## 原始惑星系円盤の揮発性物質: 観測とモデル

## 古家健次 筑波大学 計算科学研究センター

## Diffuse ISMの元素存在度



(Przybilla et al. 2008 and references theirin)

揮発性元素キャリア (分子雲・分子雲コア)

 ・揮発性元素(C, N, O)の主なキャリア

 ・ガス、氷分子 (H<sub>2</sub>O, CO, CO<sub>2</sub>, NH<sub>3</sub> etc.)



(Gibb et al. 2004)

揮発性元素キャリア (分子雲・分子雲コア)

- 揮発性元素(C, N, O)の主なキャリア
  - →ガス、氷分子 (H<sub>2</sub>O, CO, CO<sub>2</sub>, NH<sub>3</sub> etc.)







(Terada et al. 2007~, Honda et al. 2008~, Hogerheijde et al. 2011, Salinas et al. 2016)

気相H<sub>2</sub>O, NH<sub>3</sub> (Herschel)

UV

CO

CO<sub>2</sub>

со

H<sub>2</sub>O

NH<sub>3</sub>

CH<sub>3</sub>OH

H<sub>2</sub>O

CO

CO

## **ALMA** observations



(Qi et al. 2013; Oberg et al. 2015; Bergin et al. 2016; Huang et al. 2017)

## 円盤鉛直化学構造:三層モデル



(e.g., Aikawa et al. 2002; van Zadelhoff et al. 2003; van Dishoeck 2006)

#### Outline

- ・イントロ
- COスノーライン (H₂Oスノーライン → 野津氏)
- 円盤表層における揮発性元素の枯渇
- ・複雑な有機分子、水素・窒素同位体

スノーライン

= 氷の昇華半径

## →スノーライン外側では主に氷、内側ではガスとして存在



スノーラインの観測

直接撮像 (H<sub>2</sub>OはALMAでも難しい)

- 間接的な観測(野津氏講演)
  - 速度プロファイル → 半径構造
  - E<sub>up</sub>の異なる多輝線観測

## CO snowline probed by N<sub>2</sub>H<sup>+</sup> in TW Hya



(Qi et al. 2013)

CO ice  $\rightarrow$  CO gas @ ~20 K CO + N<sub>2</sub>H<sup>+</sup>  $\rightarrow$  HCO<sup>+</sup> + N<sub>2</sub>



## CO isotopologues in TW Hya



- C<sup>18</sup>Oは光学的に厚い、mm-dust、<sup>13</sup>C<sup>18</sup>O は薄い
- CO スノーライン → 20 AU (N<sub>2</sub>H<sup>+</sup>からの見積もりでは 30 AU)

See also Schwarz et al. 2016

### DCO<sup>+</sup> double rings in IM Lup



## DCO<sup>+</sup> double rings in IM Lup

COの光脱離

 $H_2D^+ + CO \rightarrow DCO^+ + H_2$ 



(Öberg, KF, et al. 2015)

## DCO<sup>+</sup> double rings in IM Lup



## Multiple DCO<sup>+</sup> formation pathways



 $\begin{bmatrix} CH_3^+ + HD \rightarrow CH_2D^+ + H_2 \\ CH_2D^+ + CO \rightarrow DCO^+ + CH_2 \\ CH_2D^+ + H_2 \rightarrow CH_3^+ + HD @>50 K \\ \end{bmatrix}$  $\begin{bmatrix} HCO^+ + D \rightarrow DCO^+ + H \end{bmatrix}$ 



(Aikawa, KF, Herbst in prep., see also Favre et al. 2015)

#### Outline

- ・イントロ
- COスノーライン (H<sub>2</sub>Oスノーライン → 野津氏)
- 円盤表層における揮発性元素の枯渇
- ・複雑な有機分子、水素・窒素同位体



(A) 光解離領域: OI, CI, C+
(B) 分子層: H<sub>2</sub>O, CO
(C) 赤道面

気相のH,Oの分布 0.5





- 1. スノーライン内側 - 氷分子の昇華 H<sub>2</sub>O(gas)/H<sub>2</sub>O(ice) >> 1
- 2. 円盤外縁部 - 氷分子の光脱離 H<sub>2</sub>O(gas) = a fraction of H<sub>2</sub>O(ice)
- 3. 円盤内側大気 - 高温化学反応 vs. 中心星からのUV



## Thermal-chemical disk model



(Figure by Simon Bruderer)

中心星(UV, X-rays等)、
 円盤パラメータ(ガス面密度、ダスト分布等)は定常

TW Hya円盤表層での酸素・炭素の枯渇



## 炭素•酸素の枯渇 in TW Hya and HD 100546



C<sup>+</sup>, C, CO, C<sub>2</sub>H, HD観測、SEDをモデルフィット → 炭素・酸素-poorにしなければ観測と合わない

(Kama et al. 2016) (see also Favre et al. 2013, Tsukagoshi et al. 2015, Nomura et al. 2016)

#### 円盤表層における酸素・炭素の枯渇:観測からの制約

- TW Hya 円盤表層 [C/H] << 10<sup>-4</sup>, [O/H] << 10<sup>-4</sup>, [C/O] > 1
- HD 100546 円盤表層 [C/H] < 10<sup>-4</sup>



#### 円盤表層における揮発性元素の枯渇機構

#### 1. 氷ダストの沈殿+ドリフト



#### 酸素は(定性的には)良さそう、炭素は難しい

(e.g., Meijerink et al. 2009, Hogerheijde et al. 2011, Furuya & Aikawa 2014, Du et al. 2015, Kama et al. 2016, Krijt et al. 2016, Xu et al. 2017)

#### 円盤表層における揮発性元素の枯渇機構

- 1. 氷ダストの沈殿+ドリフト
- - 円盤表面からのCOガスの輸送 vs. 赤道面からのCO氷の巻き上げ



(e.g., Meijerink et al. 2009, Hogerheijde et al. 2011, Furuya & Aikawa 2014, Du et al. 2015, Kama et al. 2016, Krijt et al. 2016, Xu et al. 2017)

乱流による円盤赤道面への輸送+ダスト表面への吸着



(Xu et al. 2017, Meijerink et al. 2009; Kama et al. 2016; Krijt et al. 2016)

## CO isotopologues in TW Hya



(Zhang et al. 2017)

mm-ダスト連続波, HD, C<sup>18</sup>O, <sup>13</sup>C<sup>18</sup>O輝線
 → COスノーライン内側でのCO存在量 ~10<sup>-6</sup> << 10<sup>-4</sup>
 → COを他の分子に変換? or ダスト成長?

(consistent with Nomura et al. 2016)

### Conversion of CO into other molecules



- CO is depleted even inside of the snow line (T>25 K)
  - ← CO is converted to less volatile molecules like carbon-chains and CO<sub>2</sub> (sink effect; Aikawa et al. 1997)



(Furuya & Aikawa 2014, Bergin et al. 2014)

#### Conversion of CO into other molecules



(Furuya & Aikawa 2014)

### 円盤表層における揮発性元素の枯渇機構

- 1. 氷ダストの沈殿+ドリフト
  - →酸素はOK,炭素枯渇を説明できない
- 1. 乱流によるCOガスの円盤赤道面への輸送
   +ダスト表面への吸着
  - → CO depletion inside CO snow lineを説明できない
- 3. CO から 炭素鎖分子 and/or CO<sub>2</sub> への変換
   → 円盤表層では働かない

#### ダスト進化、乱流、chemistryが必要?

(e.g., Meijerink et al. 2009, Hogerheijde et al. 2011, Furuya & Aikawa 2014, Du et al. 2015, Kama et al. 2016, Krijt et al. 2016, Xu et al. 2017)

#### 円盤表層における酸素・炭素の枯渇:観測からの制約

- TW Hya 円盤表層 [C/H] << 10<sup>-4</sup>, [O/H] << 10<sup>-4</sup>, [C/O] > 1
- HD 100546 円盤表層 [C/H] < 10<sup>-4</sup>



## Hydrocarbon?



(Kastner et al. 2015, Bergin et al. 2016, Öberg & Bergin 2016)

#### Outline

- ・イントロ
- COスノーライン (H₂Oスノーライン → 野津氏)
- 円盤表層における揮発性元素の減損
- ・複雑な有機分子、水素・窒素同位体

## "複雑な"有機分子(COMs)

# Non-thermally desorbed $CH_3OH$ from ice in TW Hya



## CH<sub>3</sub>CN in MWC 480

|           | HCN | HC3N | <b>CH3CN</b> | ref               |
|-----------|-----|------|--------------|-------------------|
| Comet     | 1   | 0.1  | 0.1          | Mumma&Charnley 11 |
| MWC 480   | 1   | 0.4  | 0.05         | This work@30AU    |
|           | 1   | 5    | 0.2          | This work@100AU   |
| IRAS16293 | 1   | 0.01 | 0.08         | van Dishoeck+95   |
|           |     | 1    | 10-14        | Taquet+15         |

●MWC480でのHCN/HC<sub>3</sub>N/CH<sub>3</sub>CN比はcometに近い

[注] 観測で見えるのはガスのみ!

●CH<sub>3</sub>CNの存在量は気相反応だけでは説明できない

●乱流による鉛直方向のmixing

●mixingモデルでは氷ダストの巻き上げにより、 円盤表層により多くのCH<sub>3</sub>CN

スライド by 相川さん(東大)



CH<sub>3</sub>CN:モデル



## N<sub>2</sub>D<sup>+</sup>: midplane ionization tracer?



<sup>15</sup>N 同位体:太陽系物質起源への示唆?



まとめ

- 原始惑星系円盤における気相揮発性物質の観測の発展
- 局所的な化学プロセスでは説明できない現象
   酸素・炭素の円盤表面での枯渇、大型有機分子?
- ガス・ダストダイナミクス + 気相・固相化学反応モデルの 需要の高まり
- 氷の観測(空間分布、H<sub>2</sub>O氷以外の分子)はJWSTに期待?