Counter-rotating, Infalling Envelope around the central Keplerian Disk in IRAS 04169+2702

Shigehisa Takakuwa, Yusuke Tsukamoto (Kagoshima University). Kazuya Saigo, \& Masao Saito (NAOJ)

この発表の内容：

Class I 原始星 IRAS 04169＋2702 の SMA 観測の結果

Infalling and Counter－Rotating
Envelope（ $\mathrm{C}^{18} \mathrm{O}$ 1－0，2－1）

Introduction

Rule of Magnetic Fields in Protoplanetary-Disk Formation
\rightarrow Still Controversial.
Magnetic Braking cannot make Large (>10 AU) Disks ? Non-Ideal MHD Effects can form Disks ?

Magnetic Fields are not easy to measure observationally.

Evidence for Magnetic Fields from Observed Gas Motions ?
\rightarrow Counter Rotation!!

Our Target: Class I Protostar IRAS 04169+2702

Tbol ~133 K; Lbol ~0.76 Lsolar; in the B213 Cloud 2200×1100 au Envelope in $\mathrm{C}^{18} \mathrm{O}$ (1-0)

NW (Red) /
Envelope Velocity Gradient SE (Blue)

SMA Observations of IRAS 04169+2702

${ }^{13} \mathrm{CO}(3-2)$ with the Extended \& VEX Configurations Resolution ~ 0.5 arcsec

SMA Archival Data of IRAS 04169+2702 (Pl. Tyler L. Bourke)
${ }^{12} \mathrm{CO}(2-1), \mathrm{C}^{18} \mathrm{O}(2-1)$, and SO (65-54)
with the Compact Configuration
Resolution ~2-3 arcsec

Apparently No ALMA data for this Source.

$\underline{12 \mathrm{CO}(2-1) ~ O u t f l o w ~}$

Outflow Direction Perpendicular to the major axis of the r~1000 AU scale $\mathrm{C}^{18} \mathrm{O}(1-0)$ Envelope

SMA ${ }^{13} \mathrm{CO}(3-2)$ Velocity Channel Maps

NW (Blue)	
SE (Red)	NW (Red)
r~100 AU scale Disk	SE (Blue)

SMA SO (65-54) Velocity Channel Maps

Velocity Gradient consistent with that of ${ }^{13} \mathrm{CO}(3-2)$
\rightarrow Opposite to that of the $\mathrm{C}^{18} \mathrm{O}(1-0)$ Envelope.

SO is a tracer of the accretion shock (Yen et al. 2014) \rightarrow The outermost ringlike region of the Disk?

SMA C ${ }^{18} \mathrm{O}(2-1)$ Velocity Channel Maps

r~400 AU scale inner Envelope SE (Blue)
r~1000 AU Envelope SE (Blue)

SMA High-Reso. ${ }^{13} \mathrm{CO}(3-2)$ and Low-Reso. $\mathrm{C}^{18} \mathrm{O}(2-1)$

Along the major axis, r~100 AU ${ }^{13} \mathrm{CO}$ (SO as well) and $\mathrm{r} \sim 400 \mathrm{AU} \mathrm{C}^{18} \mathrm{O}$ exhibit the Opposite Velocity Gradient. High-Velocity Blueshifted $\mathrm{C}^{18} \mathrm{O}$ 2-1 Emission \rightarrow Same as the ${ }^{13} \mathrm{CO}$ component?
$\mathrm{C}^{18} \mathrm{O}$ also exhibit the NE-SW Velocity Gradient \longrightarrow Infall

SMA P-Vs along the Major axis

${ }^{13} \mathrm{CO}$ can be r~100 AU Keplerian with 0.1 Msolar.
$\mathrm{C}^{18} \mathrm{O}$ Envelope exhibits the opposite rotation, plus the Blueshifted Disk component.

Discussion

Inversion of the rotation occurs between r~100 and 400 AU.
Cannot be explained with the simple dynamics.
\rightarrow Need to invoke Magnetic Fields!

Hall Effect accelerates disk rotation.

Angular momenta conservẵotion
\rightarrow Counter Rotation in the outer envelope.

Tsukamoto et al. 2015

Summary

Possible Counter Rotation between
the r~100 AU scale Disk in ${ }^{13} \mathrm{CO} 3-2$ and SO and the $\mathrm{r}>400 \mathrm{AU}$ scale Envelope in $\mathrm{C}^{18} \mathrm{O}(1-0)$ and (2-1)

Observational Signature of the Effect of the magnetic field, "Hall Effect" ?

Counter rotation between protostellar envelopes and disk should be an unique measure to identify the effect of magnetic fields in disk formation.

