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Introduction

Inflation is a key ingredient fo solve the problems in the standard

cosmology. To obtain a successful inflation, we need a scalar field
which has a very flat potential.

v

1 History of the Universe

e.g. "new inflation” potential

=

E

<@7<@§<@>Q‘

.
lqrs,
"SI Uoeipe; sremorow 9SO

@

g ¢ http://www.particleadventure.org/
images/history-universe-08. jpg

In supersymmetric models of particle physics, there are
many flat directions. In the following, we consider a flat
direction in the framework of supersymmetry.




O Flat direction ¢ A.Linde (1982)
A.Vilenkin, L.H.Ford (1982)

A flat direction has a very flat potential. A.A.Starobinsky (1982)

lifted by non-renormalizable interactions
or supersymmetry-breaking effects
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During inflation, quantum noise drives the flat direction to dilute.
The variance of the flat direction is given by the following formulae:
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@ Stochastic approach (single field) Starobinsky (1984) o

M.Sasaki, Y.Nambu, K.Nakao (1987)

Definition of IR modes

O(z) + puv(z) ,é(z) =I(z) + Myv(z)
d3k
(2m)?
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Equations of motion for IR modes (Langevin egs.)

®(z) = I(z) + s'9(z),
I(z) = —3HII(z) — V'(®) + s ().

where the noise term is given by
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variance of the noise term:
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@ Effective mass effects in noise terms

Recently, Enqvist et al (2012) have analyzed the flat direction using
stochastic approach. In the their works, the effective mass effects are
not included in the noise terms. In this study, we improve this point.

The noise correlation functions integrated for a small intervals is given by:
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the effective mass is embedded in 2 = = —




© The zero-point fluctuation in the noise terms

Mode function of the zero-point fluctuation is given by
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V 2wp(t)a(z) a(t) :scale factor

Inserting this mode function into the formulae for the noise
correlation functions, we identify the zero-point contribution as:
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Should we remove the zero-point fluctuation from the noise terms ???




@ The model

According to Enqvist et al (2012), we consider the following potential.
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Then, the discretized coupled Langevin eq. to be solved numerically is:
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O HUbble induced mass E.D.Stewart (1995)
M.Dine, L.Randall, S.D.Thomas (1995)

It has been pointed out that a scalar field in
Inflationary era

in the framework of (local) supersymmetry.

volfl, 3Hi|o|*.
MP
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Planck-suppressed interaction pr : inflaton energy density

/ Mp : reduced Planck mass

H; : Hubble parameter during inflation
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@ Preserving flat direction during inflation

To avoid the Hubble-induced tree-level
effective mass, we can assume the following:

@ D-term inflation scenario E.D.Stewart (1995)

or @ a Heisenberg symmeftry MK.Gaillard, H.Murayama, KA.Olive (1995)

Even if we assume the above, a radiative correction is exist.

g MK.Gaillard, H.Murayama, KA.Olive (1995
| ~ 10 2)\31{ . < o)
Garbrecht (2007)

|mi,rad.

If the tree-level effective mass is highly suppressed, this
radiative correction dominates the potential until the
non-renormadlizable intferactions become important.




@) the zero-point contribution to noise terms

(the time evolution of IR modes)
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the zero-point contribution

(the time evolution of noise terms )
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the zero-point contribution to noise terms

(comparison)
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The flat direction eventually behaves as an exactly flat direction.

The flat direction reaches an exactly flat direction in

the free-level argument.




O the zero-point contribution to noise terms

(the time evolution of IR modes)
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the zero-point contribution to noise terms

(the time evolution of noise terms )

compared to (S\?))
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the zero-point contribution to noise terms

(comparison)
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The flat direction saturates at last in the free-level argument.




@ Summary

© We have analyzed the time evolution of a flat direction
coupled to non-flat directions by using stochastic formalism.
We include the Effective mass effects in the noise terms.

© Since non-flat directions have large effective masses and
small noise terms, non-flat directions have only tiny effects
on the growth of the flat directions variance.

zero-point fluctuation in the noise term]

© The flat direction reaches an exactly flat direction in
the free-level argument.

zero-point fluctuation in the noise term]

@ The flat direction saturates at last in the tree-level argument.

However, little is known how to treat the zero-point fluctuation in the noise terms.




