1. Motivation

- Weakly Interacting Massive Particles are good candidates
- Neutralino in supersymmetric extensions of the SM
- 1st Kaluza-Klein (KK) photon in universal extra dimensions (UEDs)
- etc.

UEDs have many degenerate particles

This talk

Computing UED processes is tedious and error-prone

Public tools play a crucial role in obtaining reliable results

Goal of this work

- Automated computations of DM observables in the 5D UED

2. 5D UED

- Universal: All SM particles propagate in flat compact spatial extra dimensions

 [Appelquist, Cheng, Dobrescu, PRD64, 035002 (2001)]

- Minimal universal extra dimension (MUED):

 - All the SM particles propagate in the orbifold: \(S^1 / \mathbb{Z}_2 \)

 - Only two new parameters in the MUED:

 - \(R \): size of the extra dimension
 - \(\Lambda \): cutoff

 - Radiative corrections generate KK mass shift

 - The 1st KK mode of the photon is the LKP

3. Implementation of the 5D UED

3.1 Vertices

- Define 5D fields:

 Hypercharge B-boson
 [www.physics.gla.ac.uk]

- Define 5D vertices:

 EW interactions of LH fermions
 LanHEP

- 4D vertices:

 \[p_{k_1} = n / R(n = 0, \pm 1, \pm 2, \cdots) \]

3.2 Goldstone boson/ghost

- Define 5D Goldstone/ghosts:

 \(\text{KK modes of gauge scalars} \)
 \(= \text{Goldstone modes} \)

- Define 5D Goldstone/ghost int.:

 \[\text{Goldstone modes of gluons} \]
 LanHEP

- 4D Goldstone/ghost int.:

- Auxiliary fields needed to reconstruct 4-point gluon vertices

- Auxiliary fields and their int.

4. Describing KK mass shifts

- 5D Lorentz violating effects induce mass shifts from

 \[\text{Vector} \]

 \[\text{Fermion} \]

 \[\text{Scalar} \]

 - The \(Z \)-factors are properly introduced in the Goldstone/ghost sector to retain gauge invariance

 - The MUED spectrum is obtained by adjusting the \(Z \)-factors

 - Covariant derivatives for the 5D Higgs doublet:

 - Zero mode Higgs vev
 \[\text{Mixing between the KK Higgs bosons and KK gauge scalars} \]

 - CP even KK Higgs:
 \[\text{Charged KK scalar} \]
 \[\text{CP odd KK scalar} \]

5. 1st KK photon abundance

- Process overlooked in earlier works:

- All 1st and 2nd KK particles of 5-dimensional universal extra dimension model implemented in micrOMEGAs

 - Wave function factors violating 5D Lorentz invariance \(\rightarrow \) KK mass shifts are described in a gauge invariant manner

 - Finite Higgs vacuum expectation value in the Higgs sector \(\rightarrow \) Correct KK Higgs masses and interactions obtained

 - Precise computation of the relic abundance

6. Summary

[Belanger,MK,Pukhov,JCAP02(2011)009]

[Belanger,MK,Pukhov,JCAP02(2011)009]