Natural Supersymmetry at the LHC

JHEP12(2010)019

Masaki Asano

(Tohoku Univ.)

Collaborator: Hyung Do Kim, Ryuichiro Kitano, Yasuhiro Shimizu

LHC experiments have started taking data.

<mark>???</mark>

写真提供 CERN アトラス実験グループ

What will appear at the LHC?

- Higgs boson is the last undiscovered particle in the SM (Standard Model) of particle physics.
- Higgs will restore the unitarity of W_LW_L scatt.

- Higgs boson is the last undiscovered particle in the SM.
- Higgs will restore the unitarity of W_LW_L scatt.
- EWPMs (Electroweak Precision measurements)
 are consistent with light Higgs boson.

http://lepewwg.web.cern.ch/LEPEWWG/plots/summer2005/s05_stu_contours.eps

- Higgs boson is the last undiscovered particle in the SM.
- Higgs will restore the unitarity of W_LW_L scatt.
- EWPMs (Electroweak Precision measurements)_⊢ are consistent with light Higgs boson.
- SM (light Higgs) is good for data.

What about it for theoretical side?

http://lepewwg.web.cern.ch/LEPEWWG/plots/summer2005/s05_stu_contours.eps

Introduction What about it for theoretical side?

In the SM, there is the hierarchy problem.

The Higgs Potential V = m² |h|² + (\lambda/4) |h|⁴
 (v² = - 2 m² /\lambda, mh² = \lambda v²)
 The Higgs mass mh² / 2 = - m²

In the SM, there is the hierarchy problem.

• The Higgs Potential $V = m^2 |h|^2 + (\lambda/4) |h|^4$ $(\mathbf{v}^2 = -2 \mathbf{m}^2 / \lambda,$ $\mathbf{m}_{\mathbf{h}}^2 = \lambda \mathbf{v}^2 \qquad)$ • The Higgs mass $m_h^2 / 2 = -m^2 + \delta m_h^2$ Quantum correction $\delta m_h^2 \sim (y_t^2/16\pi^2) \Lambda^2$ ~ $(y_t^2/16\pi^2) M_{Pl}^2$ - hierarchy problem $m_{h}^2 / 2 \iff (y_t^2 / 16\pi^2) M_{Pl}^2$

 Λ^2 terms are canceled!

 Λ^2 terms are canceled! There are only logarithmic terms.

light Higgs!

Higgs Potential gauge coupling ! $V = m_1^2 |H_1^0|^2 + m_2^2 |H_2^0|^2 + (m_3^2 H_1^0 H_2^0 + h.c.) + \frac{g^2 + g^{'2}}{8} (|H_1^0|^2 - |H_2^0|^2)^2$

in MSSM (Minimal Supersymmetric Standard Model)

the lightest Higgs boson mass, m_h, can be as large as 130 GeV.

Y. Okada, M. Yamaguchi and T. Yanagida, Prog. Theor. Phys. 85, 1 (1991); J. R. Ellis, G. Ridolfi and F. Zwirner, Phys. Lett. B 257, 83 (1991); H. E. Haber and R. Hempfling, Phys. Rev. Lett. 66, 1815 (1991).

 Λ^2 terms are canceled! There are only logarithmic terms.

light Higgs + R-parity→ consistent with EWPM !

- Higgs boson is the last undiscovered particle in the SM.
- Higgs will restore the unitarity of W_LW_L scatt.
- EWPMs (Electroweak Precision measurements)_⊢ are consistent with light Higgs boson.
- SM (light Higgs) is good for data.

What about it for theoretical side?

http://lepewwg.web.cern.ch/LEPEWWG/plots/summer2005/s05_stu_contours.eps

 Λ^2 terms are canceled! There are only logarithmic terms.

light Higgs + R-parity→ consistent with EWPM !

Sounds like a good idea

 Λ^2 terms are canceled!

There are only logarithmic terms.

Fine-tuning disappear ?

 Λ^2 terms are canceled!

There are only logarithmic terms.

Fine-tuning disappear ?

No.

We should give more consideration to finetuning problem in SUSY if we take the naturalness seriously.

Naturalness in SUSY model

What kind of a SUSY signal with "Naturalness" will appear

How far is the fine-tuning?

1%?, 0.01% ? 10%?

In the SM with cutoff scale Λ^{\sim} 10TeV,

Naturalness

(← the scenario is also good for data and theory.)

$$m_{h}^{2} / 2 \iff (y_{t}^{2} / 16\pi^{2}) M_{Pl}^{2}$$

 $(100 \text{ GeV})^2 / 2 \iff (y_t^2 / 16\pi^2) (10 \text{ TeV})^2$

How far is the fine-tuning?

1%?, 0.01% ? 10%?

In the SM with cutoff scale Λ^{\sim} 10TeV,

Naturalness

(← the scenario is also good for data and theory.)

$$m_{h}^{2}/2 \iff (y_{t}^{2}/16\pi^{2}) M_{Pl}^{2}$$

 $(100 \text{ GeV})^2 / 2 / (y_t^2 / 16\pi^2) (10 \text{TeV})^2 < 1\%$

- If we allow ~ 1 % tuning, we don't need to consider low scale SUSY for Naturalness.
- If we consider the low scale SUSY for Naturalness, ≥10 % tuning is favor.

In this talk, < 10 % tuning is called fine-tuning.

 $V = m^2 |h|^2 + (\lambda/4) |h|^4$ $- 2 m^2 = m_h^2 \le (130 \text{ GeV})^2$

if each contribution is much larger than Higgs mass, fine-tuning is required.

 $V = m^2 |h|^2 + (\lambda/4) |h|^4$ $- 2 m^2 = m_h^2 \le (130 \text{ GeV})^2$

$$m^2 = \mu^2 + (m_{Hu}^2)_{tree} + (m_{Hu}^2)_{rad}$$

For µ term,

Requiring $\Delta^{-1}=m_h^2/2\mu^2$ >10%,

$$|\mu| \lesssim 290 \text{ GeV}$$

 $V = m^2 |h|^2 + (\lambda/4) |h|^4$ $- 2 m^2 = m_h^2 \le (130 \text{ GeV})^2$

$$m^2 = \mu^2 + (m_{Hu}^2)_{tree} + (m_{Hu}^2)_{rad}$$

For m_{Hu} term, $m_{H_u}^2|_{\text{rad}} \simeq -\frac{3y_t^2}{8\pi^2} (m_{Q_3}^2 + m_{U_3}^2 + |A_t|^2) \ln\left(\frac{M_{\text{mess}}}{m_{\tilde{t}}}\right)$ Because the small logarithm is favor, $M_{\rm mess} \sim 10 {
m TeV}$ we assume

 $V = m^2 |h|^2 + (\lambda/4) |h|^4$ $- 2 m^2 = m_h^2 \le (130 \text{ GeV})^2$

$$m^2 = \mu^2 + (m_{Hu}^2)_{tree} + (m_{Hu}^2)_{rad}$$

For m_{Hu} term,

(Stop/Higgsino/gravitino) Measurement of Natural SUSY signals at the LHC

(Stop/Higgsino/gravitino)

In the final state,

there are 2 missing particles(gravitino).

M_{T2} is a helpful variable:

The endpoint shows the parent particle mass

$$M_{T2} = \min_{\mathbf{k}_T + \mathbf{k}'_T = \not p_T} \left[\max \left\{ M_T(\mathbf{p}_T, \mathbf{k}_T), M_T(\mathbf{p}'_T, \mathbf{k}'_T) \right\} \right]$$
$$M_T^2(\mathbf{p}_T, \mathbf{k}_T) = m_{\text{visible}}^2 + m_X^2 + 2 \left(E_T^{\text{visible}} E_T^X - \mathbf{p}_T \cdot \mathbf{k}_T \right)$$
$$\leq \mathsf{M}_{\text{parent particle}}$$

 χ₁⁰ is mainly produced from stops which are produced in pair

 \rightarrow there are a pair of χ_1^0 in each event

 $\begin{array}{c} \blacksquare \quad \mathsf{M}_{\mathsf{T2}} \text{ variable for the system;} \\ \chi_1^0 \chi_1^0 \to (Z\tilde{G})(Z\tilde{G}) \to (l^+ l^- \tilde{G})(l'^+ l'^- \tilde{G}) \\ \end{array} \begin{array}{c} b \\ \mathsf{M}_{\mathsf{T2}} \leqq \mathsf{M}_{\mathsf{T2}} \end{array}$

We assume massless gravitino

 M_{T2} is a helpful variable.

$$M_{T2} = \min_{\mathbf{k}_T + \mathbf{k}'_T = \not p_T} \left[\max \left\{ M_T(\mathbf{p}_T, \mathbf{k}_T), M_T(\mathbf{p}'_T, \mathbf{k}'_T) \right\} \right] \\ M_T^2(\mathbf{p}_T, \mathbf{k}_T) = m_{\text{visible}}^2 + m_X^2 + 2 \left(E_T^{\text{visible}} E_T^X - \mathbf{p}_T \cdot \mathbf{k}_T \right) \\ \leq \mathsf{M}_{\text{parent particle}}$$

(to reduce ttbar)

 χ₁⁰ is mainly produced from stops which are produced in pair

 \rightarrow there are a pair of χ_1^0 in each event

 $\begin{array}{c} \blacksquare \quad \mathsf{M}_{\mathsf{T2}} \text{ variable for the system;} & \overline{b} \\ \chi_1^0 \chi_1^0 \to (Z\tilde{G})(Z\tilde{G}) \to (l^+ l^- \tilde{G})(l'^+ l'^- \tilde{G}) & \mathsf{M}_{\mathsf{T2}} \leqq \mathsf{M}_{\mathsf{T2}} \end{array}$

We require

 $m_{\chi_1^0} = 198 \pm 2 \text{ GeV}$ (193.8 GeV)

 $\chi_1^- \bigwedge \chi_1^0$ soft

- Z to be lepton pairs with same flavor and opposite charges. If all 4 leptons have the same flavor, we take the combination in which the difference of 2 reconstructed Z masses is smaller than the other combination.
 - four leptons $(p_T > 10 \text{ GeV})$
 - 85 GeV $< m_{l^+l^-} < 95$ GeV
 - $M_{\rm eff} > 250~{\rm GeV}$ and $p_T > 50~{\rm GeV}$

measurement of stop mass

Lighter stop mass measurement

- Stop mass can be measured by M_{T2} ≦ M_stop t₁ using the M_{T2} distribution by including two hard jets.
 - → we require 2 $\leq N_j \leq$ 5hard jets (pT > 20 GeV)

We use a pair of (bZ) combinations as visible particles in the definition of the M_{T2} variable.

soft jets

 χ_1^0

 χ_1^0

soft jets

 \tilde{G}

 \tilde{G}

 χ_1^+

 χ_1

Strategy to select a combination

$$m_{j_1Z_1} + m_{j_2Z_2} = \min_{i \neq j} (m_{j_iZ_1} + m_{j_jZ_2})$$

At least either of j₁ or j₂ is b-tagged

measurement of Higgs mass from SUSY cascade decay

In signal events, we treat

two leading p_T jets $(j_1 \text{ and } j_2)$ as the Higgs boson lepton pair $(l_1 \text{ and } l_2)$ as the Z boson

In signal events, we treat

two leading p_T jets $(j_1 \text{ and } j_2)$ as the Higgs boson lepton pair $(l_1 \text{ and } l_2)$ as the Z boson

■ To reduce ttbar BG (→ 2 b-jets, 2 leptons & MET), we use M_{T2} variable for CUT. $M_{T2}((j_1l_1)(j_2l_2)) > 180 \text{GeV}$

(ttbarBG < mt ~170 GeV)

In signal events, we treat

two leading p_T jets $(j_1 \text{ and } j_2)$ as the Higgs boson lepton pair $(l_1 \text{ and } l_2)$ as the Z boson

■ To reduce ttbar BG (→ 2 b-jets, 2 leptons & MET), we use M_{T2} variable for CUT. $M_{T2}((j_1l_1)(j_2l_2)) > 180 \text{GeV}$ (ttbarPG < mt ~170 G

(ttbarBG < mt ~170 GeV)

 To reduce the combinatorial BG,

> $M_{T2}((j_1j_2)(l_1l_2)) < 200 \,\,{
> m GeV}$ (signal < m $\chi_1^0 \sim$ 195 GeV)

In signal events, we treat

two leading p_T jets $(j_1 \text{ and } j_2)$ as the Higgs boson lepton pair $(l_1 \text{ and } l_2)$ as the Z boson

CUT

Discovery of Natural SUSY signals at the LHC

SUSY Search

The ATLAS Collaboration 0901.0512

msugra

MA, H. D. Kim, R. Kitano, Y. Shimizu, 2010

Now we are studying

discovery potential of low scale SUSY fine tuning was a good guiding principle or not

SUSY Search

> discovery potential of low scale SUSY

fine tuning was a good guiding principle or not

SUSY Search

discovery potential of low scale SUSY

fine tuning was a good guiding principle or not