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Motivation
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states (hadrons) in (arbitrary) strongly coupled theories
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beyond standard models
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However, there is no clear justification for NDA.

We examine the NDA ansatz from gauge/gravity duality,
by estimating glueball couplings



Manohar, Georgi ‘84
Georgi, Randall ‘86

Statement of NDA ansatz Georgi 2

Cohen, Kaplan, Nelson ‘97

NDA ansatz claims that the effective action of an SU(Nc) gauge theory is

Ng
g / s g L(0(2), 0 Avoa),
¢ : fields of composite states (glueball)

Beta is order 1.
Dimensionless coefficients of every terms in L are order 1.

Essential point:
overall 4 pi (~ 13) factor which is sizable compared with 1.



Coupling constants from NDA ansatz

NDA ansatz claims that the effective action of an SU(Nc) gauge theory is

S = / d'z : 4;%)2 L(¢(x), O, Anpa).

¢ : fields of composite states (glueball)

Anpa is mass scale of hadrons.

After rescaling so that phi’s are canonical normalized,

(1+2)-point coupling terms are given by
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(I + 2)-point coupling = (%) in units of Anpa



QCD seems to be consistent with NDA

From chiral Lagrangian, L. ~ ;1(5’”)27
9rnmn = f7r = (93 MGV)

On the other hand, according to NDA,
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From decay of vector mesons,
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Argument in favor of Manohar, Georgi 54

Luty ‘97
N DA a n S a tz Cl:)l:/en, Kaplan, Nelson ‘97

ansatz of “loop saturation”

Tree level diagram ~ loop diagram @ energy scale ~ hadron mass
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Argument in favor of Manohar, Georgi 54

Luty ‘97
N DA a n S a tz Cl:)l:/en, Kaplan, Nelson ‘97

ansatz of “loop saturation”

Tree level diagram ~ loop diagram @ energy scale ~ hadron mass

) )

Loop saturation is also an ansatz.
Loop saturation seems to be inconsistent with large N_c.



Hadron coupling in holography

* Today, it is well-known and straightforward to calculate
the mass spectra and coupling constants of hadrons in a

given gravity background.

— ex)
e Csaki, Ooguri, Oz, Terning ‘98  glueball mass spectra
* Hong, Yoon, Strassler ‘04,’05  three point coupling of vector meson

e Sakai, Sugimoto '04, ‘05 pions, decay of meson

* More than 3-point couplings were little studied, because
it looked merely tired calculation.

* However, it is interesting and physically important to
examine whether the NDA rule exist, which governs a lot

of coupling constants.



Setup of gravitational dual

The gravity dual of conformal gauge theory: AdS_5x W
ds* = R/ 2*(ndatdr” + d2°) + Rdsyy, 0 <z < oo,

W =8°Th! yPa
The gravity dual of confining gauge theory:

ds* = (f(2)) *(nudatda’ +dz*) + R*ds}y,, 0< 2 < Zmax

We consider a confining gauge theory which is conformal in UV limit

(f(2))2 = R*/2%, W, =W, (z—0)



Effective 4d action from gravity
description

Gauge/gravity duality implies that we can obtain 4d hadron action by dimensional
reduction of 10d sugra action on the corresponding background.

Ssugra = / dXL[®(X),...]
Mode decomposition of sugra field
O(X) = > xi(z)pi(z,0)

Integrate out W and z directions

SSUGRA — /d4x£[Xz(x)] — Shadron



Intermediate 5d description

Integrating out the compact W direction

for simplicity, consider only two scalars, dilaton and RR scalar, and
moreover only consider the constant mode on W

In the case of conformal gauge theory,

5= ENOCVIE [ty [ % (=200 + (0.6 - (007 + 0:0))) +

2"‘31093

backgrounds

ds® = R*/2*(nda’dx” + d2°) + R*dsy,, 0 < z < oo,

P (2#\/7)4]\[
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The overall factor (coupling const.) in 5d action

(R°Vol(W)) x R3 A 1 020 2 2
5= FNOCPIE [ty [ (=300 + 0.0 — 36007 + 0 ) +
4 I
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27 5 X (R°Vol(W)) x R® = 2 da=p N, p = Vol(IW)

\_ /

by rescaling 5d fields,

S = / d'x / [ 24 (0.9")°) — %((80’)2 +(0.¢)?)
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5d action in confining geometry

Simply insert extra factor Y(z).
Y(z) represents the deviation from CFT.

s— [ [ Sy [-50007 + 0.0 - 5

(f(z))"" Vol(W.)

Y(z) = (R/2)3 Vol(W,—g)’

Y(2) > 1, (z—0)

+(0:¢)%)



Effective action in 4d

Substitute mode decompositions,
& (2,2) =D m(2)om(x), (2,2) =D Pn(2)én(2).
m=1 n=1
dm () : m-th excited glueball corresponding to dilaton

Cm(x) : m-th excited glueball corresponding to RR scalar

Def. of mode functions

BY(2)0, (27 (2)0.40(2)) = m2dha(2), / Ny (2 (2) = G

>3



4d coupling constants among glueballs
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Dimensionless (I+2)-point coupling constant
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Rough estimation of overlap integral

(if nand | are not large)

wn ~ Zmax azwn ~ TNZmax

m: typical glueball mass

’a’nlngml mI

I
I
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If we take ANDA = M
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Rough estimation of overlap integral

(if nand | are not large)

wn ~ Zmax azwn ~ MMNZmax

m: typical glueball mass

Remember, according to NDA,
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If we take ANDA = M
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Numerical result in hard wall model (Y(z)=1)
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Numerical result using Klebanov-Strassler metric
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a(z) can be defined in non-conformal
geometry. a_eff is its typical value.
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Discussion

Result from holography
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W=YP% 4a ~ pNC2 the dual gauge theory is (SU(N.))P-quiver gauge theory

a: central charge of CFT, which counts dof.s.



Discussion

Result from holography
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Remember, according to NDA, 7
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1, Scaling by common factor does esist!

5
2, N_cis naturally generalized into \/a da = %NE > NC2
o)

W=YP% 4a ~ pNC2 the dual gauge theory is (SU(N.))P-quiver gauge theory

a: central charge of CFT, which counts dof.s.

3, Take care that (m z_max) ~ (5~6) is a little large number!



