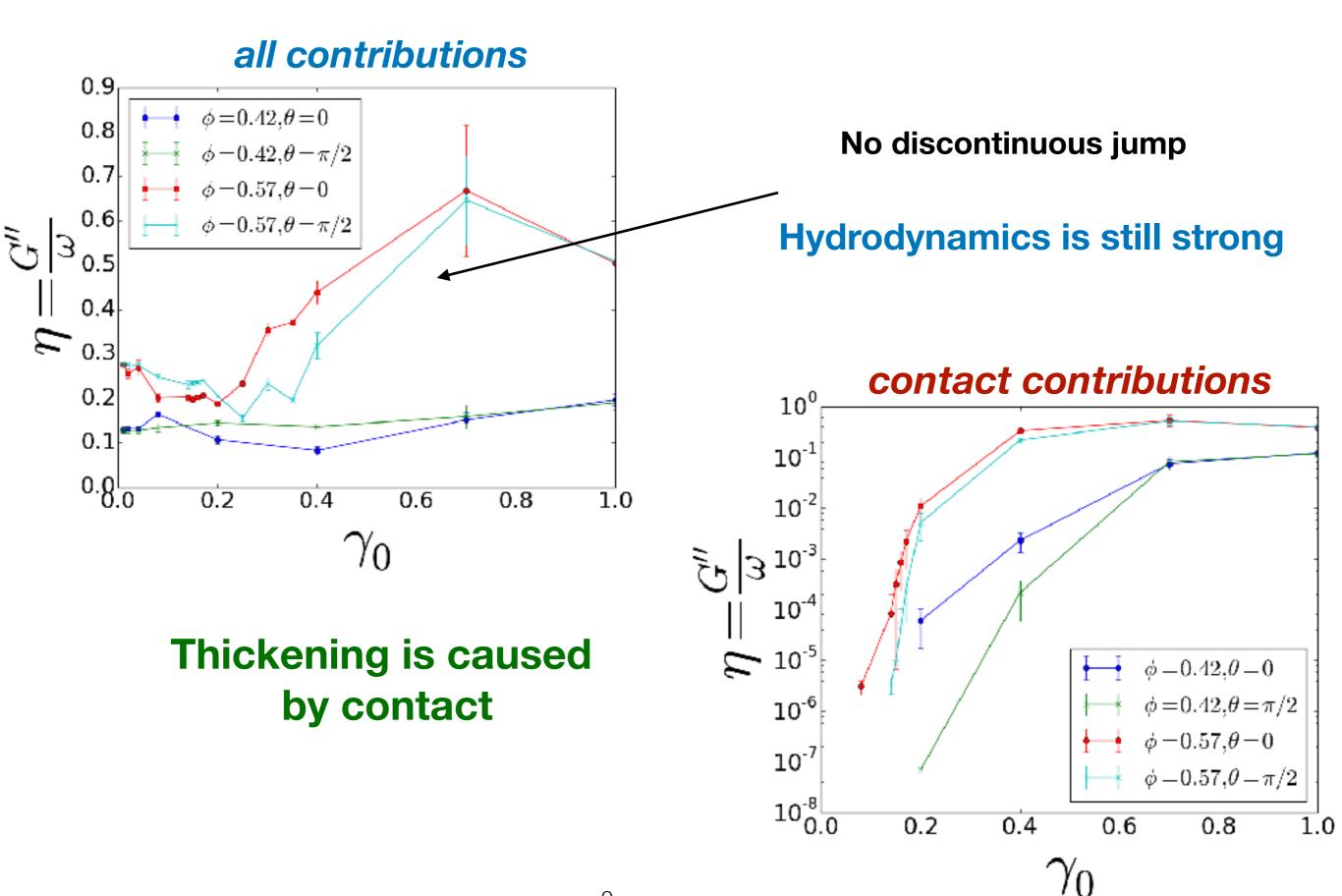


Oscillatory shear simulation

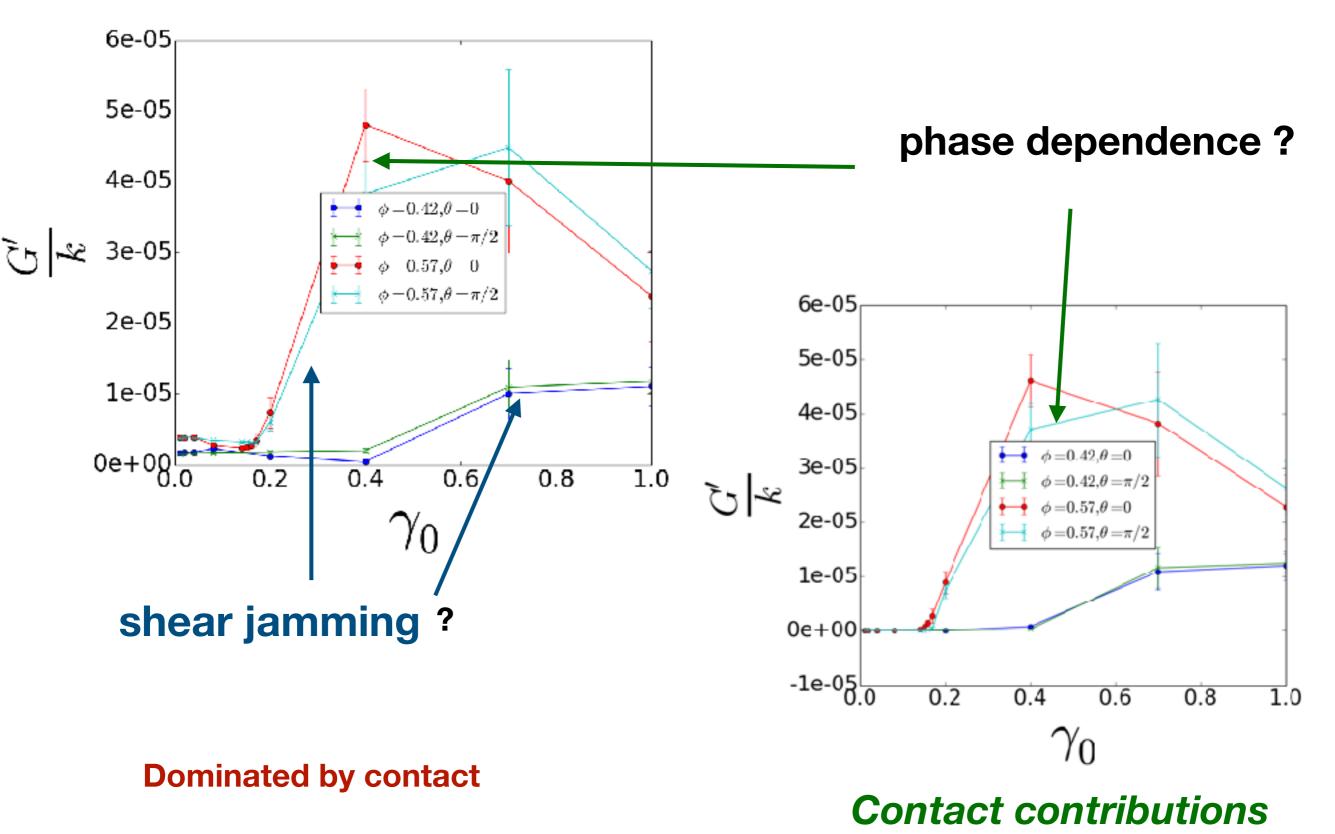
Particle motion



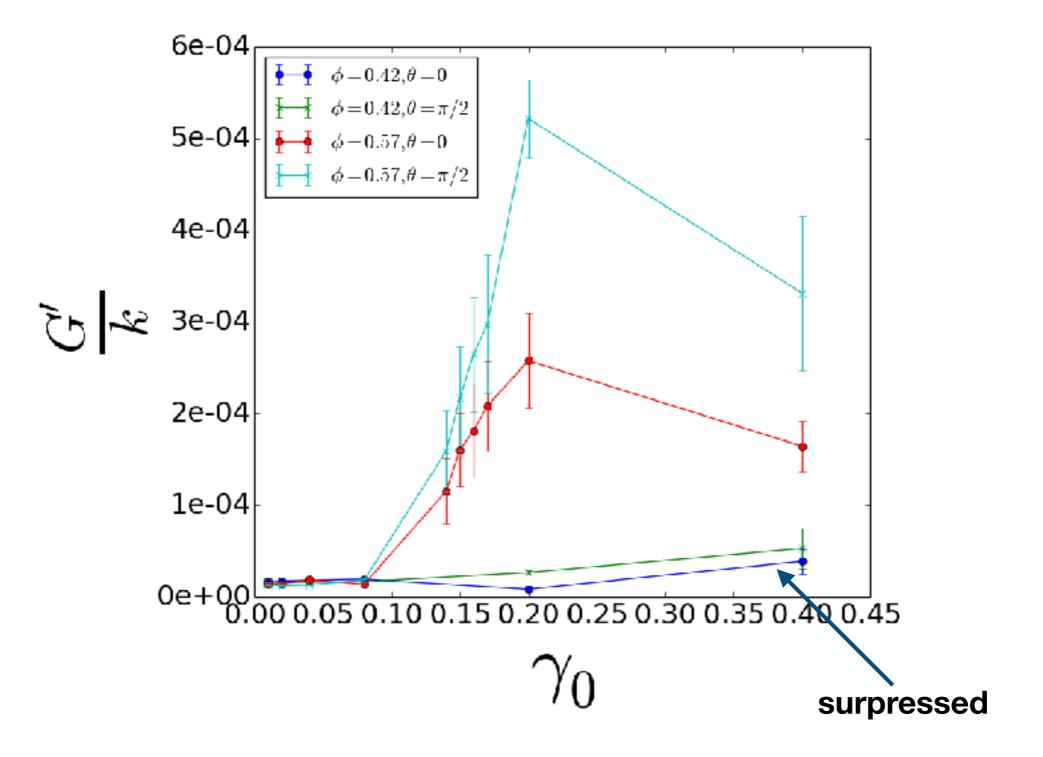
Contact network



all contributions

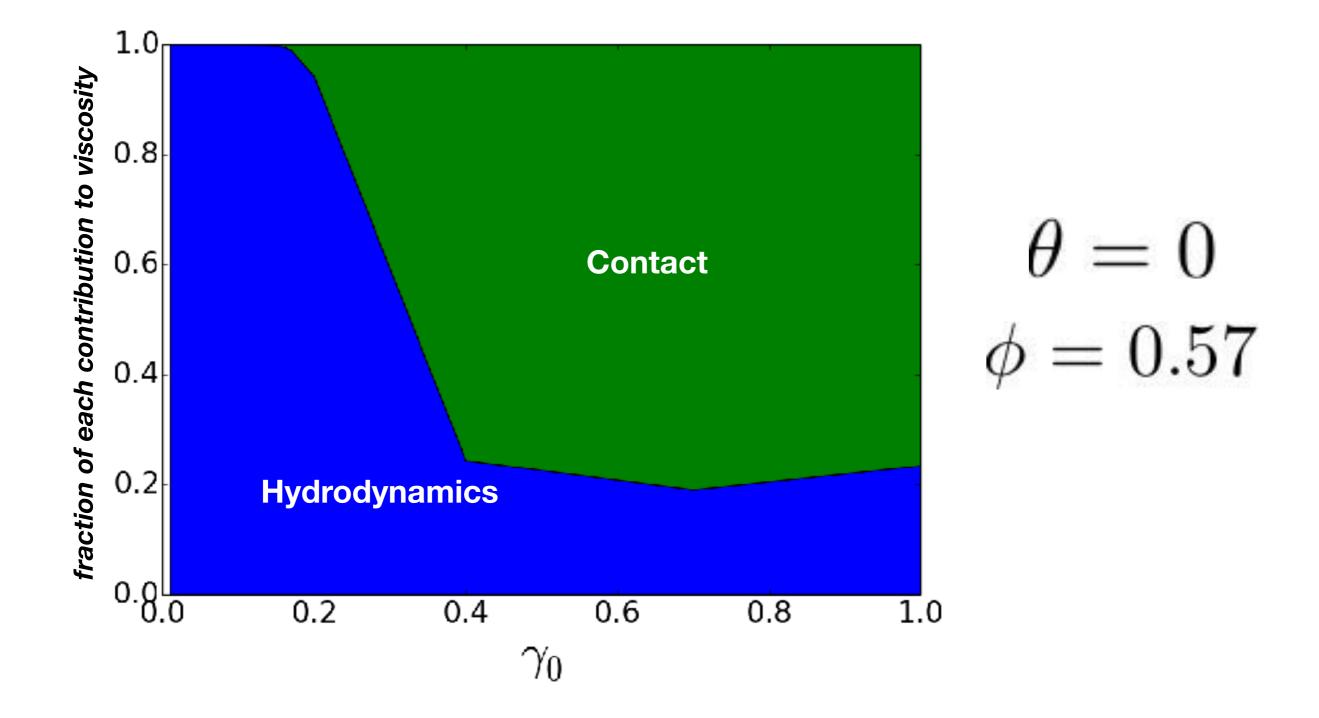


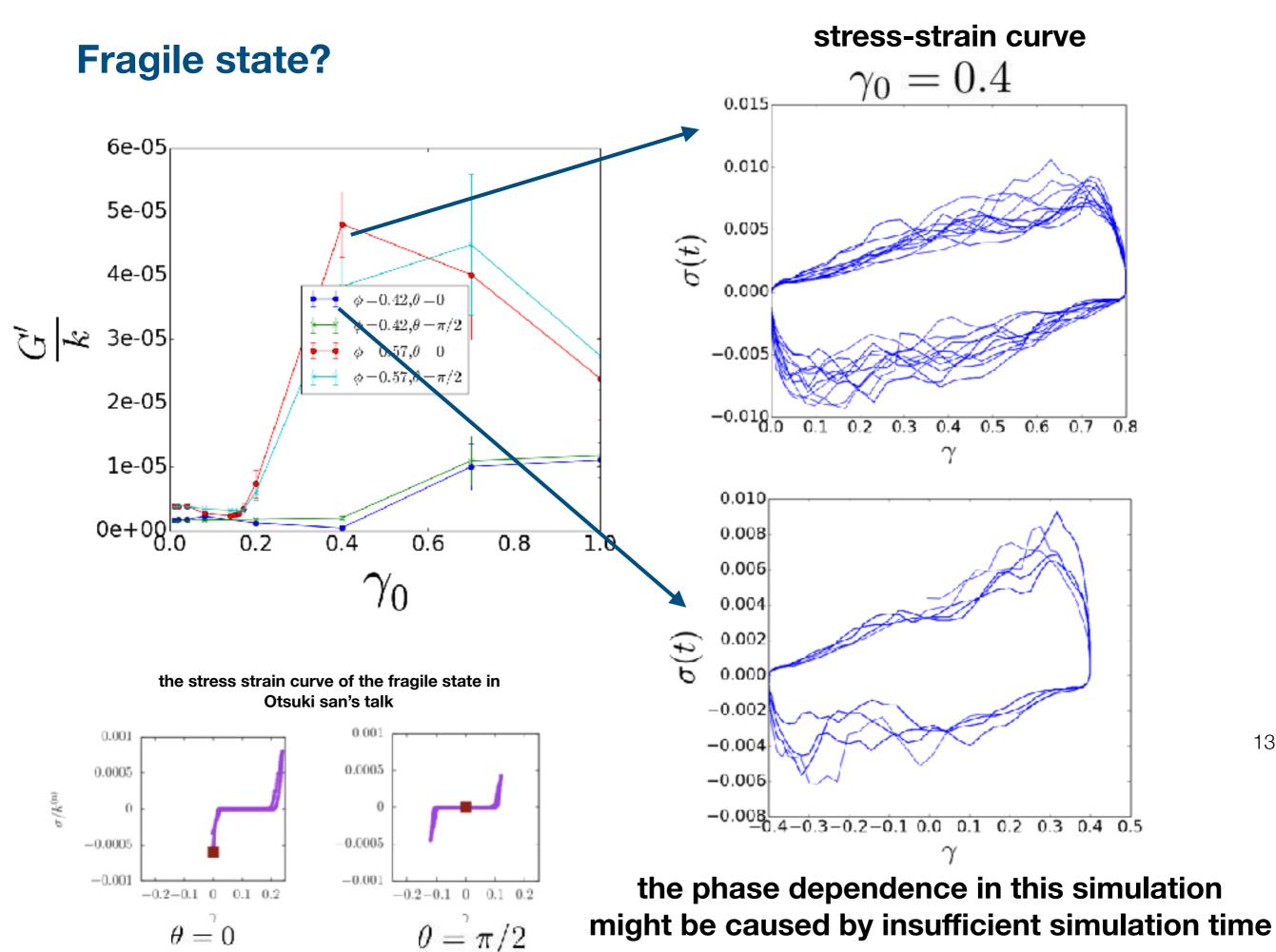
Storage modulus N=51



shear jamming in low density was fake! (size dependence)

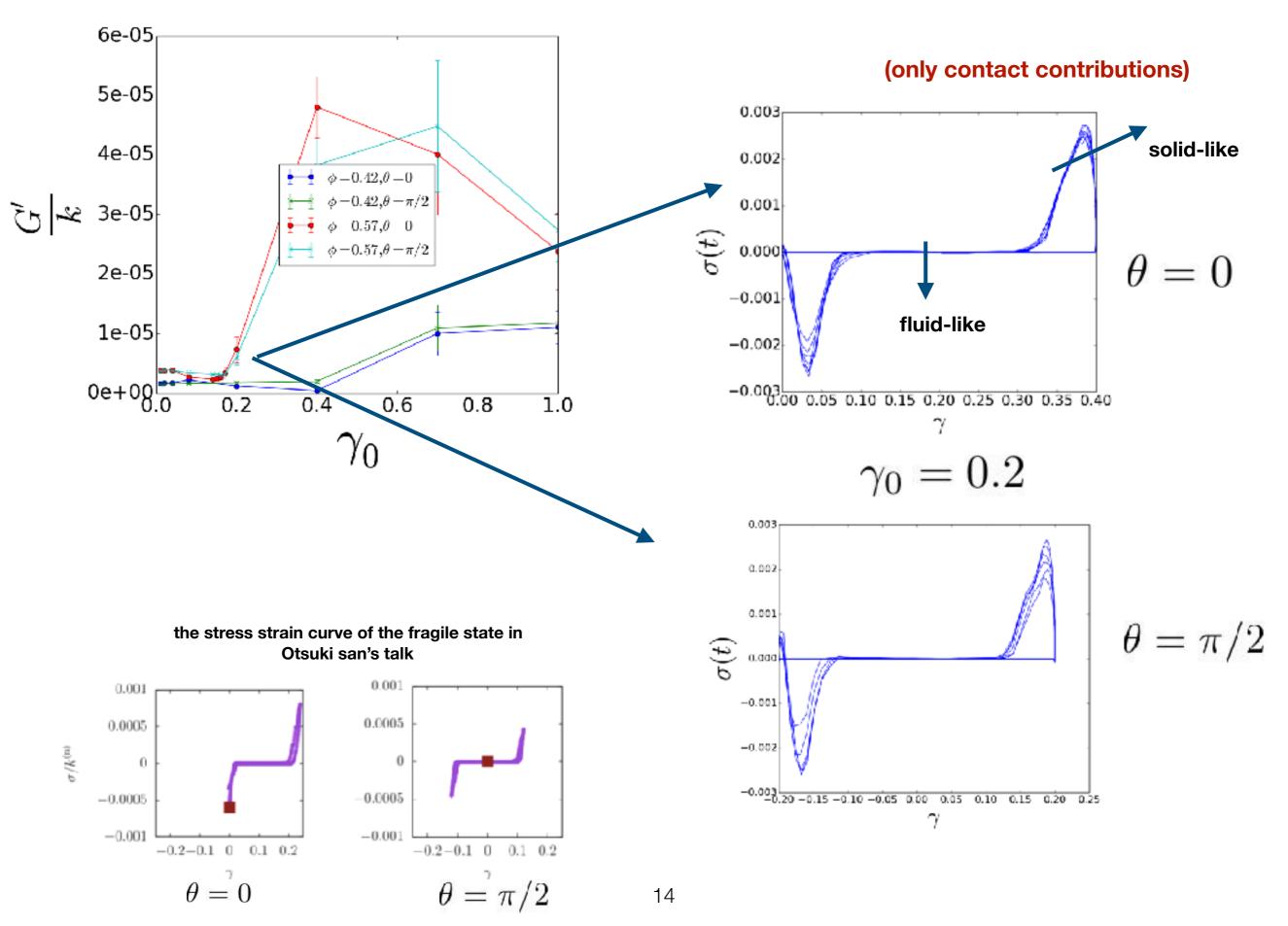
Contributions to viscosity





Fragile state?

stress-strain curve



Discussions

$$\begin{aligned} |\sigma_{ij} - \lambda \delta_{ij}| &= 0\\ \Delta \lambda &= \sigma_1 - \sigma_3 \end{aligned}$$

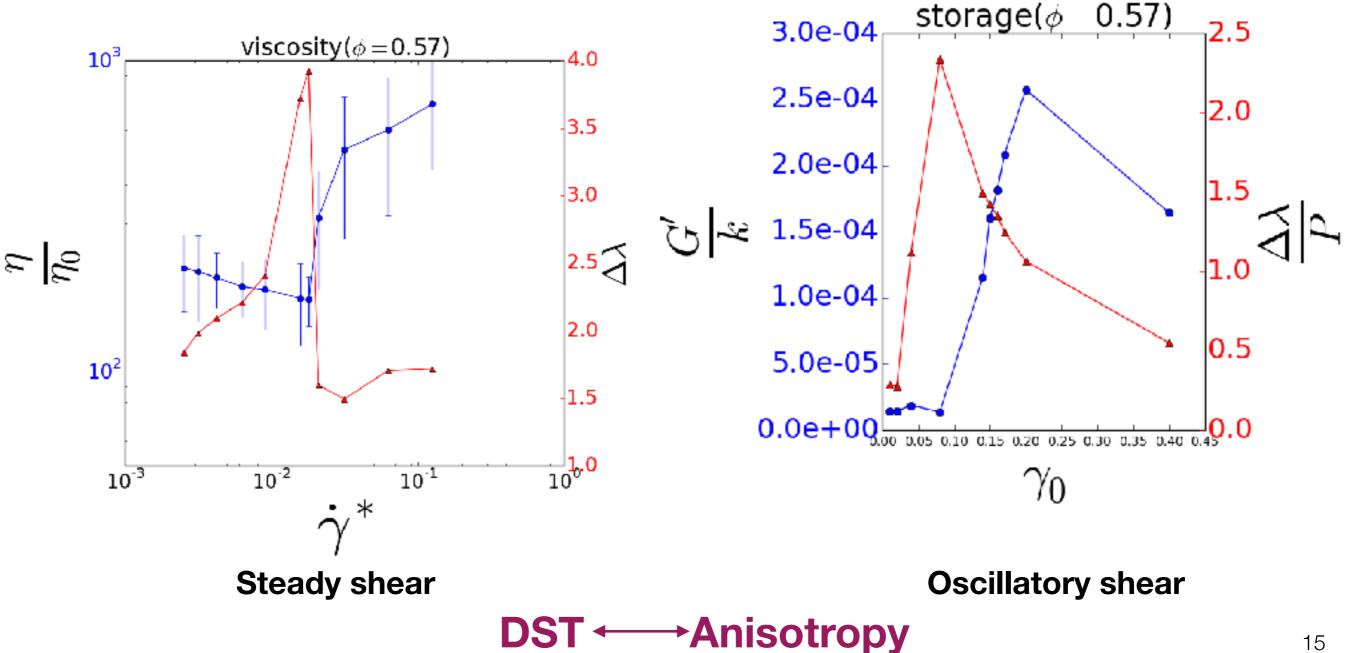
$$\sigma_1 = \max(\lambda_1, \lambda_2, \lambda_3)$$

$$\sigma_3 = \min(\lambda_1, \lambda_2, \lambda_3)$$

$$P = \frac{1}{3}(\sigma_1 + \sigma_2 + \sigma_3)$$

When DST takes place in steady shear, the anisotropy becomes maximum.

Anisotropy is also maximum at the onset of shear jamming.

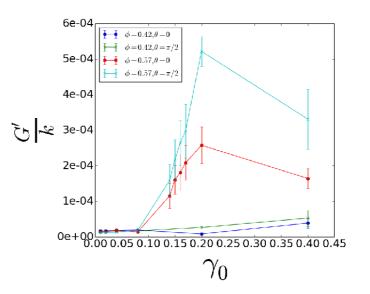


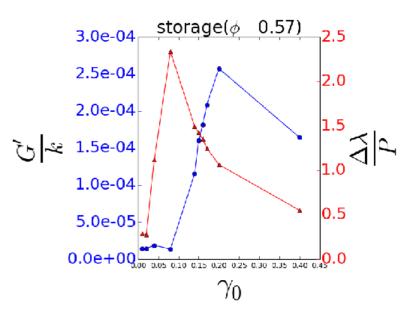
Conclusions

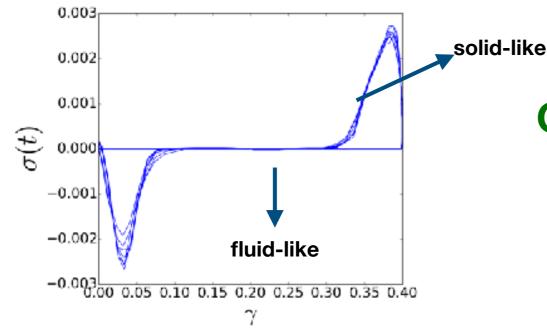
We simulate rheology of dense suspensions by using LBM.

Big increment of the viscosity and shear jamming in high strain rate has been observed.

Discontinuous change of the viscosity and the onset of shear jamming might be related to anisotropy.





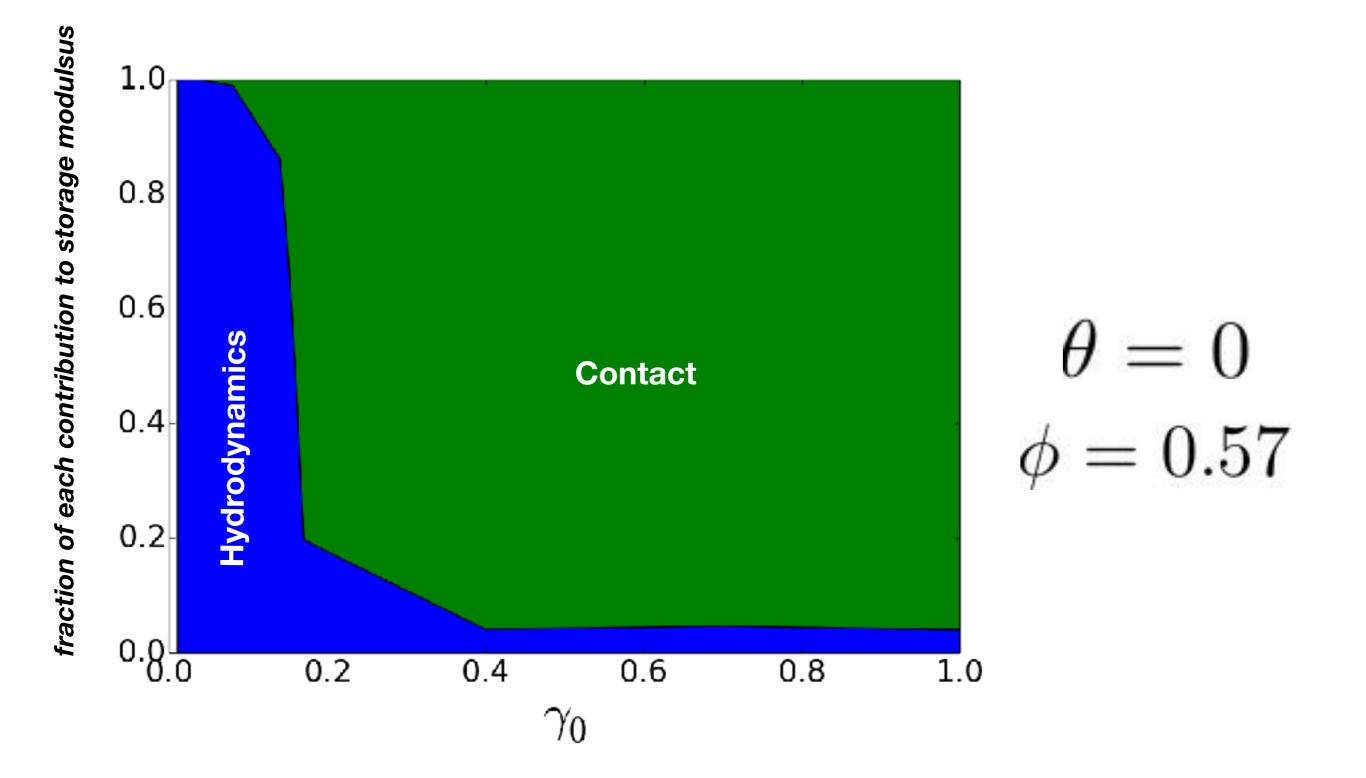


Future works

Clarify the existence of fragile state.

Analyze the percolation network (by simulating more particles in 2D).

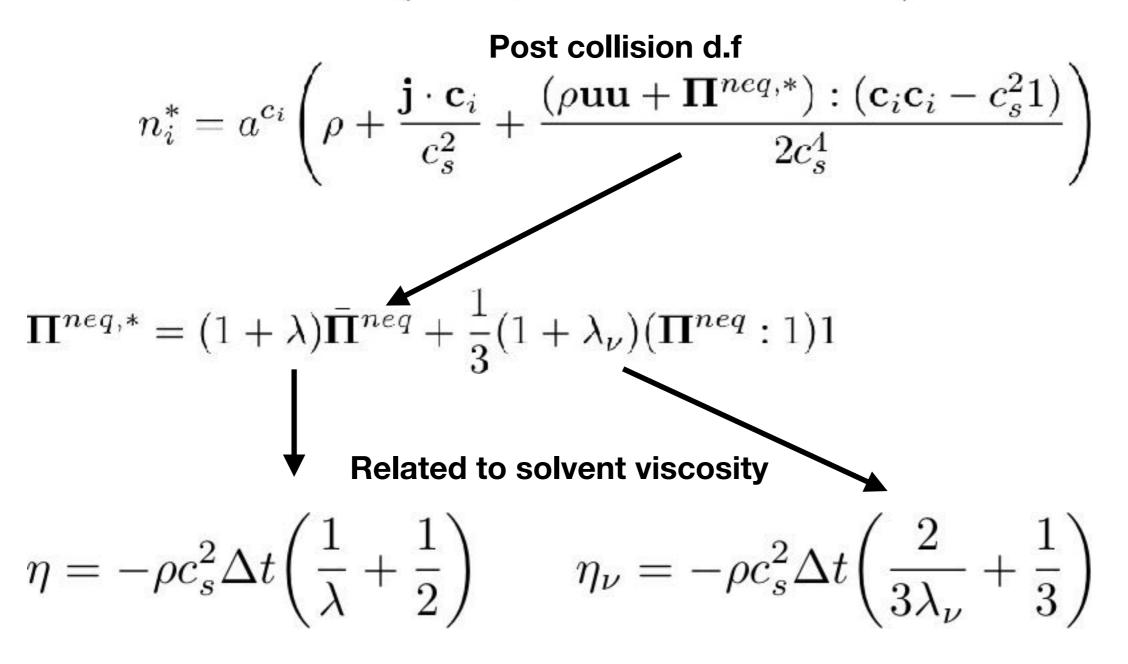
appendix: Contributions to storage modulus



appendix: details of the lbm (collision operator)

Discrete equilibrium d.f

$$n_i^{eq} = a^{c_i} \left(\rho + \frac{\mathbf{j} \cdot \mathbf{c}_i}{c_s^2} + \frac{(\rho \mathbf{u} \mathbf{u}) : (\mathbf{c}_i \mathbf{c}_i - c_s^2 \mathbf{1})}{2c_s^4} \right)$$



appendix: Stress Calculation Hydrodynamics

formulation

Contact

$$\sigma^{c} = \sigma^{\text{nor}} + \sigma^{\text{tan}}$$

$$\sigma^{nor} = -\frac{1}{2V} \sum_{i} \sum_{j \neq i} (\mathbf{r}_{ij,\alpha} \mathbf{F}_{ij,\beta}^{nor} + \mathbf{r}_{ij,\beta} \mathbf{F}_{ij,\alpha}^{nor})$$

$$\sigma^{tan} = -\frac{1}{V} \sum_{i} \sum_{j \neq i} \mathbf{r}_{ij,\alpha} \mathbf{F}_{ij,\beta}^{tan}$$

Electrostatic repulsive

$$\sigma^r = -\frac{1}{V} \sum_{i} \sum_{j \neq i} \mathbf{R}_{ij,\alpha} \mathbf{F}_{ij,\beta}^R$$