

原始惑星系円盤における リング・ギャップ構造形成メカニズム

Sanemichi Takahashi (Kogakuin University/NAOJ)

リング・ギャップ形成メカニズムの解明が 惑星形成過程の理解のヒントになる

リング・ギャップ形成メカニズム 多重リング

惑星 (cf. Kanagawa et al. 2015, 2016, Dong et al. 2015, 2017, Jin et al. 2016)

ダスト進化 (成長:Zhang et al. 2015 Sintering:Okuzumi et al. 2015)

永年重力不安定性 (cf. Takahahsi inutsuka 2014, 2016)

ダスト沈殿に伴う不安定性 (Loren-Aguilar & Bate 2015)

MRI (dead zone, zonal flow) (cf. uribe et al. 2011, Flock et al. 2014)

単ーリング/ギャップ(遷移円盤) 円盤散逸(Photoevaporation, 円盤風)

ダスト成長(内側で早い成長)

· イントロ

・惑星によるギャップ構造形成

・ダスト焼結によるリング構造形成

・永年重力不安定性によるリング構造形成

・モデルの比較

・イントロ

・惑星によるギャップ構造形成

・ダスト焼結によるリング構造形成

・永年重力不安定性によるリング構造形成

・モデルの比較

惑星と円盤ガスとの重力相互作用でギャップを形成

惑星がガスに与えるトルク (Lin and Papaloizou 1979) 惑星重力 $\Rightarrow \delta V_r$ 運動エネルギー保存 $v_{\theta 2}^2 + \delta v_r^2 = v_{\theta 1}^2$ ⇒回転速度の減少 $v_{\theta 2} < v_{\theta 1}$ 惑星周囲にギャップ形成 トルクα $\left(\frac{M_{\rm p}}{M_{\star}}\right)^2 R_{\rm p}^3 \Omega_{\rm p}^2 \Sigma_{\rm p}$

観測と	この	比較	Ч Х			
	$R_{ m in}$	R_{out}	$rac{\Delta_{ m gap}}{R_p}$	$\frac{n_p}{R_p}$	$M_p \left(M_J \right)$	
	(AU)	(AU)	÷	Ŧ	(from the width)	
10AU gap	7	16.5	0.81	0.05	1.4	
30AU gap	28.5	36	0.23	0.07	0.2	
80AU gap	70	94	0.29	0.1	0.5	
或星(の観測	/或星	最大質	f 量のf	制限からモデ	ルを検証可能

惑星形成? 全てのギャップを惑星で説明?

ーつの惑星で複数のリングを 説明可能かもしれない (Dong et al. 2017)

・イントロ

・惑星によるギャップ構造形成

・ダスト焼結によるリング構造形成

・永年重力不安定性によるリング構造形成

・モデルの比較

ダスト進化によるリング・ギャップ形成

観測で見えているのはダストの熱放射

→ガスが滑らかな分布でも、ダスト放射に構造があれば良い

ダストの焼結による構造形成(Okuzumi et al. 2015)

円盤温度≲各分子の昇華温度で焼結が起こる ⇒モノマーの結合部部が太くなる ⇒衝突時にエネルギーを逃がしにくくなり、**壊れやすくなる**

Pino et al. 2014

・イントロ

・惑星によるギャップ構造形成

・ダスト焼結によるリング構造形成

・永年重力不安定性によるリング構造形成

・モデルの比較

Secular GIのメカニズム

Secular GIのメカニズム

色の濃淡:ダスト面密度

長波長の揺らぎはコリオリカで安定化される。

Secular GIのメカニズム

色の濃淡:ダスト面密度

長波長の揺らぎはコリオリカで安定化される。

ガス・ダスト摩擦でダストの速度揺らぎが減少 ⇒長波長の揺らぎが不安定化 →Secular Glが成長

永年重力不安定性によるリング形成

Takahashi and Inutsuka 2014

- ◆ 永年重力不安定性(Secular GI) ダスト–ガスの摩擦が引き起こす重力不安定性
- ◆ 成長時間が長い⇒リングとして観測可能
- ◆ 半径100AUに13AU間隔のリング構造が形成
- ◆ 「**ダスト多**」と「**乱流弱**」が必要

リング構造がダスト/ガス>0.01と 弱い乱流(α≤10⁻³)を表す指標になる

Secular GI によるリング構造形成シナリオと整合的 実際にHL TauはSecular GI に対して不安定か?

分散関係 @100AU

不安定モードの成長でリング構造形成を説明可能

典型的にはリング間隔~0.1r

(半径と同程度のリング形成は困難、リングのradial drift?)

Secular GI で予想されるダスト分布は?

→大局的非線形計算が必要(次の講演)

ダスト成長・サイズ分布との関係?

モデルの比較						
	惑星	焼結	Secular Gl			
ガス構造	有	無	ほぼ無			
温度分布	ギャップ構造	リング位置/幅	安定条件			
リングの ダストサイズ	大	」、	大			
リング間隔	惑星の軌道	温度分布	不安定波長			
得意な年齢	老	若	若			
惑星形成	結果		原因			

モデルの検証/複数天体を説明可能か?

- ・ALMAによるリング・ギャップ構造の観測により、その 形成メカニズムについての研究が注目されている。
- 形成メカニズムの解明から、円盤進化・惑星形成の理解
 が深まることが期待される。
- ・形成メカニズムとして、惑星によるギャップ、ダスト焼結、 Secular GI等様々な理論が提唱されているが、決着はつ いていない。
- 各モデル毎に、予想するガス分布などに違いがある。各
 モデルの研究と観測の進展からモデルの制限が可能か?
- ・"一般的な"円盤進化・惑星形成の理解という観点からは、 複数天体を一貫して説明可能なモデルを探すことも重要