Heterotic Asymmetric Orbifold and E6 GUT Model

Shogo Kuwakino (Nagoya University)

based on [arXiv:1012.1690]

In collaboration with M. Ito, N. Maekawa, S. Moriyama, K. Takahashi, K. Takei, S. Teraguchi, T. Yamashita

March7, 2011. 基研研究会素粒子物理学の進展2011 @ YITP

1

Introduction

• String \rightarrow Standard Model

- String theory
 - -- A candidate which describe quantum gravity and unify four forces
 - -- Is it possible to realize phenomenological properties of Standard Model ?
- Minimal Supersymmetric Standard Model (MSSM) -- A candidate BSM
 - -- Non-Abelian gauge symmetries ($SU(3) \times SU(2) \times U(1)$)
 - -- Three chiral generations (Quarks, Leptons)
 - -- Yukawa hierarchy
 - -- N=1 SUSY ...
- String GUT scenario

String $\rightarrow \underline{\text{GUT}} \rightarrow \text{MSSM}$

4D SUSY-GUT with adjoint representation Higgs

Its VEV breaks GUT symmetry spontaneously

Introduction

• $E_6 \times U(1)_A(\times SU(2)_H)$ GUT models

Maekawa, Yamashita ('01-'04)

- Unify all SM particles into GUT matter multiplets (E6)
- Realistic Yukawa hierarchies (E6, U(1)A)
- Realize doublet-triplet splitting (U(1)A)
- Solve SUSY flavor/CP problem (SU(2)H)

Generic interaction : Include all terms allowed by symmetry

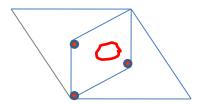
 \rightarrow Matter contents determine the models

Anomalous U(1) symmetry : Often appear in low energy effective theory of string theory.

 \rightarrow Can we realize these GUT models in string theory ?

Introduction

- Orbifold compactification of heterotic string theory
- (Symmetric) orbifold compactification Dixon, Harvey, Vafa, Witten '85,'86
 - Advantage
- E6 GUT gauge symmetry
- N=1 supersymmetry
- Disadvantage No adjoint representation Higgs



Narain, Sarmadi, Vafa '87

Asymmetric orbifold compactification, Diagonal embedding method

Advantage • modding out the permutation symmetry of the models

Ex) $G_1 \times G_1 \times G_1 \to G_3$

• Realize adjoint representation Higgs(es) !

Goal : Asymmetric orbifold \rightarrow 4D E6 SUSYGUT with adjoint representation Higgs

E6 Unification

• E6 Unification

- Bando, Kugo (1999)
- All quarks and leptons are unified into $\Psi_i(\mathbf{27})$ (i = 1, 2, 3)

$$\Psi_{i}(\mathbf{27}) = \mathbf{16}_{i}[\mathbf{10}_{i} + \bar{\mathbf{5}}_{i} + \mathbf{1}_{i}] + \mathbf{10}_{i}[\mathbf{5}_{i} + \bar{\mathbf{5}}_{i}'] + \mathbf{1}_{i}[\mathbf{1}_{i}]$$

$$\mathbf{\overline{5}}_{i}:3$$

$$\mathbf{10}(Q, U_{\mathrm{R}}^{\mathrm{c}}, E_{\mathrm{R}}^{\mathrm{c}}) \quad \mathbf{\overline{5}}(L, D_{\mathrm{R}}^{\mathrm{c}})$$

$$\mathbf{\overline{5}}_{i}:3$$

Yukawa structure

-- Low energy $\overline{5}$ are from 1, 2 generations $\Psi_1(27), \Psi_2(27)$

 $\lambda = 0.22$

5

-- Mixing of ${f 5}\,$ realize hierarchies

Up-type Yukawa

Down-type, Charged lepton Yukawa (Mild hierarchy)

Requirements for String Model Building

Typical E6 X U(1)A (x SU(2)H) GUT models contain :

- 4D $\mathcal{N}=1$ SUSY,
- E6 unification group,
- Net 3 chiral generations ($\,27\,$, $\overline{27}\,$),
- Adjoint Higgs fields (78),
- SU(2)H or SU(3)H family symmetry,
- Anomalous U(1)A gauge symmetry,
- Adjoint Higgs fields charged under the anomalous U(1)A gauge symmetry.

Minimum requirements for 4D-SUSYGUT models

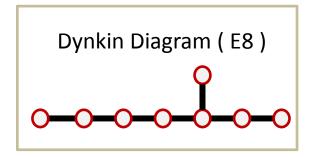
Heterotic String Theory

Heterotic string theory

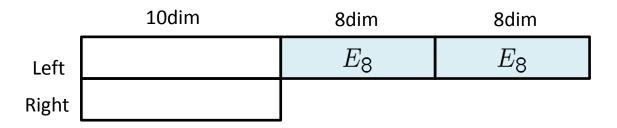
- Heterotic string for our starting point
- Degrees of freedom
 - ---- Left mover 26 dim. Bosons $\,X_{
 m L}$
 - --- Right mover 10 dim. Bosons and fermions $~X_{
 m R}~\Psi_{
 m R}$
- Extra 16 dim. have to be compactified
- Consistency \rightarrow If 10D N=1, E8 X E8 or SO(32)

Ex.) E8 Root Lattice **1**E8
1E8
$$\equiv \sum_{i=1}^{8} n_i \alpha_i \quad (n_i \in \mathbf{Z}^8)$$

Left-moving momentum $\,p_{
m L}\in{f 1}_{
m E8}\,$

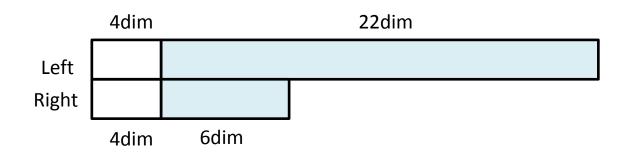


 $\alpha_i ~~(i=1\sim 8)$: Simple roots of E8



Even Self-Dual Lattice

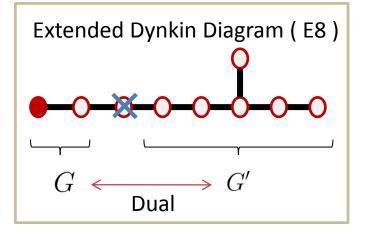
- \bullet Even self-dual lattice (Narain lattice) $\,\Gamma_{22,6}$
 - General flat compactification of heterotic string
 - --- Left : 22 dim
 - --- Right : 6 dim
 - Left-right combined momentum $(p_{
 m L}||p_{
 m R})\,$ are quantized, and compose a lattice
 - Many possible even self-dual lattices

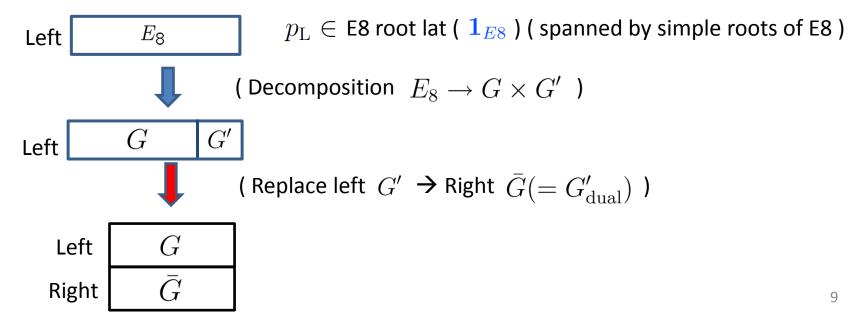


• Lattice engineering technique

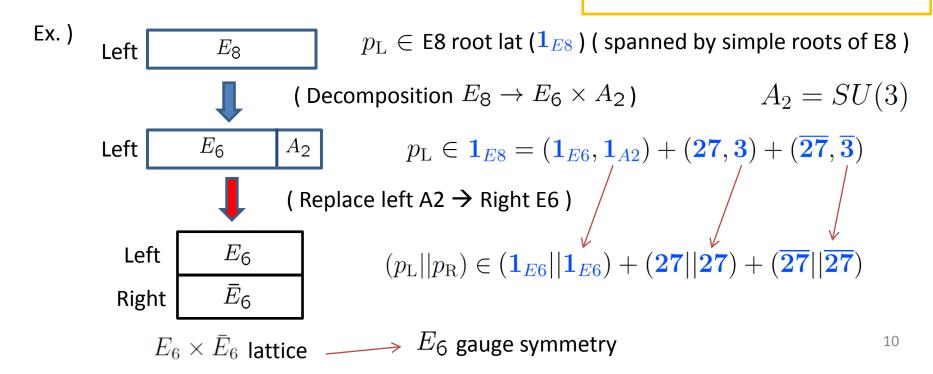
Lerche, Schellekens, Warner '88

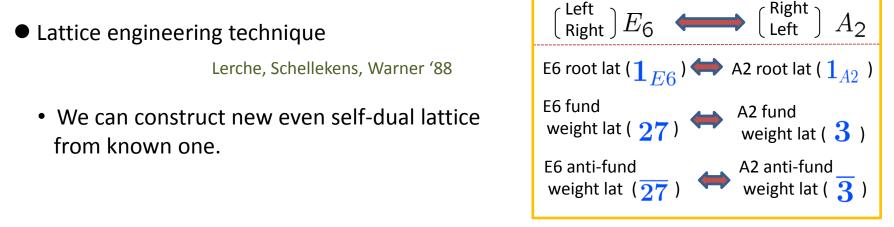
• We can construct new even self-dual lattice from known one.

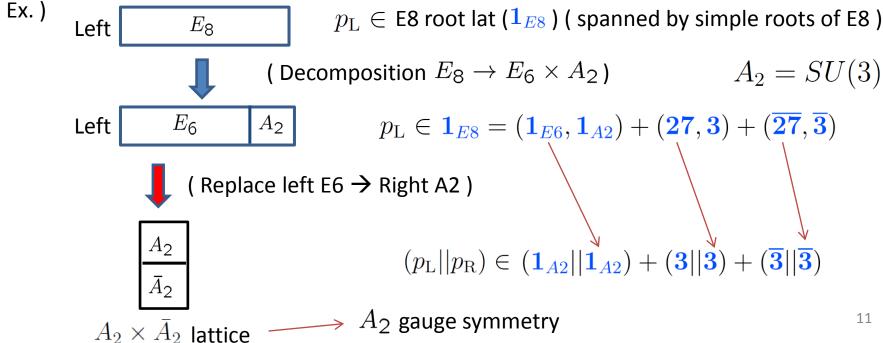




• We can construct new even self-dual lattice from known one. • We can construct $1 e^{-2} e^{-2}$



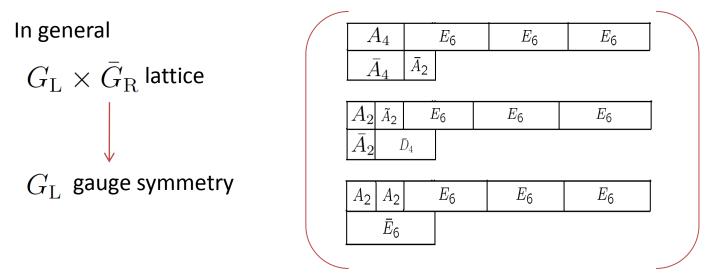




Lattice engineering technique

Lerche, Schellekens, Warner '88

- We can construct new even self-dual lattice from known one.
- In repeating fashion, we can construct various even self-dual lattices $\Gamma_{22,6}$



• Advantage : Various gauge symmetries.

Easy to find out discrete symmetries of the lattices. \rightarrow Orbifold

Asymmetric Orbifold Compactification

Asymmetric orbifold compactification

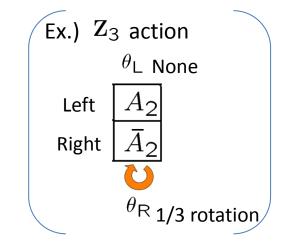
• Orbifold action $\theta = (\theta_L, \theta_R)$ (Twist, Shift, Permutation)

Left mover : $X_{L} \rightarrow \theta_{L} X_{L}$ Right mover : $\begin{array}{c} X_{R} \rightarrow \theta_{R} X_{R} \\ \Psi_{R} \rightarrow \theta_{R} \Psi_{R} \end{array}$

Modding out the lattice in left-right independent way

$$\theta = (\theta_{\mathsf{L}}, \theta_{\mathsf{R}}) \quad \theta_{\mathsf{L}} \neq \theta_{\mathsf{R}}$$

• No geometric picture



Diagonal Embedding Method

Diagonal embedding method

Modding out the permutation symmetry of the lattice

Ex.) $(G)_1 \times (G)_1 \times (G)_1 \rightarrow (G)_3$

Combining with phaseless right-moving states

 $|\mathbf{Adj.}
angle_1\otimes|\mathrm{Right}
angle_1$ - G gauge fields

Combining with right-moving states with opposite phases

 $|\mathbf{Adj.}\rangle_{\omega^*} \otimes |\mathrm{Right}\rangle_{\omega}$ $|\mathbf{Adj.}\rangle_{\omega} \otimes |\mathrm{Right}\rangle_{\omega^*}$ An adjoint representation Higgs

Eigen states of
$$\theta$$
: $|\mathbf{Adj.}\rangle_1 \equiv |\mathbf{Adj.}, \mathbf{1}, \mathbf{1}\rangle + |\mathbf{1}, \mathbf{Adj.}, \mathbf{1}\rangle + |\mathbf{1}, \mathbf{1}, \mathbf{Adj.}\rangle$
 $|\mathbf{Adj.}\rangle_\omega \equiv |\mathbf{Adj.}, \mathbf{1}, \mathbf{1}\rangle + \omega^* |\mathbf{1}, \mathbf{Adj.}, \mathbf{1}\rangle + \omega |\mathbf{1}, \mathbf{1}, \mathbf{Adj.}\rangle$
 $|\mathbf{Adj.}\rangle_{\omega^*} \equiv |\mathbf{Adj.}, \mathbf{1}, \mathbf{1}\rangle + \omega |\mathbf{1}, \mathbf{Adj.}, \mathbf{1}\rangle + \omega^* |\mathbf{1}, \mathbf{1}, \mathbf{Adj.}\rangle$
 $\theta |\mathbf{Adj.}\rangle_1 = |\mathbf{Adj.}\rangle_1$
 $\theta |\mathbf{Adj.}\rangle_\omega = \omega |\mathbf{Adj.}\rangle_\omega$
 $\theta |\mathbf{Adj.}\rangle_\omega = \omega^* |\mathbf{Adj.}\rangle_\omega$
14

 θ : permutation ($\omega = e^{2\pi i/3}$)

Summary of Our Method

- Summary of our method
 - 1. (22, 6) dimensional even self-dual lattice with $(E_6)^K$
 - 2. Orbifold identification by
 - (a). Permutation among the E6 factors
 - (b). Rotations of right-moving six dimensions
 - 3. Number of generations

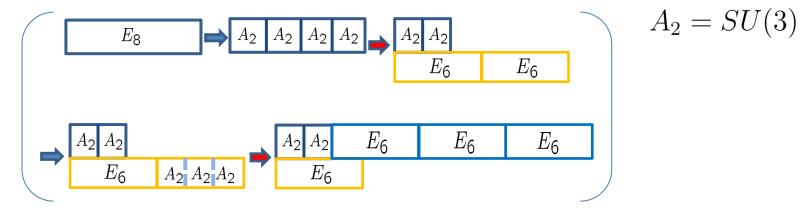
Adjoint Higgs

N = 1 SUSY

→ 3 generations ?

E_6^3 Lattice

- E_6^3 models (starting point)
 - Our starting point: $E_6^3 imes A_2^2 imes ar{E}_6$ even self-dual lattice



--- 4D N=4 $E_6^3 \times SU(3)^2$ model

\mathbf{Z}_{12} Asymmetric Orbifold Model

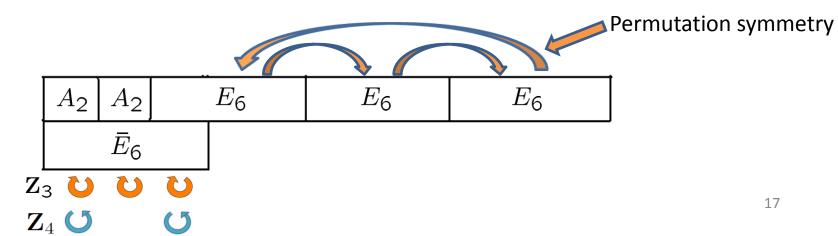
- $\mathbf{Z}_{12} = \mathbf{Z}_3 \times \mathbf{Z}_4$ asymmetric orbifold construction
- For E_6^3 part and right mover:

 ${f Z}_3$ action : Permutation for the three E_6 factors.

Rotation for right mover.

 \mathbf{Z}_4 action : Rotation for right mover. (Twist vector $t_{\mathrm{R}} = (1, 4, -5)/12$) Previous study claimed : Only Z3 x Z2 is possible Kakushadze, Tye '97 (Simple compactification + A fields + B fields)

However, we find no reasons to exclude Z12 orbifold.



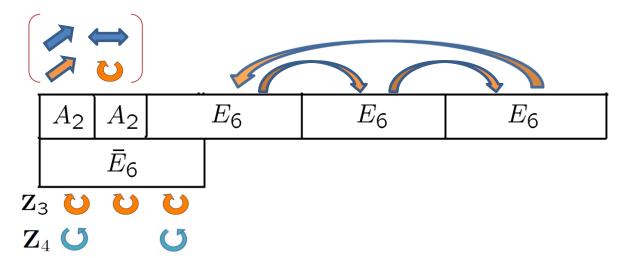
\mathbf{Z}_{12} Asymmetric Orbifold Model

• $\mathbf{Z}_{12} = \mathbf{Z}_3 \times \mathbf{Z}_4$ asymmetric orbifold construction

For two A2 parts (i = 1, 2): Possible orbifold actions are 1. Shift 2. 1/3 (or 2/3) rotation 3. Weyl reflection



We consider all possible \mathbf{Z}_{12} orbifold actions for the two A2 parts.

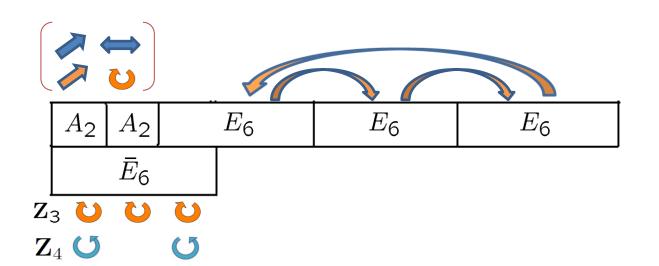


Possible Models

We find 8 possible choices which satisfy the consistency.

3 - generation models X 3

- 9 generation models X 2
- 0 generation models X 3



• Result : 3-generation E_6 models

Ito et.al. (2010)

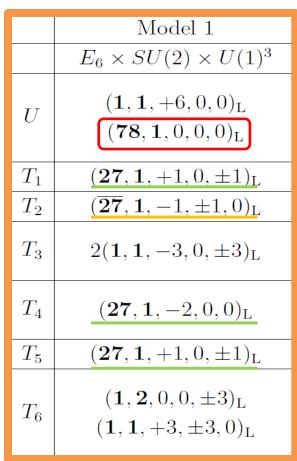
	Model 1	Model 2	Model 3
	$E_6 \times SU(2) \times U(1)^3$	$E_6 \times SU(2) \times U(1)^3$	$E_6 \times U(1)^4$
U	$(1, 1, +6, 0, 0)_{L}$ $(78, 1, 0, 0, 0)_{L}$	$(1, 1, +6, \pm 3, 0)_{\mathrm{L}}$ $(78, 1, 0, 0, 0)_{\mathrm{L}}$	$(1, -6, 0, 0, 0)_{\rm L}$ $(1, +3, \pm 6, 0, 0)_{\rm L}$ $(78, 0, 0, 0, 0)_{\rm L}$
T_1	$(27, 1, +1, 0, \pm 1)_{\mathrm{L}}$		$(27, -1, -1, +1, 0)_{\mathrm{L}}$
T_2	$(\overline{27}, 1, -1, \pm 1, 0)_{L}$	$(\overline{27}, 1, +2, 0, -2)_L$	$(\overline{27}, +1, 0, 0, \pm 1)_{\rm L}$
T_3	$2(1, 1, -3, 0, \pm 3)_L$	$(1, 1, -3, \pm 3, -3)_L$	$\begin{array}{c} ({\bf 1},+3,-3,+3,0)_L\\ ({\bf 1},+3,+3,-3,0)_L \end{array}$
T_4	$(27, 1, -2, 0, 0)_{\mathrm{L}}$	$(27, 1, -2, \pm 1, 0)_{\mathrm{L}}$	$\frac{(27,+2,0,0,0)_{\rm L}}{(27,-1,\pm2,0,0)_{\rm L}}$
T_5	$(27, 1, +1, 0, \pm 1)_{\mathrm{L}}$	$({f 27},{f 1},+1,\pm1,+1)_{ m L}$	$(27, -1, +1, -1, 0)_{\mathrm{L}}$
T_6	$(1, 2, 0, 0, \pm 3)_{L}$ $(1, 1, +3, \pm 3, 0)_{L}$	$(1, 2, 0, \pm 3, 0)_{L}$ $(1, 1, -6, 0, +6)_{L}$	$(1, -3, 0, 0, \pm 3)_{L}$ $(1, 0, +6, -2, 0)_{L}$ $(1, 0, -6, +2, 0)_{L}$

• Gauge symmetry : $E_6 \times SU(2) \times U(1)^3$ or $E_6 \times U(1)^4$

• Net 3 chiral generations (5-2=3 or 4-1=3)

• 1 adjoint representation Higgs

• Result : 3-generation E_6 models



Ito et.al. (2010)

 \bullet Model 1 : Same mass spectrum with \mathbf{Z}_6 asymmetric orbifold model although orbifold action is different.

Kakushadze and Tye, 1997

• Result : 3-generation E_6 models

Ito et.al. (2010)

• Model 2, 3 :	New models !
----------------	--------------

Model 3
$E_6 \times U(1)^4$
$(1, -6, 0, 0, 0)_{\mathrm{L}}$
$(1, +3, \pm 6, 0, 0)_{\mathrm{L}}$ $(78, 0, 0, 0, 0)_{\mathrm{L}}$
$(27, -1, -1, +1, 0)_{\mathrm{L}}$
$(\overline{27}, +1, 0, 0, \pm 1)_{\rm L}$
$\begin{array}{c} ({\bf 1},+3,-3,+3,0)_L\\ ({\bf 1},+3,+3,-3,0)_L \end{array}$
$\frac{(27, +2, 0, 0, 0)_{\rm L}}{(27, -1, \pm 2, 0, 0)_{\rm L}}$
$(27, -1, +1, -1, 0)_{\mathrm{L}}$
$(1, -3, 0, 0, \pm 3)_{L}$ $(1, 0, +6, -2, 0)_{L}$ $(1, 0, -6, +2, 0)_{L}$

• Result : 3-generation E_6 models

Ito et.al. (2010)

	Model 1	Model 2	Model 3
	$E_6 \times SU(2) \times U(1)^3$	$E_6 \times SU(2) \times U(1)^3$	$E_6 \times U(1)^4$
U	$(1, 1, +6, 0, 0)_{\mathrm{L}}$ $(78, 1, 0, 0, 0)_{\mathrm{L}}$	$(1, 1, +6, \pm 3, 0)_{\mathrm{L}}$ $(78, 1, 0, 0, 0)_{\mathrm{L}}$	$(1, -6, 0, 0, 0)_{\rm L}$ $(1, +3, \pm 6, 0, 0)_{\rm L}$ $(78, 0, 0, 0, 0)_{\rm L}$
T_1	$(27, 1, +1, 0, \pm 1)_{\mathrm{L}}$		$(27, -1, -1, +1, 0)_{\mathrm{L}}$
T_2	$(\overline{27}, 1, -1, \pm 1, 0)_{L}$	$(\overline{27}, 1, +2, 0, -2)_{L}$	$(\overline{27},+1,0,0,\pm 1)_{\mathrm{L}}$
T_3	$2(1, 1, -3, 0, \pm 3)_L$	$(1, 1, -3, \pm 3, -3)_L$	$\begin{array}{c} ({\bf 1},+3,-3,+3,0)_L\\ ({\bf 1},+3,+3,-3,0)_L \end{array}$
T_4	$(27, 1, -2, 0, 0)_{\mathrm{L}}$	$(27, 1, -2, \pm 1, 0)_{\mathrm{L}}$	$\frac{(27, +2, 0, 0, 0)_{\rm L}}{(27, -1, \pm 2, 0, 0)_{\rm L}}$
T_5	$(27, 1, +1, 0, \pm 1)_{\mathrm{L}}$	$({f 27},{f 1},+1,\pm1,+1)_{ m L}$	$(27, -1, +1, -1, 0)_{\mathrm{L}}$
T_6	$(1, 2, 0, 0, \pm 3)_{L}$ $(1, 1, +3, \pm 3, 0)_{L}$	$(1, 2, 0, \pm 3, 0)_{L}$ $(1, 1, -6, 0, +6)_{L}$	$(1, -3, 0, 0, \pm 3)_{L}$ $(1, 0, +6, -2, 0)_{L}$ $(1, 0, -6, +2, 0)_{L}$

- These models satisfy the minimum requirements for 4D E6 GUT models.
- No non-Abelian family symmetry
- No anomalous U(1) symmetry

Summary

• Summary

- We construct 3-generation E6 models with an adjoint representation Higgs in the framework of Z_{12} asymmetric orbifold construction.
- Systematical search by utilizing lattice engineering technique for asymmetric orbifold.
- We obtain 2 more three-generation E6 models which satisfy the minimum requirements, although we do not obtain non-Abelian family symmetry nor anomalous U(1) symmetry.

Outlook

- We have to search another possible even self-dual lattice and orbifolds.
- Possibility of the charged adjoint Higgs ? $(E_6)_1 \times (E_6)_1 \rightarrow (E_6)_2$
- Phenomenology.
- Another gauge symmetries (SM, MSSM, SU(5), SO(10), ...).

Kac–Moody Algebra and Diagonal Embedding

• Kac-Moody algebra

$$\begin{bmatrix} J_m^a, J_n^b \end{bmatrix} = \underline{k} \delta^{ab} m \delta_{m+n,0} + i f^{abc} J_{m+n}^c \qquad J^a = \sum_{n \in \mathbf{Z}} J_n^a z^{-n-1}$$
Diagonal
Embedding
$$\begin{bmatrix} J_{\text{diagm}}^a, J_{\text{diagn}}^b \end{bmatrix} = \underline{N} \delta^{ab} m \delta_{m+n,0} + i f^{abc} J_{\text{diagm+n}}^c$$

Diagonal combination

$$J_{\text{diag}}(z) = J_G(z) + J_G(z) + \dots + J_G(z)$$