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1. Introduction

• Axion:

• Pseudo-NG boson of the spontaneously broken anomalous Peccei-
Quinn U(1) symmetry.

• Rich implications in cosmology: 

• A candidate of CDM

• Isocurvature perturbations 

[Kawasaki & Sekiguchi (08)]

Hinf ! 107 GeV
allowed  SN1987a

excluded by axion isocurvature 
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• Since the PQ symmetry is a global U(1) symmetry, when U(1)PQ breaks 
spontaneously, 1-dim topological defect (axionic string) can form.

Axionic string
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• If the SSB of U(1)PQ occurs in the early Universe, a cosmological 
network of axionic strings is generated. 

: PQ scaleη



• Scaling solution

• Number of strings in a horizon stays constant. 

• At QCD phase transition, axionic domain walls (DWs) bounded by axionic 
strings are generated, and both of them quickly disappear if                .

• Strings lose their energy by emitting massless axions.

• Emitted axions finally become CDM. 

Fate of cosmological axionic strings

ρ̄axion(t0) = maxionn̄axion(t0)

NDW = 1

string

horizon scale

time 
evolution



Energy spectrum of radiated axions

• Number density of radiated axions: 

• Energy spectrum of radiated axions: P(k)

• At small momenta, P(k) peaks at the horizon scale ~1/H.

• At higher momenta...

k: comoving momentum

R(t): scale factor
n̄axion(t) =

∫
dk

2π2

R(t)
k

P (k, t).
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Energy spectrum of radiated axions

• Number density of radiated axions: 

• Energy spectrum of radiated axions: P(k)

• At small momenta, P(k) peaks at the horizon scale ~1/H.

• At higher momenta...

• Scales as power-law? (←strings lose energy during several 
oscillations) [Harari & Sikivie (87), Hagmann & Sikivie (91), ...]

[Davis & Shellard (89), Dabholkar & Quashnock (90), ...]

• Suppressed exponentially? (←strings lose energy with a single 
oscillation)

⇒ There has been a controversy!

k: comoving momentum

R(t): scale factor
n̄axion(t) =

∫
dk

2π2

R(t)
k

P (k, t).



• A solution to the controversy was given by Yamaguchi, Kawasaki & 
Yokoyama (99).

A previous study
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FIG. 1. Symbols (!) represent time development of j. The
vertical lines denote a standard deviation over ten different
initial conditions.

cores lift the spectrum at high momenta and make it

flatter.
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axions radiated from axionic strings. Though dynamic

range of our simulation is limited to ln!t"d# % 5, we
extrapolate our results up to the cosmological scale with

ln!t"d# % 75. From the scaling property, we can estimate
the energy density of axions radiated from strings from
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As the temperature cools down to the QCD scale and

the axion acquires a nonvanishing mass, a network of

domain walls bounded by strings is created and walls start

to dominate the dynamics of the system at t ! tw given

FIG. 2. Filled dots represent the power spectrum, rk , which
is already averaged over the direction of k and multiplied by
the phase-space factor as defined in Eq. (10). It is obtained
from cells with no string cores. The dotted line denotes its
standard deviation. Open dots represent the spectrum obtained
by averaging over all cells including string cores. Bins are cut
every 5dk. k ! 64dk corresponds to string cores.
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with ma being the axion mass at zero temperature, LQCD
the energy scale of the QCD phase transition, and NQCD
an effective number of massless degrees of freedom at

that time. These domain walls bounded by strings also

decay by emitting axions if the QCD anomaly factor is

unity [17]. (Otherwise, these domain walls would rapidly

overdominate the universe.)

As is seen from Eq. (13), the dominant contribution to

the present axion density is those radiated just before wall

domination. The present density parameter, Vs, of relic

axions due to emission from strings is given by
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• A field theoretic lattice 
simulation of the PQ 
scalar is performed.

• The result supports 
the claim of Davis & 
Shellard.

• Uncertainties are 
large, due to the 
limitation of statistics.

1 sigma error
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decay by emitting axions if the QCD anomaly factor is

unity [17]. (Otherwise, these domain walls would rapidly

overdominate the universe.)

As is seen from Eq. (13), the dominant contribution to

the present axion density is those radiated just before wall

domination. The present density parameter, Vs, of relic

axions due to emission from strings is given by

Vs % 2.7

√
j

e

!
h22D

√
fa

1012 GeV

!1.18

, (16)

4580
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simulation of the PQ 
scalar is performed.

• The result supports 
the claim of Davis & 
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Main purpose: 
    To improve the accuracy of the analysis, 
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• Field theoretic simulation

• Axionic strings are not well-localized. (cf. string-based Nambu-Goto 
action used for local strings)

• First-principles calculation, free from theoretical uncertainties.   

• Dynamical range is limited.

2. Field theoretic simulation of axionic strings

R(t)
R(tcrit)

!
√

N1/3
grid

η

MPl
.

Φ̈(!x, t) + 3H(t)Φ(!x, t)− 1
R(t)2

∇2Φ(!x, t) = −∂V [Φ, T ]
∂Φ∗
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• Axionic strings are not well-localized. (cf. string-based Nambu-Goto 
action used for local strings)

• First-principles calculation, free from theoretical uncertainties.   

• Dynamical range is limited.

2. Field theoretic simulation of axionic strings

1.  Resolve inner structure of strings

⇒ comoving size ∝ 1/R(t).

2.  Simulation box > a horizon volume

⇒ comoving size 1/R(t)H(t) ∝ R(t)

{two 
requirements
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Details of simulation

• Parameters

• PQ scale:

• coupling constant:

• number of relativistic dof: 

• comoving size of simulation box at final time: 

• number of grids:

• time range:

• spacial resolution:                                     , with

• Initial condition is randomly drawn from the thermal distribution.

• Equation of motion is integrated using the leap-frog method.

η = 1016GeV

λ = 1

g∗ = 1000

Ngrid = 5123

L = 1.6/H(τend)

tini = 0.25tcrit, tend = 25tcrit

R(tend)∆x = 0.7dstring dstring = 1/
√

2η



Numerical simulation

comoving box-size

(Ngrid = 5123)

(Note:             )τ ∝
√

t

L = 1.6/H(τend)

string



• Non-trivial task!! Only              at discrete lattice points are known.

• We developed a completely new method for identification of strings: 

Identification of strings

[field space][real space]

ReΦ

ImΦ

A

D

C

B

Φ(!x, t)

If a string penetrates a (sufficiently small) quadrate, the minimal

range that contains phases at 4 vertices should be larger than π. 

ReΦ= 0

ImΦ= 0

A

D

C

B string
quadrate

⇒ penetrated by string

min∆θ > π

• We can determine >99% of string positions in quadrates penetrated by 
strings.



3. Scaling property

• Scaling parameter

= ( # of strings in a 

    horizon volume )
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• Completely deferent identification methods give similar results: 

ξ = 1.0± 0.08 [YKY99], [Yamaguchi & Yokoyama (03)].ξ ! 0.8

• Cf. For local string,            . [Bennett & Bouchet (90), Allen & Shellard (90), ...]ξ ! 13

ξ = 0.87± 0.14.
• We found (at                 )t = 25tcrit

average over 20 realizations

scaling solution!ξ ≡ ρstringt3

µstringt



• Axion is the phase of the PQ scalar

• Mean kinetic energy of axion is given by

• Energy spectrum: 

• Number density: 

4. Energy spectrum of radiated axion
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• Near a moving axionic string, the phase changes rapidly and the energy 
of the axion field can be arbitrary large. 
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• Near a moving axionic string, the phase changes rapidly and the energy 
of the axion field can be arbitrary large. 

Effects of string cores

moving string

ImΦ = 0ReΦ = 0
[field configuration]

da/dt<0

da/dt>0

[simulated da/dt]

da
dt

+

‒
strings

• Removal of string contamination is crucial!! In YKY99, this is done by using 
only selected sub-volumes found without strings.

• We adopted the pseudo-power spectrum estimator (PPSE), which is often 
used in data analysis of CMB.
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4. Spectrum of masked fluctuation

• Biased due to masking

P̃ (k) ≈
∫

dk̂

4π

∣∣∣˜̇a("k)
∣∣∣
2

〈P̃ (k)〉 #= Pfree(k)



1. Contaminated ‘fluctuation’
ȧ(!x) = ȧfree(!x) + (string contribution)

2. String identification

• Window function

W (!x) =

{
0 (near strings)
1 (elsewhere)

Pipeline
3. Masked ‘fluctuation’

˜̇a(!x) = W (x)ȧ(!x)

4. Spectrum of masked fluctuation

• Biased due to masking

P̃ (k) ≈
∫

dk̂

4π
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2

〈P̃ (k)〉 #= Pfree(k)

5. Pseudo-power spectrum estimator

with

• PPSE is unbiased! 

P̂ (k) ≈
∫

dkM−1(k, k′)P̃ (k′)

M(k, k′) ≡
∫

dk̂

4π

dk̂′

4π
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2
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• Energy spectra are estimated in eight sub-boxes with a same size.

Validity check of PPSE

3dstring

L = 1/H(tend)
• Total box size

• Grid points away 
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• Energy spectra are estimated in eight sub-boxes with a same size.

Validity check of PPSE

3dstring

L = 1/H(tend)

• PPSE successfully removes the string contaminations!

• Total box size

• Grid points away 
from strings by        
<             are 
masked.

Good agreement!

average over 20 realizations
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• Differential spectrum (= energy spectrum of net radiated  axions)

Result: Differential spectrum

k(τ) =
∫

dk∆P̂ (k, τ)
∫

dk 1
k∆P̂ (k, τ)

∆P̂ (k; t1, t2) = R(t2)4P̂ (k, t2)−R(t1)4P̂ (k, t1)

1
2

Green: 
statistical error alone
Red: 
statistical + systematic 

• averaged over 
  20 realizations

• resolution:

• box size:
L = 1.6/H(t2)

dstring = 1.4×R(t2)∆x
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• Differential spectrum (= energy spectrum of net radiated  axions)

Result: Differential spectrum

k(τ) =
∫

dk∆P̂ (k, τ)
∫

dk 1
k∆P̂ (k, τ)

∆P̂ (k; t1, t2) = R(t2)4P̂ (k, t2)−R(t1)4P̂ (k, t1)

1
2

Peak at ~ 1/H

Green: 
statistical error alone
Red: 
statistical + systematic 

• averaged over 
  20 realizations

• resolution:

• box size:
L = 1.6/H(t2)

dstring = 1.4×R(t2)∆x

Exp. suppression



• Mean momentum of radiated axions: 

•        ~ Hubble scale, 

• Energy spectrum of radiated axion P(k): 

• Sharply peaks around the horizon scale. 

• Suppressed exponentially toward higher momenta k.

• Consistent with the previous YKY99 and supports the claim 
of Davis & Shellard.

Energy dependence of radiated axions

⇒ consistent with 0.25±0.18 in YKY99.

k(t)

k(t)
−1

= 0.23± 0.02
t

R(t)2π
.

k(t) =
∫

dk∆Pfree(k, t)∫
dk 1

k∆Pfree(k, t)
=

∆[ρ̄axionR4]
∆[n̄axionR3]



5. Constraint on the axion decay constant

• Extrapolate our result down to                              .

• In the scaling regime, the energy density of strings are given by

• Axionic strings lose their energy via emitting axions:  
[
dρ̄axion

dt

]
= −

[
dρ̄string

dt

]
.

⇒ Net energy density of radiated axions: 

• Number of radiated axions in a unit comoving volume: 

R(t)3n̄axion(t) =
∫ t

dtk(t)
−1 d[R(t)4ρ̄axion(t)]

dt
.

η = fa ! 1012GeV

with dstring = fa/
√

2.

1
R(t)4

d[R(t)4ρ̄axion(t)]
dt

! ξ

t3
2πf2

a ln
(

fat√
2ξ

)

ρ̄string(t) =
ξ

t2
2πf2

a ln
(

t√
ξdstring

)
,



Constraint on the axion decay constant(cont’d)

• Strings continue emitting axions till the wall domination occurring at

Tw ! 0.67 GeV
(

fa

1012 GeV

)−0.12

.
[Wantz & Shellard (09)]

• After the wall domination, the number of axions is conserved.

maxion ∝ f−1
a T−3.39



Constraint on the axion decay constant(cont’d)

• Strings continue emitting axions till the wall domination occurring at

Tw ! 0.67 GeV
(

fa

1012 GeV

)−0.12

.
[Wantz & Shellard (09)]

• After the wall domination, the number of axions is conserved.

• The energy density of CDM axions from strings

[Komatsu+(10)]
ΩCDMh2 = 0.11

{
ξ = 0.87± 0.14
1/ε = 0.23± 0.02

with 

• Constraint on the decay constant of axion: 

Ωaxionh2 ! 8.7
(

ξ

ε

) (
fa

1012GeV

)1.19

fa ! 1.3× 1011GeV

maxion ∝ f−1
a T−3.39



• DWs quickly disappear after formation. 

Other sources of axion CDM

• Emission from DWs [Hagmann & Sikivie (91), Lyth (92), Nagasawa & Kawasaki (94), ...]

• Coherent oscillation 

• The canonical value is                    .

θi : initial misalignmentΩaxionh2 ! 0.10 θ2
i

(
fa

1012GeV

)1.19

〈θ2
i 〉 = π2/3

• Numerical simulation gives          . [Chang, Hagmann & Sikivie (98)]

γ : Lorentz factor
 of radiated axions

γ ! 7

Ωaxionh2 ! 1.8
γ

(
fa

1012GeV

)1.19

fa ! 4.0× 1011GeV.

fa ! 4.9× 1011GeV.
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Other sources of axion CDM

• Emission from DWs [Hagmann & Sikivie (91), Lyth (92), Nagasawa & Kawasaki (94), ...]

• Coherent oscillation 

• The canonical value is                    .

θi : initial misalignmentΩaxionh2 ! 0.10 θ2
i

(
fa

1012GeV

)1.19

〈θ2
i 〉 = π2/3

• Numerical simulation gives          . [Chang, Hagmann & Sikivie (98)]

γ : Lorentz factor
 of radiated axions

γ ! 7

Ωaxionh2 ! 1.8
γ

(
fa

1012GeV

)1.19

fa ! 4.0× 1011GeV.

• Constraints from other sources are comparable. fa ! 1011 GeV.

fa ! 4.9× 1011GeV.



Summary

• We performed a field theoretic simulation of cosmological axionic strings 
of the largest scales (                     ) so far.

• We developed a new method for identification of strings, which allows 
determination of string positions with >99% efficiency.

• We estimated the energy spectrum of radiated axions from strings, using 
the pseudo-power spectrum estimator. We successfully removed 
contributions from string cores and achieved precise estimation of the 
spectrum.

• The spectrum is consistent with YKY99, showing exponential damping at 
large momenta. Our result supports the claim of Davis & Shellard. 

• We obtained a constraint on the axion decay constant,

Ngrid = 5123

fa ! 1011 GeV.



• Energy spectrum

Result: Energy spectrum

• averaged over 
  20 realizations

• resolution:

• box size:

Note!! Not all of axions are emitted within the scaling regime.

t1=12.25tcrit

t2=25tcrit

L = 1.6/H(t2)

dstring = 1.4×R(t2)∆x

Green: 
statistical error alone
Red: 
statistical + systematic 


