Millimeter-wave polarization as a tool of investigating planet formation

Kataoka et al., accepted in ApJL, arXiv:1707.01612

Akimasa Kataoka (NAOJ)

T. Muto (Kogakuin U.), M. Momose, T. Tsukagoshi (Ibaraki U.),

H.Nagai (NAOJ), A. Pohl (MPIA Heidelberg), I. W. Stephens (CfA), Kohji Tomisaka (NAOJ)

Star and disk formation

Akimasa Kataoka (NAOJ fellow)

Polarization of star-disk system

Akimasa Kataoka (NAOJ fellow)

Polarization mechanisms

Alignment of elongated dust grains with magnetic fields

e.g., Lazarian and Hoang 2007

The self-scattering of thermal dust emission

Kataoka et al. 2015

Alignment of elongated dust grains with radiation fields

Tazaki, Lazarian et al. 2017

Absorption and scattering opacities

Scattering of large dust grains can not be ignored.

The observer is you.

(the line of sight is perpendicular to the plane of this slide)

Vertical Polarization

self-scattering in a face-on disk

self-scattering in an edge-on disk

self-scattering in an inclined disk?

face-on like?

edge-on like?

Case study - HL Tau

- i = 47° (ALMA Partnership 2015)
- The polarization vectors are parallel to the minor axis
 - The edge-on effects dominate the polarization in the HL Tau disk

Kataoka, et al., 2016a

HL Tau - continuum

ALMA Partnership, 2015

- Polarization of HL Tau disk has been detected with CARMA at 1.3 mm and SMA at 0.87 mm (Stephens et al. 2014)
- We observed polarization of the HL Tau disk with ALMA at 3.1 mm

HL Tau polarization with ALMA

 We find the azimuthal polarization vectors at 3.1 mm wavelength

- Alignment with the radiative flux (cf.
 Tazaki et al. 2017)
- No longer aligned with the toroidal magnetic fields in disks

Kataoka, et al., 2017

wavelength dependence

- The polarization vectors at 1.3 mm are parallel to the minor axis
- The polarization vectors at 3.1 mm are in the azimuthal direction

wavelength-dependent polarization in mm range

Polarization mechanisms

alignment with B-fields alignment with radiation

self-scattering

Polarization mechanisms

alignment with **B**-fields alignment with radiation self-scattering

Akimasa Kataoka (NAOJ fellow)

Grain size constraints by polarization

Multi-wave polarization → constraints on the grain size

HL Tau polarization

AKIMASA KATAOKA (INAUJ TEIIOW)

Conclusions

- We propose that multi-band mm-wave polarization observations would be a new method to constrain the grain size.
 - Two conditions for polarization at millimeter-wavelengths:
 - 1. The intensity has anisotropic radiation fields
 - 2. The maximum grain size is comparable to the wavelengths

(Kataoka et al., 2015, ApJ)

- We have observed polarization of HL Tau with ALMA
 - 3.1 mm polarization vectors are dominated by explained by the grain alignment, while 1.3 mm pol. vectors by the self-scattering.
 - The maximum grain size is constrained to be ~100 μ m

((Kataoka et al. 2016a, ApJ, Kataoka et al. 2017, accepted in ApJL)