原始惑星系円盤の散逸過程: 理論と観測の現状

基研研究会「原始惑星系円盤」 2017年7月12日

内容:中小質量星周りのガス円盤の進化・散逸過程 ● 円盤寿命の観測 ● 円盤進化機構(主に中心星からの照射による光蒸発理論) ● 議論:磁場駆動円盤風(少し)

<u>触れないこと:</u>

- ・近傍大質量星からのUVによる光蒸発 山川さんポスター, Adams+04
- ・恒星風や恒星遭遇などの効果 e.g., Hollenbach+00
- ・ダストの進化 e.g., Takeuchi+05, Alexander+Armitage07, Miyake+16
- 円盤風の直接的な観測的制約 (e.g., [Nell], [OI] など)

e.g., Ercolano+Pascucci17

円盤寿命の観測

see also Hernandez+07, Mamajek09, Fedele+10, Kraus+12, Ribas+14

円盤寿命の観測

数千回転した後,内側から 外側まで速やかに散逸

- ・ 円盤保有率が星団年齢とともに減少
- → ほとんどの星は~3-5Myrで 円盤を失う※近赤外→~1000Kのダスト熱放射

・中心星へのガス降着・外側円盤の冷たいダスト(電波観測)も
 ほぼ同時期になくなる

降着:Muzerolle+00, Fedele+10, Ingleby+14 電波:Mathews+12, Andrews+Williams05, 07 前嶋さんポスター

短い遷移円盤期

短い遷移円盤期

<u> ● 円盤散逸機構に対する観測からの要請:</u>

原始惑星系円盤には two-timescale 的, inside-out 的な 散逸機構が存在するはず

近年の進展:

- ・金属量への依存性 Yasui+09
- ・中心星質量への依存性 Yasui+14
- ・星団内の星の年齢のばらつき Takagi+14, 15
- ・他にも連星のコンタミの影響など Kraus+08,11

円盤寿命の観測:中心星質量・金属量の影響

● 高質量星 → 短い円盤寿命

See also Hillenbrand+92; Hernandez+05; Ribas+15 ※ただし中間赤外ではより長寿命

● 低金属量 → 短い円盤寿命

See also Yasui+09, 16a,b,c, Kalari+Vink15

→仲谷さん講演

星団の Age spread 問題

円盤寿命の算出方法では、「星団内の星が全て同一年齢」であると仮定 ↔ しかし、若い星団内の星の年齢には大きなばらつき (~I0Myr) e.g., Hillenbrand09, Soderblom+14, PPVI, Inutsuka+15

星団の Age spread を用いた円盤寿命算出法

- ・星団内の個々の星の赤外超過量を決定、その減衰から円盤寿命を推定する新たな手法
- ・
 ・
 H盤寿命:~1-2Myr 程度

 (従来の算出方法と大きくは変わらない)

円盤進化機構

※ 近傍大質量星による光蒸発,恒星風,恒星遭遇などもある
 See Hollenbach+00

磁気乱流 → 乱流粘性による角運動量輸送

e.g., 磁気回転不安定性 Balbus+Hawley91

光蒸発による質量損失率のプロファイル

「~Myrの後にinside-out的な速やかな散逸」 → 観測と整合的

いつ・どこでギャップが空くかは光蒸発率に依存

いつ・どこでギャップが空くかは光蒸発率に依存

粘性降着+光蒸発のモデルで 観測から要請される散逸過程を実現

ただし定量的な議論のために 光蒸発理論の精密化が必要

→まず光蒸発機構を概観し、

課題と近年の進展について紹介

光蒸発機構

EUV:~10⁴Kのほぼ等温の電離層 (cf. HII領域) → R_c~2AU M_{EUV} ~10⁻¹⁰M_☉/yr

・水素の電離→電子が周囲を加熱。放射冷却の強い温度依存性→~10⁴K ・吸収断面積大,しかし再結合による再放射がある(拡散光)

EUV:~10⁴Kのほぼ等温の電離層 (cf. HII領域) → R_c~2AU M_{EUV} ~10⁻¹⁰M_☉/yr

X:主に~3000–5000K の層からガスが流出_EUVより低温 だが深くまで浸透し,flowの密度は大きい→Mx~10⁻⁸M₀/yr

- ・加熱源:O,C,Feなどの重元素からの光電子(~0.3-1keVが寄与)
- ・吸収断面積はEUVより~3桁小さい *Owen+10,12*

※温度の決定は厳密な 輻射輸送計算ではない

EUV:~10⁴Kのほぼ等温の電離層 (cf. HII領域) → R_c~2AU M_{EUV} ~10⁻¹⁰M_☉/yr

X:主に~3000–5000K の層からガスが流出_EUVより低温 だが深くまで浸透し,flowの密度は大きい→Mx~10⁻⁸M₀/yr

FUV:~100–1000K の層から流出 . M_{FUV}~M_X~10⁻⁸M₀/yr

- ・加熱源:ダスト・PAHsからの光電子,H₂分子の励起・脱励起
- ・X線と同程度の吸収断面積

PAHs: 多環芳香族炭化水素

Gorti+Hollenbach09

課題と近年の進展

光蒸発

- 化学反応と輻射輸送を同時に解く流体計算
 正確な質量損失率の決定
- 2. 穴空き円盤の散逸過程
- 3. 若い星のXUV光度と(X線)スペクトルの見積もり

EUV光蒸発の2D輻射輸送計算

拡散光フラックス:
 動径方向≫鉛直方向
 → I+ID近似は不適当

EUV光蒸発の2D輻射輸送計算

→ I+ID近似は不適当

2D輻射輸送計算の結果 → 外側での散逸率の見積もりに違い

正確な質量損失率の決定

- XとFUVが重要: Owen+ (X), Gorti+ (FUV)の計算結果に依拠
- ・ただし、Owen+は温度決定を簡略化、Gorti+は流体計算をしていない、 という問題あり

Ingredients	Alexander et al. (2006)	Owen et al. (2010)	Gorti et al. (2009)
Hydrodynamics	Yes	Yes	No
Thermal Calculation	No	Yes	Yes
Chemistry Calculation	No	No	Yes
FUV heating	No	No	Yes
EUV heating	Yes	Yes	Yes
X-ray heating	No	Yes	Yes

Ercolano+Pascucci17

自己無撞着な輻射流体計算から光蒸発率を見積もる必要 Alexnader+14, PPVI, Gorti+16, Ercolano+Pascucci17

正確な質量損失率の決定

DRAFT VERSION JUNE 15, 2017 Preprint typeset using LATEX style emulateapj v. 2/16/10

Nakatani, Hosokawa+ (arXiv:1706.04570)

RADIATION HYDRODYNAMICS SIMULATIONS OF PHOTOEVAPORATION OF PROTOPLANETARY DISKS: METALLICITY DEPENDENCE

RIOUHEI NAKATANI¹, TAKASHI HOSOKAWA², NAOKI YOSHIDA^{1,3}, HIDEKO NOMURA⁴, AND ROLF KUIPER⁵ Draft version June 15, 2017

DRAFT VERSION <u>JUNE 13, 2017</u> Preprint typeset using LATEX style emulateapj v. 12/16/11

Wang+Goodman (arXiv:1706.03155)

HYDRODYNAMIC PHOTOEVAPORATION OF PROTOPLANETARY DISKS WITH CONSISTENT THERMOCHEMISTRY

LILE WANG¹ AND JEREMY J. GOODMAN¹

Draft version June 13, 2017

正確な質量損失率の決定

Ingredients	Alexander et al. (2006)	Owen et al. (2010)	Gorti et al. (2009)	Nakatan	i+ Wang+
Hydrodynamics	Yes	Yes	No	0	0
Thermal Calculation	No	Yes	Yes	0	0
Chemistry Calculation	No	No	Yes	0	0
FUV heating	No	No	Yes	0	0
EUV heating	Yes	Yes	Yes	0	0
X-ray heating	No	Yes	Yes	×	0
				PLUTO	Athena++
				2D	2D
				ray-tracing	ray-tracing

see also Haworth+16 (近傍大質量星による光蒸発)

Wang+Goodman17, submitted

● EUV · FUV · X線全て考慮

EUV (+hard FUV*) が最も大事で, M~IO⁻⁹M⊙/yr ^{*II.2–I3.6eV,} H₂ pumpingによる加熱 これまでの理解よりI桁小さい!

- Gorti+Hollenbach09では音速点の位置
 (→密度・温度)の見積もりが不正確
 → 光蒸発率の推定に流体計算は必須
- Owen+の簡略化した温度推定より低温
 → 熱力学・化学反応は重要

※仮定しているダストサイズの影響大 ※スペクトルなど改善点あり

課題と近年の進展

光蒸発

化学反応と輻射輸送を同時に解く流体計算
 正確な質量損失率の決定

- 2. 穴空き円盤の散逸過程
- 3. 若い星のXUV光度と(X線)スペクトルの見積もり

降着

遷移円盤との比較

点:観測

色:滞在時間→検出確率(理論モデル) 線:Rhole-M図上での"進化トラック"

遷移円盤との比較

点:観測

色:滞在時間→検出確率(理論モデル)

線:Rhole-M図上での"進化トラック"

穴空き円盤の力学的散逸: Thermal sweeping

X線~I0²²cm⁻²

穴空き円盤の力学的散逸: Thermal sweeping

課題と近年の進展

光蒸発

- 化学反応と輻射輸送を同時に解く流体計算
 正確な質量損失率の決定
- 2. 穴空き円盤の散逸過程
- 3. 若い星のXUV光度と(X線)スペクトルの見積もり

若い星のXUV光度

×線・紫外線光度は光蒸発率を決 定する重要な要素

	コロナ活動	降着	光球	
FUV	\bigcirc	\bigcirc	>2M⊙	≈10 ³⁰ erg/s?
EUV	\bigcirc	?	>2M⊙	~10 ⁴⁰ -10 ⁴² s ⁻¹ ?
Х	\bigcirc	少数?	×	~10 ²⁸ -10 ³⁰ erg/s

e.g., Gudel07, Ingleby+11, Kastner+02, Alexander+14, 高棹さん講演

- EUV光度は不定性大
 - ・強い星間減光のため、観測例は近傍の数天体のみ
 - •間接的に見積もる必要 Pascucci+12

降着衝撃波

 \sim

コロナ活動

Herczeg07,

Espaillat+13

光球面

- jet, wind, 降着流などで減光されずに円盤に到達できるか
 Alexander+05, 高棹さん講演
- 降着により軟X線が生成?
 Kastner+02
 スマペクトリの硬さけ光蒸発率に影響する
 - → スペクトルの硬さは光蒸発率に影響するため重要

光度だけではなく、スペクトルも大事

課題と近年の進展

光蒸発

- 化学反応と輻射輸送を同時に解く流体計算
 正確な質量損失率の決定
- 2. 穴空き円盤の散逸過程
- 3. 若い星のXUV光度と(X線)スペクトルの見積もり

降着

1. 粘性降着過程 2. 磁場駆動円盤風による 角運動量輸送・降着過程

粘性降着の散逸過程への影響

- MRIは起きるのか?(非理想MHD効果による抑制?) Turner+14
 α粘性パラメータの値?
- Dead zoneの影響(α粘性パラメータの空間分布)
 Bae+13
 Morishima I 2: 粘性降着 w/ MRI dead zone + X線光蒸発

粘性降着の散逸過程への影響

- MRIは起きるのか?(非理想MHD効果による抑制?) Turner+14
 α粘性パラメータの値?
- Dead zoneの影響(α粘性パラメータの空間分布)
 Bae+13
 Morishima I 2: 粘性降着 w/ MRI dead zone + X線光蒸発

磁場駆動円盤風

十分傾いた磁場に凍結したガスは遠心力により流出

• 重要な点: 質量損失だけでなく角運動量輸送も駆動

e.g., Suzuki+16, 森さん講演 HL Tauの"αパラドックス" → Bai16, Hasegawa+17, 奥住さんポスター

⇒ 今後光蒸発と磁場駆動円盤風を
 統合したモデルの構築が必要
 Bai+16

磁気遠心力風

強

磁場駆動円盤風

-4.00

-5.00

最後に:惑星形成への応用

- ●観測:数Myrののち、素早い散逸を要請
 - Z・M★の環境効果もある
 - ただし星団の年齢は注意が必要
- •粘性降着+光蒸発で観測と定性的には整合的な進化
 - FUV/X線で~I0⁻⁸M_☉/yr
 - •課題:
 - 理論:自己無撞着な輻射流体計算 (先月2報 → 仲谷さん講演)
 - 観測:XUV光度の制約
- 磁場駆動円盤風による質量損失と角運動量輸送も円盤進化
 に重要

Appendix

円盤寿命の観測:近接連星の影響

XUV光度

• コロナ活動

e.g., Flaccomio+03, Gudel07, Preibisch+05, Telleschi+07

- 若い星のX線は~IOMyrでほぼ一定(磁気活動の"Saturation")
- EUV光度は不定性大
 - ・強い星間減光のため、観測例は近傍の数天体のみ Espaillat+13
 - 間接的に見積もる必要 Pascucci+12
- 降着起源とコロナ起源の割合
 - 降着起源だけでは円盤にギャップを開けることは不可能
 - → 素早い散逸過程にはならない Matsuyama+03
 - 降着により軟X線が生成? Kastner+02
 - → スペクトルの硬さは光蒸発率に影響するため重要
- jet, wind, 降着流などで減光されずに円盤に到達できるか
 Alexander+05, 高棹さん講演

XUV光度

• コロナ活動

e.g., Flaccomio+03, Gudel07, Preibisch+05, Telleschi+07

- 若い星は高速回転・活発な対流により強い磁気活動
- ●若い星のX線は~IOMyrでほぼ一定(磁気活動の"Saturation")

FUVとLaccが相関

降着流の速度や構造→高棹さん講演 Calvet & Gullbring 1998

短い遷移円盤期

- ・遷移円盤の個数は~10%程度
 → 円盤寿命 ~Myr と合わせると,
- ・散逸期は~0.IMyr
 ・inside-out的な散逸
 を示唆している可能性

100 (F-M stars) 8 fraction 10 disk transition 1 Espaillat+14, PPVI 12 0 2 10 14 4 6 8 age (Myr)

> See also Skrutskie+90, Muzerolle+10, Koepferl+13

ただし遷移円盤の成因の候補は
ガス円盤の散逸以外にもあるので注意:
・ダスト成長によるopacityの低下
・ダストのfiltration
・(複数) 惑星によるギャップ生成

遷移円盤の成因候補

Espaillat+14, PPVI

TABLE 2

OBSERVABLE CHARACTERISTICS OF PROPOSED DISK CLEARING MECHANISMS

Mechanism	Dust Distribution	Gas Distribution	Accretion Rate	Disk Mass	L_X
Viscous evolution	No hole/gap	No hole/gap	Low accretion	Low mass	No dependence
Grain growth	No hole/gap	No hole/gap	Unchanged	All masses	No dependence
Photoevaporation	R_h -radius hole	No/little gas within R_h	No/low accretion	Low mass	Correlated
$\sim 0.1 M_J$ planet	Gap	No hole/gap	Unchanged	All masses	No dependence
$\sim 1 M_J$ planet	Gap	Gap	$\sim 0.1 - 0.9$ CTTS	Higher masses ^a	No dependence
Multiple giant planets	Gap/ R_h -radius hole	No/little gas within R_h	No/low accretion	Higher masses ^a	No dependence

NOTE.—Here we refer to the dust and gas distribution of the inner disk. Relative terms are in comparison to the properties of otherwise comparable disks around CTTS (e.g., objects of similar age, mass). ^aHigher mass disks may form planets easier according to core accretion theory (see chapter in this volume by *Helled et al.*). Observations are needed to test this.

遷移円盤:最新の観測例

