基研研究会「原始惑星系円盤」 2017年7月10-12日 @ 京都大学 原始惑星系円盤からの 衝撃波トレーサー分子 の ALMA 観測

野村英子¹, 樋口あや², 坂井南美², 山本智³, 長沢真樹子⁴, 田中今日子⁵, 三浦均⁶, 中本泰史¹, 田中秀和⁷, 山本哲生⁵, C. Walsh⁸, T.J. Millar⁹

1. 東工大, 2. 理研, 3. 東大, 4. 久留米大, 5. 北大低温研, 6. 名市大, 7. 東北大, 8. U. of Leeds, 9. Queen's U. Belfast

Gas & Dust Observations in Disks

Revealing physical & chemical structure of planet-forming regions

原始惑星系円盤からのガス輝線の観測 UV H₂ Lyman-Werner (sub)mm band transitions ¹²CO, ¹³CO, C¹⁸O, C¹⁷O, ¹³C¹⁸O Optical [OI] 6300A HCO^+ , $H^{13}CO^+$, DCO^+ , NIR C_2H_1 C- C_3H_2 , H_2CO_1 CH₃OH, $H_2 v = 1-0 S(1), S(0),$ HCN, H¹³CN, DCN, HC¹⁵N, $CO \Delta v = 2, \Delta v = 1,$ HNC, CN, N_2H^+ , N_2D^+ , H_2O , OH, HCN, C_2H_2 , CH₄ HC_3N , CH_3CN , CS, $C^{34}S$, etc. MIR $H_2 v = 0.0 S(1), S(2), S(4)$ infrared (sub)mm H_2O_1 OH, HCN, C_2H_2 , CO₂, etc. (Spitzer Space Telescope) FIR [OI] 63um, 145um, CO_1 , H_2O_1 , CH^+ , HD_1 , NH_3 , etc. (Herschel Space Observatory)

Evaporation of Icy Planetesimals

Formation of protoplanet/planet

 (\Box)

(d)

Excite eccentricities of planetesimals ↓ Evaporation of icy planetesimals due to shock heating

e.g., Kokubo & Ida 1998, Weidenschilling+ 1998, Tanaka+ 2013, Nagasawa+ 2014

()

planetesimal + fine dust

Can we detect evaporation of icy planetesimals with ALMA?

化学モデル

$$\frac{d(n_{\alpha}v_{\alpha})}{dr} = \sum_{\beta} A_{\alpha\beta}n_{\beta} + \sum_{\beta,\gamma} B_{\alpha\beta\gamma}n_{\beta}n_{\gamma}$$

化学ネットワーク:375種,4346気相反応

UMIST Database for Astrochemistry (Woodall + 2007) 初期条件:固相分子の気相への蒸発

 CH_4 , C_2H_2 , C_2H_4 , C_2H_6 , CO_1 , CO_2 , O_2 , H_2O_1 , H_2CO_1 , CH_3OH_1 , $C_2H_5OH_1$, N_2 , NH_3 , H_2S_1 , OCS_2

300

250

200

150

100

50

Yamazaki, Nakamoto, Nakajima, in prep. Nakajima (MSci thesis, 2009)

ダスト温度 → ダストへの凍結

ダスト密度 → ダストへの凍結時間

freeze-out dust grains

原始星天体と円盤からの硫黄分子の観測

ALMA Observations of SO & H₂S Date: 2016. 8. 1, 17, 27 ALMA cycle 3, band 6 (PI: H. Nomura) Dust cont., SO 6(5)-5(4), H₂S $2_{2,0}-2_{1,1}$ 10 T Tauri disks in Taurus (angular resolution ~ 0.5") SO & H₂S upper limits

By A. Higuchi

cf. SO 6₇-5₆ @ jets 0.48-1.6Jy km s⁻¹ by IRAM 30m (Guilloteau et al. 2016)

原始惑星系円盤からの氷蒸発分子の観測

Disk radii of 30-100AU for CH_3CN , 30-60AU for CH_3OH $CH_3CN/HCN \sim 5-20\%$, $CH_3OH/H_2O \sim 0.7-5\% \Leftrightarrow$ comets * gas-phase abundances \neq icy grain abundances

まとめ

原始惑星系円盤中の硫黄系分子のALMA観測

原始惑星系円盤中の惑星系形成にともなう 氷微惑星の蒸発を H₂S & SO 輝線観測で検証 10個のTタウリ円盤で H₂S & SO 輝線を観測 観測上限値 + モデル計算 → 円盤外縁領域の H₂S & SO 存在量に制限 $x(SO) < 10^{-10} \& x(H_2S) < 10^{-10}$ 彗星中のH₂S, SO/H₂O比&円盤・彗星の CH₃OH/H₂O 比とコンシステント 円盤中の氷&氷微惑星蒸発に強い制限を与える ためには、より高感度の観測が必要

平均すると蒸発した分子の10%程度が気相に滞在 微惑星の運動が励起されている時間 ~ 10⁶ yrs (Nagasawa et al. 2014)