Detection of Submillimeter-wave [C I] Emission in Gaseous Debris Disks of 49 Ceti and β Pictoris

○樋口あや,坂井南美(理化学研究所),佐藤愛樹,塚越崇,百瀬宗武(茨城大学),岩崎一成(大阪大学),小林浩,石原大助,渡邉華,金田英宏(名古屋大学),山本智(東京大学)

Announcement: Workshop on gaseous debris disks

October 10-11 @ RIKEN:

Two day workshop with up to 30 participants, aiming to bring together experts in (i) observing gaseous debris disks,

(ii) theoretical models of planet formation,

(iii) astrochemical modeling of protoplanetary/debris disks, to discuss the implications for the origin of gas, gas compositions, and timescale of completion of the Solar System.

Confirmed speakers:

Alexis Brandeker (Stockholm University), Bill Dent (JAO), Daisuke Ishihara (Nagoya University), Gianni Cataldi (NAOJ/subaru), Kazunari Iwasaki (Osaka University), Luca Matrà (cfa), Mark Wyatt (University of Cambridge; video or in person), Mihkel Kama (University of Cambridge), Meredith Hughes (Wesleyan University; video), Attila Moór (Konkoly Observatory; video), Aki Roberge (NASA; video)

SOC: Aya Higuchi (Chair, RIKEN), Bill Dent (JAO), Hiroshi Kobayashi (Nagoya University), Satoshi Yamamoto (The University of Tokyo) LOC: Nami Sakai, Satoshi Ohashi, Kento Yoshida (RIKEN)

Evolutionary stages from protoplanetary disk to debris disk?

	Protoplanetary Disk	Debris Disk
stellar age	< 10 Myr	10 Myr - 10 Gyr
optical depth	thick	thin
dust mass	> 10 M⊕	<1M⊕
gas mass	100 × Dust	No or little
dust origin	Primordial	Secondary

CO gas survey

- ALMA observations
 - Scorpius-Centaurus association (Lieman-Sifry et al. 2016) 23 objects
 - CO detections: newly HIP 76310, and HIP 84881 + confirmation of HD 131835.

Origin of gas

Primordial

- Remnant gas of protoplanetary disks (e.g., Kospal et al. 2013).
- Gas composition: ISM abundance (e.g., X(CO) = 10⁻⁴) as in protoplanetary disks

Secondary

- Sublimation of dust grains (e.g., Kobayashi et al. 2008) or planetesimals (Lagrange et al. 1998), collision of comets or icy planetesimals (Zuckerman & Song 2012).
- Gas composition
 - CO : main gas, only a small amount of H₂ is expected.
 - CO : photodissociation —> C, C+

Observations

Atacama Submillimeter Telescope Experiment (ASTE) (Oct. - Nov. 2016)

• [C I]: 492.161 GHz (Band 8 receiver)

dv=1.1km/s
rms=30mK (in T_A)
Integration time(on source) > 15h

49 Ceti Higuchi et al. 2017

β Pictoris

Chemical reaction of CO

Higuchi et al. 2017

Chemical reaction of CO in the interstellar medium. CO is dissociated by ultraviolet radiation to become C and C⁺. If there are large amount of H_2 , C⁺ will return to CO again.

Origin of gas

Primordial

- Remnant gas of protoplanetary disks (e.g., Kospal et al. 2013).
- Gas composition: ISM abundance (e.g., X(CO) = 10⁻⁴) as i protoplanetary disks

Secondary

- Sublimation of dust grains (e.g., Kobayashi et al. 2008) or planetesimals (Lagrange et al. 1998), collision of comets or icy planetesimals (Zuckerman & Song 2012).
- Gas composition
 - CO : main gas, only a small amount of H₂ is expected.
 - CO : photodissociation —> C, C+

Summary

- We have firstly detected [C I] emissions in the gaseous debris disks of 49 Ceti and β Pictoris with the ASTE.
 - The line profiles of [C I] are found to resemble those of CO(J=3-2) observed with the same telescope and the ALMA.
 - This result suggests that atomic carbon (C) coexists with CO in the debris disks and is likely formed by the photodissociation of CO.
 - The C/CO column density ratio is thus derived to be 54 \pm 19 and 69 \pm 42 for 49 Ceti and β Pictoris, respectively.
 - The unusually high ratios of C to CO are likely attributed to a lack of H₂ molecules needed to reproduce CO molecules efficiently from C.
 - This result implies a small number of H₂ molecules in the gas disk, i.e., there is an appreciable contribution of secondary gas from dust grains.

Future work

- (Higuchi) ALMA observation with the high resolution and sensitivity to understand the spatial and velocity distribution of [C I] emission.
 - Understanding the spatial distribution of [C I] emission with ALMA
 - Derivation of C/CO and Gas to Dust (G/D) ratio
- (Sato) ASTE observation for increasing the number of [C I] detection sources.
- (Iwasaki/Kobayashi) Modeling of the photodissociation and chemical reactions in debris disks (PDR calculation) for giving a constraint on the amount of hydrogen molecule in debris disks