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Introduction
Particle having spin feels potential in the external magnetic field.

Particle’s magnetic moment μl ∝its spin.

gl : Landé g-factor (= 2 for elementary fermions@tree level)

Anomalous magnetic moment (g-2): Deviation from 2

EQUATIONS

N. YAMADA

V (x) = −!µl · !B(1)

!µl = gl
e!sl

2ml
(2)

al =
gl − 2

2
(3)

aµ = (11 659 182.8 ± 4.9) × 10−10(4)

(5)
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Form factor :

At tree level,
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After quantum correction ⇒
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Experimental status of (g-2)e and (g-2) μ

Theoretical calcs. are important because

ae tests validity of QED or (perturbative) field theory
    Determining αQED (important in EW precision test)

aμ tests the SM or constraints BSM
    Much more sensitive to heavy dof than ae by (mμ/me)2
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Breakdown

aSM
µ = (11 659 182.8 ±4.9 ) × 10−10

aQED
µ = (11 658 471.808 ±0.015 ) × 10−10

aEW
µ = ( 15.4 ±0.2 ) × 10−10

ahad,LOVP
µ = ( 694.91 ±4.27 ) × 10−10

ahad,HOVP
µ = ( −9.84 ±0.07 ) × 10−10

ahad,lbl
µ = ( 10.5 ±2.6 ) × 10−10
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Current status of (g-2)μ

3.3σ discrepancy!
The SM prediction stable.

[1] aμ(Hlbl)=10.5(2.6) is used.
      Based on model estimates.
      J. Prades, E. de Rafael and A. Vainshtein,
      arXiv:0901.0306

170 180 190 200 210
aµ × 1010 – 11659000

HMNT (06)

JN (09)

Davier et al, τ (10)

Davier et al, e+e– (10)

JS (11)

HLMNT (10)

HLMNT (11)

experiment

BNL

BNL (new from shift in λ)

[K. Hagiwara et al., J. Phys. G 38, 085003 (2011)]

aexp
µ − aSM

µ = (26.1 ± 8.0) · 10−10 [3.3σ] for aHLxL
µ = (10.5 ± 2.6) · 10−10
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µ − aSM

µ = (25.0 ± 8.6) · 10−10 [2.9σ] for aHLxL
µ = (11.6 ± 4.0) · 10−10)

K. Hagiwara, R. Liao, A. D. Martin, D. Nomura and T. Teubner, J. Phys. G: Nucl. Part. Phys. 38 (2011) 085003
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5-loop calc. in QED part completed!
T. Aoyama, M. Hayakawa, T. Kinoshita, M. Nio,
arXiv:1205.5370 [hep-ph];arXiv:1205.5368 [hep-ph]

aeEXP - aeTHEORY = -1.09(83) × 10-12

α -1QED = 137.035 999 166 (34) [0.25 ppb]
aμ(QED part) = 11 658 471.885 3 (9)(19)(7)(29) × 10-10

[using α -1QED above]
aμSM = 11 659 184.0 (5.9) × 10-10

[2.9 σ between this and EXP. aμ(Hlbl)=11.6(4.0) is used.]



Classification of diagrams

QED

Hadronic vacuum 
polarization (HVP)

Hadronic light-by-
light (Hlbl)

Electroweak 
(EW)

+ + + ...

+ ...+=

✕ ✕ ✕

+ + + ...
✕ ✕

+ + + ...

✕ ✕

Z or H

✕ ✕
W W

νμ



Breakdown

• Discrepancy between EXP and SM is larger than EW!
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Breakdown

• Discrepancy between EXP and SM is larger than EW!
• Currently the dominant uncertainty comes from HVP.
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Breakdown

• Discrepancy between EXP and SM is larger than EW!
• Currently the dominant uncertainty comes from HVP.
• Theoretical estimate of Hlbl is really under control?

K. Hagiwara, R. Liao, A. D. Martin, D. Nomura and T. Teubner, J. Phys. G: Nucl. Part. Phys. 38 (2011) 085003

EQUATIONS

N. YAMADA

V (x) = −!µl · !B(1)

!µl = gl
e

2ml

!Sl(2)

al =
gl − 2

2
(3)

Γµ(q) = γµ F1(q
2) +

iσµνqν

2 ml
F2(q

2)(4)

F1(q
2) = 1, F2(q

2) = 0(5)

F1(0) = 1, F2(0) = al(6)

al = F2(0)(7)

aSM
µ = (11 659 182.8 ± 4.9) × 10−10 (using [1])(8)

aEXP
µ = (11 659 208.9 ± 6.3) × 10−10 [PDG](9)

aEXP
µ − aSM

µ = (26.1 ± 8.0) × 10−10(10)

(11)

Date: July 4, 2012.
1

EQUATIONS

N. YAMADA

aSM
µ = (11 659 182.8 ± 4.9) × 10−10 (using [1])(1)

aEXP
µ = (11 659 208.9 ± 6.3) × 10−10 [PDG](2)

aEXP
µ − aSM

µ = (26.1 ± 8.0) × 10−10(3)

Breakdown
aSM

µ = (11 659 182.8 ±4.9 ) × 10−10

aQED
µ = (11 658 471.808 ±0.015 ) × 10−10

aEW
µ = ( 15.4 ±0.2 ) × 10−10

ahad,LOVP
µ = ( 694.91 ±4.27 ) × 10−10

ahad,HOVP
µ = ( −9.84 ±0.07 ) × 10−10

ahad,lbl
µ = ( 10.5 ±2.6 ) × 10−10

V (x) = −!µl · !B(4)

!µl = gl
e

2ml

!Sl(5)

al =
gl − 2

2
(6)

Γµ(q) = γµ F1(q
2) +

iσµνqν

2 ml
F2(q

2)(7)

F1(q
2) = 1, F2(q

2) = 0(8)

F1(0) = 1, F2(0) = al(9)

al = F2(0)(10)

Date: July 5, 2012.
1



Breakdown

• Discrepancy between EXP and SM is larger than EW!
• Currently the dominant uncertainty comes from HVP.
• Theoretical estimate of Hlbl is really under control?
• LQCD ➡ the first principles’ estimate for the hadronic parts.

K. Hagiwara, R. Liao, A. D. Martin, D. Nomura and T. Teubner, J. Phys. G: Nucl. Part. Phys. 38 (2011) 085003
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Leading order hadronic 
contribution (HVP)

✕



Hadronic Vacuum Polarization (HVP)

• Current best estimate using
dispersion relation and σtotal(e+e-)

K(s) : known function

✕
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Current uncertainty ~ 0.6 %! 
~ 0.3 % in 3-5 years?

depending on upcoming e+e- EXP and existing Belle data.



HVP on the lattice   T. Blum, PRL91(2003)052001

• f(Q2) is known and singular toward Q2→0.
• The integral is dominated by small Q2 region.

✕
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HVP on the lattice [pioneering work]
T. Blum, PRL91(2003)052001

• Quenched approximation
• O(a2) error at large Q2.
⇒Use PT for high Q2.
• L sets the non-zero 

minimum momentum, 
qlat ~ 2π/L.

• aμLOHVP = 460(78)× 10-10

(@mq ~ ms) is roughly 
consistent with what is 
expected in quench.
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fields, has been verified to numerical precision in the
present calculation (this is a good check that the computer
simulation is correct). After subtracting the contribution
of unphysical heavy fermions from a fifth dimension of
size Ls sites [12], !̂!!K2" differs from the continuum
vacuum polarization by terms that are O!a2".

We have calculated !!K2" in the quenched approxima-
tion using the DBW2 gauge action [16] and valence do-
main wall fermions. Two values of the gauge coupling
were chosen which correspond to inverse lattice spacings
(set from the !meson mass), a#1 $ 1:3 and 1.96 GeV (see
[17]). The lattice volumes studied were N3

s % Nt $ 83 %
24 (1.3 GeV only) and 163 % 32 (1.3 and 1.96 GeV), cor-
responding to spatial volume V $ !1:2 fm"3, !2:4 fm"3,
and !1:6 fm"3, respectively. For the domain wall fer-
mions, we used Ls $ 8, domain wall height M5 $ 1:8,
and a single 4D quark massmf $ 0:04, or roughly 90 and
120 MeV in the MS (minimal subtraction) scheme at " $
1:3 and 1.96 GeV, respectively [18].

Shown in Fig. 2 is the vacuum polarization for the large
volume at a#1 $ 1:3 GeV, the most physically interesting
one since we are mainly interested in the small q̂q region.
The agreement with perturbation theory [19] is very
good, even down to q̂q2 & 0:5 GeV2, until finally nonper-
turbative effects begin to be important. For very large
values of q̂q lattice artifacts dominate, and the lattice and
continuum results disagree. The perturbative result is
evaluated in the MS scheme at " $ 1=a $ 1:3 GeV
with a quark mass mq ' 90 MeV [18] and has been
shifted by a constant [20] in Fig. 2 for comparison. We
also show the small volume results which indicate finite
volume effects are negligible until q̂q2 & 0:5 GeV2. The
results from the 1.96 GeV lattice are quite similar, indi-
cating that nonzero-lattice-spacing errors are small.

Since we are interested in the low q̂q2 region, to use
Eq. (4), we fit the lattice data to a simple polynomial in

q̂q2, which allows for a smooth interpolation of the data.
This amounts to a Taylor expansion about q̂q2 $ 0. Lorentz
covariance (really, hypercubic symmetry) requires !!q̂q2"
depend only on q̂q2 and, if the quark mass is nonzero, it
must be regular as q̂q2 ! 0. A more sophisticated ansatz is
clearly desirable, especially one that includes finite vol-
ume effects. However, the construction of such an ansatz,
for example, in chiral perturbation theory, is outside the
scope of this work. The value of !!q̂q2" between q̂q2 $ 0
and the smallest value calculated on the lattice is extrapo-
lated from the fit, so it is important to have values
of q̂q2 that are close to zero. The smallest value in this
study, which is on the large volume, is q̂q2min ' 0:065.
Specifically, we use a four parameter fit function, !!x" $
a0 ( a1x( a2x2 ( a3x3, where x $ q̂q2, and fit the data in
the range x ) 2 GeV2. The fit is uncorrelated but per-
formed under a jackknife procedure. The final results are
insensitive to the number of parameters used and the fit
range, so long as the chosen combination accurately re-
produces the data.

The fit function is next plugged into Eq. (4) and inte-
grated numerically, using MATHEMATICA, up to some cut,
q̂q2cut. The perturbative value of !!K2" is then used in the
integral from q̂q2cut to 1, after it has been shifted by a
constant to match onto the subtracted lattice result. The
final result is quite insensitive to the value of the cut since
f!K2" in Eq. (4) is sharply peaked at zero and, with the
statistical error on the present data such as it is, the
perturbative contribution can be ignored entirely since it
adds, depending on the cut, !1# 10" % 10#10 to a!2"had" .
However, as the lattice results become more accurate,
these contributions will have to be carefully included.
Results are given for q̂q2cut $ 1:5 GeV2, though a much
smaller value yields essentially the same answer.

Using the above procedure and including degenerate u,
d, and s quarks, we find a!2"had" $ 460!78" % 10#10 on the
large volume (the error is statistical). This is roughly 2=3
of the value computed using the dispersive approach [2]
and, given the approximations in this first calculation —
quenching, finite volume, and unphysically large quark
masses — quite encouraging. We note with respect to the
quenching systematic error, the above result is quite rea-
sonable: 72% of the dispersive result comes directly from
the ! resonance [2], essentially all that is included in the
quenched case. The result depends heavily on the low q̂q2

region, so the final statistical error is still rather large
since only a small number of configurations were used
(27) to compute averages over the gauge field. The smaller
volume result (a#1 $ 1:3 GeV, 138 configurations) is
roughly a!2"had" $ 318!69" % 10#10, indicating large finite
volume effects. The 1.96 GeV lattice, which corresponds
to a somewhat larger volume, gives a!2"had" $ 378!96" %
10#10 (18 configurations), in between the large and small
1.3 GeV lattices.

Since the hadronic loop is given by a sum over all
possible values of the momentum of the quarks, one
should worry that lattice artifacts due to finite Ls may

0 2 4 6 8
q̂

2
  (GeV

2
)

0

0.05

0.1

-Π
(q̂

2 )

0 0.5 1 1.5 20

0.05

0.1

FIG. 2 (color online). The unsubtracted vacuum polarization
for the a#1 $ 1:3 GeV lattice. The two volumes described in
the text are shown, 83 (squares) and 163 (circles). The solid line
denotes a three-loop perturbation theory calculation [19],
which has been shifted by a constant for comparison, and
the dashed line the fit of the larger volume data points.
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HVP on the lattice [recent calc.]
ex) P. Boyle, L. Del Debbio, E. Kerrane and J. Zanotti, PRD85, 074504(2012)

• Including the effects of 
2+1 flavors of sea quarks

• mπ ~ 180 MeV

aμLOHVP = 641(31)(32)× 10-10

q̂ ! ¼ 2

a
sin

!
"n!
L!

"
: (2.16)

We associate the quantity q̂2 ¼ P
!q̂

2
! with the continuum

momentum Q2.

C. Ward identities

In order to ensure that this reproduces a vacuum polar-
ization of the form (2.9), we must verify that this lattice
correlator satisfies the Ward identity q!!!# ¼ 0 which in
general is not the case, as although both operators V i and
Vi have the correct continuum limit

V i
!; V

i
! !a!0

Ji ¼ "c i$!c
i (2.17)

the additional irrelevant operators introduced into the lat-
tice action modify theWard identity for ~!!#. In coordinate

space, the Schwinger-Dyson equation for ~!!# reads

hð#!V i
!ðxÞÞVi

#ð0Þiþ
#!

Vi
#ð0Þ@Q

@c iðxÞc
iðxÞ

"
%
!
"c iðxÞ

~@Vi
#ð0Þ

@ "c iðxÞ

"$

¼ 0 (2.18)

where #! is the backward lattice derivative. Because the
local current used is not point-split, the second term in
(2.18) vanishes and we have as a result that
eðiaq!Þ=2q̂! ~!!# ¼ 0.

This is illustrated in Fig. 1 where we see that it is
necessary to include the factor eiðaq!Þ=2 in the Ward identity
for the first index of ~!!#, while there is no fulfilled Ward
identity for the second index.

D. Decomposing the vacuum polarization

We must extract from ~!!#ðq̂Þ the scalar vacuum polar-

ization ~!ðq̂2Þ which, corresponding to the continuum
(2.9), are related by

~! !#ðq̂Þ ¼ ðq̂2%!# % q̂!q̂#Þ ~!ðq̂2Þ: (2.19)

In practice, in order to avoid any longitudinal contribu-
tion which might arise due to the nonconservation of Ward
identities, for each momentum orientation we choose di-
rections ! such that q̂! ¼ 0 and compute

~!ðq̂2Þ ¼
~!!!ðq̂Þ
q̂2

(2.20)

where in the above there is no sum over !.
In Fig. 2, we show an example of the resulting vacuum

polarization function, and compare this to the three-loop
continuum perturbation theory result from [23], using two
massless flavors of quarks and one massive flavor which
we associate with the strange quark. This result is quoted in
the MS scheme and as such we require the strange quark
mass in our simulations expressed in MS. For this, we

use the nonperturbative renormalization factor ZMS
mh ¼

0:1533ð6Þð33Þ determined in [19]. The factor is quoted in
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FIG. 1 (color online). Illustration of Ward identity violations in !!# on 323 & 64 lattice at & ¼ 2:25 and amu ¼ 0:004.
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Source of uncertainties

• Quench approximation
• Disconnected diagram (≲O(10 %)?)
• Finite volume effect (not seen at present accuracy)
• Discretization error (not seen at present accuracy)
• Need more data in small mom. region
• Chiral extrapolation
• Statistical error

✕



Importance of small q2 region

• In dominant region, only a 
few points exists, and they 
are inaccurate.

• More accurate data in this 
region are clearly favorable.

and this defines the band in which m1 was constrained to
reside in the fixed version of this fit. We have not attempted
to modelOð4Þ breaking effects present in our data. Though
such effects do appear to be present to a moderate degree
on certain ensembles, they do not prevent the extraction of
a reasonable signal from our data at this point. These
effects could also be alleviated by the use of twisted
boundary conditions [24].

B. Evaluation of (3.1)

Illustrations of the integrand can be seen in Fig. 5.
Because the integrand is dominated by contributions in
the low-momentum region, we change our integration
measure to better sample the region of interest. To do
this, we make the change of variables

t ¼ 1

1þ log
Q2

C

Q2

(3.5)

and so the integral over the low-momentum region be-
comes

Z Q2
C

0
dQ2fðQ2Þ % !̂ðQ2Þ !

Z 1

0
dtfðQ2Þ % !̂ðQ2Þ %Q2

t2
:

(3.6)

Overlaid on the depiction of the integrand in Fig. 5 is the
appropriately subtracted and rescaled vacuum polarization
data. We see from this that, while a large portion of the
constraint on the fit is consistently derived from data at
higher momentum, the fit is always consistent with the data
at low momentum, the region where the integral receives
the dominant contribution.
In particular, in Fig. 5(b) we see that on the larger

lattices at ! ¼ 1:75 using the Iwasakiþ DSDR action,
the data point at the lowest momentum sits exactly where
the integrand reaches a maximum, and there are numerous
data points in the dominant region, constraining the fit.
Clearly, using lattices of such size will help in obtaining a
precise result for this quantity, and this must be combined
with the use of twisted boundary conditions [14] in order to
access data at lower values of the lattice momentum.

IV. RESULTS

We extract our final results from the fit using (3.4) with
the first mass fixed to that of the vector meson as measured
on each ensemble. Observing the behavior of the reduced
"2 as the fit range is varied, we choose a suitable value for
Q2

C for each ensemble which provides the most reliable
result. We attempt to choose a cut which provides a low
reduced "2 preferably where the parameter m1 agrees
without tension with mV. This produces the results shown
in Table III, where we also quote the reduced "2 of the fit,
and the resulting values of the remaining associated free
parameters.
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FIG. 4 (color online). Value of the fit parameter am1 in fits
using the ansatz (3.4) on the ! ¼ 2:25 lattice at amu ¼ 0:004.
The vector mass amV as determined on this lattice is shown in
green. Note in the fit wherem1 was fixed, it was only constrained
to lie within the green band. It is clear that for a high Q2

C, m1 will
emerge at the upper limit of the band, indicating some tension
between the fit-form and the data, but as can be seen in Fig. 3,
this has very little impact on the goodness of the fit.
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074504-6and this defines the band in which m1 was constrained to
reside in the fixed version of this fit. We have not attempted
to modelOð4Þ breaking effects present in our data. Though
such effects do appear to be present to a moderate degree
on certain ensembles, they do not prevent the extraction of
a reasonable signal from our data at this point. These
effects could also be alleviated by the use of twisted
boundary conditions [24].

B. Evaluation of (3.1)

Illustrations of the integrand can be seen in Fig. 5.
Because the integrand is dominated by contributions in
the low-momentum region, we change our integration
measure to better sample the region of interest. To do
this, we make the change of variables

t ¼ 1

1þ log
Q2

C

Q2

(3.5)

and so the integral over the low-momentum region be-
comes

Z Q2
C

0
dQ2fðQ2Þ % !̂ðQ2Þ !

Z 1

0
dtfðQ2Þ % !̂ðQ2Þ %Q2

t2
:

(3.6)

Overlaid on the depiction of the integrand in Fig. 5 is the
appropriately subtracted and rescaled vacuum polarization
data. We see from this that, while a large portion of the
constraint on the fit is consistently derived from data at
higher momentum, the fit is always consistent with the data
at low momentum, the region where the integral receives
the dominant contribution.
In particular, in Fig. 5(b) we see that on the larger

lattices at ! ¼ 1:75 using the Iwasakiþ DSDR action,
the data point at the lowest momentum sits exactly where
the integrand reaches a maximum, and there are numerous
data points in the dominant region, constraining the fit.
Clearly, using lattices of such size will help in obtaining a
precise result for this quantity, and this must be combined
with the use of twisted boundary conditions [14] in order to
access data at lower values of the lattice momentum.

IV. RESULTS

We extract our final results from the fit using (3.4) with
the first mass fixed to that of the vector meson as measured
on each ensemble. Observing the behavior of the reduced
"2 as the fit range is varied, we choose a suitable value for
Q2

C for each ensemble which provides the most reliable
result. We attempt to choose a cut which provides a low
reduced "2 preferably where the parameter m1 agrees
without tension with mV. This produces the results shown
in Table III, where we also quote the reduced "2 of the fit,
and the resulting values of the remaining associated free
parameters.
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and this defines the band in which m1 was constrained to
reside in the fixed version of this fit. We have not attempted
to modelOð4Þ breaking effects present in our data. Though
such effects do appear to be present to a moderate degree
on certain ensembles, they do not prevent the extraction of
a reasonable signal from our data at this point. These
effects could also be alleviated by the use of twisted
boundary conditions [24].

B. Evaluation of (3.1)

Illustrations of the integrand can be seen in Fig. 5.
Because the integrand is dominated by contributions in
the low-momentum region, we change our integration
measure to better sample the region of interest. To do
this, we make the change of variables
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and so the integral over the low-momentum region be-
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Overlaid on the depiction of the integrand in Fig. 5 is the
appropriately subtracted and rescaled vacuum polarization
data. We see from this that, while a large portion of the
constraint on the fit is consistently derived from data at
higher momentum, the fit is always consistent with the data
at low momentum, the region where the integral receives
the dominant contribution.
In particular, in Fig. 5(b) we see that on the larger

lattices at ! ¼ 1:75 using the Iwasakiþ DSDR action,
the data point at the lowest momentum sits exactly where
the integrand reaches a maximum, and there are numerous
data points in the dominant region, constraining the fit.
Clearly, using lattices of such size will help in obtaining a
precise result for this quantity, and this must be combined
with the use of twisted boundary conditions [14] in order to
access data at lower values of the lattice momentum.

IV. RESULTS

We extract our final results from the fit using (3.4) with
the first mass fixed to that of the vector meson as measured
on each ensemble. Observing the behavior of the reduced
"2 as the fit range is varied, we choose a suitable value for
Q2

C for each ensemble which provides the most reliable
result. We attempt to choose a cut which provides a low
reduced "2 preferably where the parameter m1 agrees
without tension with mV. This produces the results shown
in Table III, where we also quote the reduced "2 of the fit,
and the resulting values of the remaining associated free
parameters.
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Twisted boundary condition
P.F. Bedaque, PLB 593 (2004) 82; C.T. Sachrajda and G. Villadoro, PLB 609 (2005) 73

• On a torus, the action must be 
single-valued, while fields do 
not have to be.

• Impose the twisted boundary 
condition on quark fields.

q(x+L) = q(x)eiθ

(θ:arbitrary)

• q2 can be arbitrary small.

Introduction
The hadronic vacuum polarization (HVP) contribution (O(↵2))

The hadronic light-by-light (HLbL) contribution (O(↵3))
aµ Implications for new physics

Summary/Outlook

aµ(HVP) [talk by Benni Jaeger (Mainz group)]
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Chiral extrapolation

• One of the dominant sys. 
errors ~ 5 %

• Functional form unknown

• Simulations@physical mq 
are becoming a trend.
⇒no need to extrapolation 
or only a small extrapolation
in future

These results are also shown as a function of m2
! in

Fig. 6, where we compare them to previous 2þ 1 flavor
results from [13]. Also shown is an extrapolation to the
physical point, using a quadratic chiral ansatz. This
produces a final result for the leading-order hadronic vac-
uum polarization contribution the anomalous magnetic
moment of the muon

að2Þhad" ¼ 641ð33Þ % 10&10: (4.1)

In [15], the integral (2.8) was performed in a slightly
different manner. Here, the kernel function in the integrand
was altered by replacing the momentum argument Q2 of

fðQ2Þ according to Q2 ! Q2 % ðHphys

H Þ2 for some sensible
choice of a hadronic observableH, whereHphys denotes the
value of the physical value of the chosen observable, andH
denotes the value of the observable measured on the lattice
in question. The result of this integral is a new quantity

að2Þhad!" which has the same physical limit as að2Þhad" . The

goal of this modification is to moderate the chiral variation
of the integral’s result by cancelling the effects of changing
hadronic physics as the chiral limit is approached. It
was found that setting H ¼ mV produced a quantity
with the correct physical limit with much more moderate
chiral variation, allowing for a more powerful chiral
interpolation.
We have investigated the use of this method with our

data. We show the results of such a calculation in Fig. 7(a),
along with an accompanying chiral extrapolation. The
chiral variation in this redefined quantity is such that it
allows for a linear extrapolation in quark mass. For the
lightest point in our simulation, we include the unmodified
result outlined in Table III since for this ensemble the

TABLE III. Results for the hadronic contribution to the muon anomalous magnetic moment.

# amu Q2
C GeV2 $2

ndf aðhÞ" % 1010 aF1 am2 aF2

2.13 0.02 4 0.38(17) 345(16) 0.114(4) 1.48(19) 0.31(5)
2.13 0.01 3.5 0.07(6) 430(22) 0.110(4) 1.50(23) 0.32(7)
2.13 0.005 3.5 0.14(5) 436(50) 0.097(14) 1.16(18) 0.24(3)
2.25 0.008 6 0.18(11) 452(23) 0.079(2) 1.14(4) 0.26(1)
2.25 0.006 6 0.10(6) 484(33) 0.075(3) 1.07(7) 0.24(2)
2.25 0.004 9 0.06(3) 568(29) 0.079(2) 1.23(3) 0.28(6)
1.75 0.0042 2.5 0.16(9) 536(36) 0.108(20) 1.27(20) 0.26(3)
1.75 0.001 2.5 0.27(13) 646(55) 1.06(11) 1.58(61) 0.37(27)
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FIG. 6 (color online). Integrated result for að2Þhad" as a function
of the pseudoscalar mass squared.
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Statistical error
E. Shintani and T. Izubuchi, poster@Lattice 2012; Blum, Izubuchi, Shintani, et al.,(RBC/UKQCD)

• Full use of translational 
invariance.

• Wide range of application
• Stat. error won’t limit the 

accuracy.
• Potentially a game changer?

New error reduction technique, All Mode Averaging (AMA), 
significantly reduces stat. error (× 1/5~1/20)!

Introduction
The hadronic vacuum polarization (HVP) contribution (O(↵2))

The hadronic light-by-light (HLbL) contribution (O(↵3))
aµ Implications for new physics

Summary/Outlook

aµ(HVP) Reducing statistical errors (preliminary)
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Summary of recent lattice calc. of HVP

0.5 % accuracy is challenging, but we should be able to come 
close to it by combining

Twisted b.c. + Simulation@physical mq + AMA + …
and Supercomputer.

Introduction
The hadronic vacuum polarization (HVP) contribution (O(↵2))

The hadronic light-by-light (HLbL) contribution (O(↵3))
aµ Implications for new physics

Summary/Outlook

aµ(HVP), lattice reg.

aµ Nf errors action group
713(15) 2+1 stat. Asqtad Aubin, Blum (2006)
748(21) 2+1 stat. Asqtad Aubin, Blum (2006)
641(33)(32) 2+1 stat., sys. DWF UKQCD (2011)
572(16) 2 stat. TM ETMC (2011)
618(64) 2+11 stat., sys. Wilson Mainz (2011)

1strange quark is quenched
Tom Blum (UConn and RIKEN BNL Research Center) The muon anomalous magnetic moment

presented by T. Blum@Lattice 2012



Hadronic light-by-light contribution
✕



Hadronic light-by-light

In contrast to the VP case , no experimental input is available.

✕
EQUATIONS

N. YAMADA

Γ(Hlbl)
µ (p2, p1) = ie6

∫
d4k1

(2π)4

d4k2

(2π)4

Π(4)
µνρσ(q, k1, k3, k2)

k2
1 k2

2 k2
3

×γνS
(µ)(p/2 + k/2)γρS

(µ)(p/1 + k/1)γσ

Π(4)
µνρσ(q, k1, k3, k2) =

∫
d4x1 d4x2 d4x3 exp[−i(k1 · x1 + k2 · x2 + k3 · x3)]

×〈0|T [jµ(0)jν(x1)jρ(x2)jσ(x3)]|0〉

aSM
µ = (11 659 182.8 ± 4.9) × 10−10 (using [1])(1)

aEXP
µ = (11 659 208.9 ± 6.3) × 10−10 [PDG](2)

aEXP
µ − aSM

µ = (26.1 ± 8.0) × 10−10(3)

Breakdown
aSM

µ = (11 659 182.8 ±4.9 ) × 10−10

aQED
µ = (11 658 471.808 ±0.015 ) × 10−10

aEW
µ = ( 15.4 ±0.2 ) × 10−10

ahad,LOVP
µ = ( 694.91 ±4.27 ) × 10−10

ahad,HOVP
µ = ( −9.84 ±0.07 ) × 10−10

ahad,lbl
µ = ( 10.5 ±2.6 ) × 10−10

V (x) = −#µl · #B(4)

#µl = gl
e

2ml

#Sl(5)

al =
gl − 2

2
(6)

Γµ(q) = γµ F1(q
2) +

iσµνqν

2 ml
F2(q

2)(7)

F1(q
2) = 1, F2(q

2) = 0(8)

F1(0) = 1, F2(0) = al(9)

al = F2(0)(10)
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Form factor :
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Hadronic light-by-light : model estimates

• Quark loop with ~300 MeV constituent mass
• ChPT (Meson exchange/loop diagrams)
• Extended NFL
• ...
- More or less justified by large Nc argument.
- All existing results fall into

aHlbl = (11±4)×10−10

- Current best estimate based on models:
aHlbl = (10.5 ± 2.6)×10-10

Uncertainty is uncertain.
Lattice calculation favorable!

Summarized in J. Prades, E. de Rafael and A. Vainshtein, arXiv:0901.0306 [hep-ph]
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Figure 2: Diagrams for HLbL: (a) meson exchanges, (b) the charged pion loop, the blob denotes the full
γ
∗
γ
∗
→ π

+
π
− amplitude.

limit . The mass of the ρ plays the role of an ultraviolet scale in the integration over ki in Eq. (4)
while the pion mass provides the infrared scale. Of course, the muon mass is also important at low
momenta but one can keep the ratio mµ/mπ fixed in the chiral limit.

Equation (9) provides the result for aHLbL for the term leading in the 1/Nc expansion in the
chiral limit where the pion mass is much less than the next hadronic scale. In this limit the dominant
neutral pion exchange produces the characteristic universal double logarithmic behavior with the exact
coefficient given in Eq. (9). Testing this limit was particularly useful in fixing the sign of the neutral
pion exchange.

Although the coefficient of the ln2(mρ/mπ) term in Eq. (9) is unambiguous, the coefficient of the
ln(mρ/mπ) term depends on low–energy constants which are difficult to extract from experiment [2, 3]
(they require a detailed knowledge of the π0 → e+e− decay rate with inclusion of radiative corrections).
Model dependent estimates of the single logarithmic term as well as the constant term show that these
terms are not suppressed. It means that we cannot rely on chiral perturbation theory and have to
adopt a dynamical framework which takes into account explicitly the heavier meson exchanges as well.

Note that the overall sign of the pion exchange, for physical values of the masses, is much less
model dependent than the previous chiral perturbation theory analysis seems to imply. In fact, if the
π0γ∗γ∗ form factor does not change its sign in the Euclidean range of integration over ki, the overall
sign is fixed even without knowledge of the form factor. This implies the same positive sign without
use of the chiral limit, i.e. the same sign for exchanges of heavier pseudoscalars, JPC = 0−+, where
no large logarithms are present. Moreover, one can verify the same positive sign for exchanges by
mesons with JPC = 1++, 2−+ with an additional assumption about dominance of one of the form
factors. Exchanges with JPC = 0++, 1−+, 2++ give, however, contributions with a negative sign to
aHLbL under similar assumptions, but they are much smaller.

Next–to–leading terms in the large Nc limit

Now let us turn to the next–to–leading terms in 1/Nc expansion. Generically these terms are due to
two–particle exchanges in the HLbL amplitude, see the diagram in Fig. 2(b) with π+π− substituted by
any two meson states. What is specific about the charged pion loop is its strong chiral enhancement
which is not just logarithmic but power–like in this case. In Eq. (8) it is reflected in the term c2 m2

ρ/m2
π .

The point–like pion loop calculation which gives aHLbL(ππ) = −4.6 × 10−10 corresponds to c2 =
−0.065. The rather small value of c2 can be contrasted with the one of the coefficient c1 which is not
suppressed: c1 ≈ 1.7. As we will see the smallness of c2 is related to the fact that chiral perturbation
theory does not work in this case. To see that this is indeed what happens is sufficient to compare
the point–like loop result with the model dependent calculations where form factors are introduced.
Two known results, aHLbL(ππ) = −(0.4 ± 0.8) × 10−10 [4, 5] and aHLbL(ππ) = −(1.9 ± 0.5) × 10−10

[7, 8], show a 100% deviation from the point–like number. It means that the bulk of the contribution
does not come from small virtual momenta ki and, therefore, chiral perturbation theory should not
be applied. In other words, the term c3 in Eq. (8) with no chiral enhancement is comparable with
c2(m2

ρ/m2
π). It means that loops with heavier mesons should also be included.
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limit . The mass of the ρ plays the role of an ultraviolet scale in the integration over ki in Eq. (4)
while the pion mass provides the infrared scale. Of course, the muon mass is also important at low
momenta but one can keep the ratio mµ/mπ fixed in the chiral limit.

Equation (9) provides the result for aHLbL for the term leading in the 1/Nc expansion in the
chiral limit where the pion mass is much less than the next hadronic scale. In this limit the dominant
neutral pion exchange produces the characteristic universal double logarithmic behavior with the exact
coefficient given in Eq. (9). Testing this limit was particularly useful in fixing the sign of the neutral
pion exchange.

Although the coefficient of the ln2(mρ/mπ) term in Eq. (9) is unambiguous, the coefficient of the
ln(mρ/mπ) term depends on low–energy constants which are difficult to extract from experiment [2, 3]
(they require a detailed knowledge of the π0 → e+e− decay rate with inclusion of radiative corrections).
Model dependent estimates of the single logarithmic term as well as the constant term show that these
terms are not suppressed. It means that we cannot rely on chiral perturbation theory and have to
adopt a dynamical framework which takes into account explicitly the heavier meson exchanges as well.

Note that the overall sign of the pion exchange, for physical values of the masses, is much less
model dependent than the previous chiral perturbation theory analysis seems to imply. In fact, if the
π0γ∗γ∗ form factor does not change its sign in the Euclidean range of integration over ki, the overall
sign is fixed even without knowledge of the form factor. This implies the same positive sign without
use of the chiral limit, i.e. the same sign for exchanges of heavier pseudoscalars, JPC = 0−+, where
no large logarithms are present. Moreover, one can verify the same positive sign for exchanges by
mesons with JPC = 1++, 2−+ with an additional assumption about dominance of one of the form
factors. Exchanges with JPC = 0++, 1−+, 2++ give, however, contributions with a negative sign to
aHLbL under similar assumptions, but they are much smaller.

Next–to–leading terms in the large Nc limit

Now let us turn to the next–to–leading terms in 1/Nc expansion. Generically these terms are due to
two–particle exchanges in the HLbL amplitude, see the diagram in Fig. 2(b) with π+π− substituted by
any two meson states. What is specific about the charged pion loop is its strong chiral enhancement
which is not just logarithmic but power–like in this case. In Eq. (8) it is reflected in the term c2 m2

ρ/m2
π .

The point–like pion loop calculation which gives aHLbL(ππ) = −4.6 × 10−10 corresponds to c2 =
−0.065. The rather small value of c2 can be contrasted with the one of the coefficient c1 which is not
suppressed: c1 ≈ 1.7. As we will see the smallness of c2 is related to the fact that chiral perturbation
theory does not work in this case. To see that this is indeed what happens is sufficient to compare
the point–like loop result with the model dependent calculations where form factors are introduced.
Two known results, aHLbL(ππ) = −(0.4 ± 0.8) × 10−10 [4, 5] and aHLbL(ππ) = −(1.9 ± 0.5) × 10−10

[7, 8], show a 100% deviation from the point–like number. It means that the bulk of the contribution
does not come from small virtual momenta ki and, therefore, chiral perturbation theory should not
be applied. In other words, the term c3 in Eq. (8) with no chiral enhancement is comparable with
c2(m2

ρ/m2
π). It means that loops with heavier mesons should also be included.

4
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Conventional approach on the lattice

Need to repeat (Volume)2 times ~ 1010-11 times.
With this approach, the calculation won’t end...

✕ Calculate 4-point function

Then, one will obtain a single set of (q, k1, k3, k2).
Calc. requires integration over k1 and k2,

EQUATIONS

N. YAMADA

Γ(Hlbl)
µ (p2, p1) = ie6

∫
d4k1

(2π)4

d4k2

(2π)4

Π(4)
µνρσ(q, k1, k3, k2)

k2
1 k2

2 k2
3

×γνS
(µ)(p/2 + k/2)γρS

(µ)(p/1 + k/1)γσ

Π(4)
µνρσ(q, k1, k3, k2) =

∫
d4x1 d4x2 d4x3 exp[−i(k1 · x1 + k2 · x2 + k3 · x3)]

×〈0|T [jµ(0)jν(x1)jρ(x2)jσ(x3)]|0〉

aSM
µ = (11 659 182.8 ± 4.9) × 10−10 (using [1])(1)

aEXP
µ = (11 659 208.9 ± 6.3) × 10−10 [PDG](2)

aEXP
µ − aSM

µ = (26.1 ± 8.0) × 10−10(3)

Breakdown
aSM

µ = (11 659 182.8 ±4.9 ) × 10−10

aQED
µ = (11 658 471.808 ±0.015 ) × 10−10

aEW
µ = ( 15.4 ±0.2 ) × 10−10

ahad,LOVP
µ = ( 694.91 ±4.27 ) × 10−10

ahad,HOVP
µ = ( −9.84 ±0.07 ) × 10−10

ahad,lbl
µ = ( 10.5 ±2.6 ) × 10−10

V (x) = −#µl · #B(4)

#µl = gl
e

2ml

#Sl(5)

al =
gl − 2

2
(6)

Γµ(q) = γµ F1(q
2) +

iσµνqν

2 ml
F2(q

2)(7)

F1(q
2) = 1, F2(q

2) = 0(8)

F1(0) = 1, F2(0) = al(9)

al = F2(0)(10)
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Let lattice calculate the form factor itself✕

Alternative approach
M. Hayakawa, T. Blum, T. Izubuchi and NY, hep-lat/0509016
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Let lattice calculate the form factor itself✕

• Standard method in other form factor calculations
• Need to incorporate QED on the lattice.

Alternative approach
M. Hayakawa, T. Blum, T. Izubuchi and NY, hep-lat/0509016
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Lattice QCD + QED

Motivation (other than light-by-light)
- Ordinary lattice calculations are done in the iso-spin symmetric 

limit. (mu=md and no EM interaction).
- Lattice calc. are being precise, and iso-spin breaking effects start to 

be visible.
- In order to determine the most poorly known quark mass, mu and md, 

QED must be taken into account!
- One should be able to exclude mu=0 and to reproduce

Isospin Breakings
• The effect of isospin breaking due to electromagnetic (EM)

and the up, down quark mass difference has phenomeno-
logical impacts for accurate hadron spectrum, quark mass
determination.

• Isospin breaking’s are measured very accurately :

mN � mP = 1.2933321(4)MeV

m⇡± � m⇡0

= 4.5936(5)MeV,

mK± � mK0

= �3.937(28)MeV,

• The positive mass difference between Neutron (udd) and Proton (uud) stabilizes
proton thus make our world as it is.

• One of the limiting factors for the precise understanding of nature from the current
lattice QCD, especially so for u,d quark masses. [MILC 2004]

• mu = 0 is considered to be a possible solution for Strong CP problem
(but also see [M. Creutz] ’s arguments).

Taku Izubuchi, Lattice 2012, Cairns, June 25, 2012 5



QCD+QED lattice simulation
• Quenched approximation

Duncan, Eichten, Thacker PRL76(1996) 3894;
Y. Namekawa and Y. Kikukawa, PoS LAT 2005, 090 (2006)

• Two-flavor QCD
T. Blum, T. Doi, M. Hayakawa, T. Izubuchi and NY, PRD76, 114508 (2007)

• Three-flavor QCD
T. Blum, R. Zhou, T. Doi, M. Hayakawa, T. Izubuchi, S. Uno and NY,
PRD82, 094508 (2010)

• ...
• Three-flavor QCD with charged sea quarks

- T. Ishikawa, T. Blum, M. Hayakawa, T. Izubuchi, C. Jung and R. Zhou, 
arXiv:1202.6018 [hep-lat];

- S. Aoki, K.-I. Ishikawa, N. Ishizuka, K. Kanaya, Y. Kuramashi, Y. 
Nakamura, Y. Namekawa and M. Okawa, Y. Taniguchi, A. Ukawa, N. Ukita 
and T. Yoshi ́e [PACS-CS Collaboration],  arXiv:1205.2961 [hep-lat]



mu and md

PDG2012
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Citation: K. Nakamura et al. (Particle Data Group), JP G 37, 075021 (2010) and 2011 partial update for the 2012 edition (URL: http://pdg.lbl.gov)

23 JAMIN 02 first calculates the strange quark mass from QCD sum rules using the scalar
channel, and then combines with the quark mass ratios obtained from chiral perturbation
theory to obtain md .

24NARISON 99 uses sum rules to order �3
s for � meson decays to get ms , and finds md

by combining with sum rule estimates of mu+md and Dashen’s formula.
25 JAMIN 95 uses QCD sum rules at next-to-leading order. We have rescaled md (1 GeV)

= 9.4 ± 1.5 to µ = 2 GeV.
26 For NARISON 95C, we have rescaled md (1 GeV) = 10 ± 1 to µ = 2 GeV.
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m = (mu+md )
�
2m = (mu+md )

�
2m = (mu+md )

�
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�
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See the comments for the u quark above.

We have normalized the MS masses at a renormalization scale of µ = 2
GeV. Results quoted in the literature at µ = 1 GeV have been rescaled by
dividing by 1.35. The values of “Our Evaluation” were determined in part
via Figures 1 and 2.

VALUE (MeV) DOCUMENT ID TECN COMMENT

3.8+1.0
�0.8 (3.0–4.8) OUR EVALUATION3.8+1.0
�0.8 (3.0–4.8) OUR EVALUATION3.8+1.0
�0.8 (3.0–4.8) OUR EVALUATION3.8+1.0
�0.8 (3.0–4.8) OUR EVALUATION See the ideogram below.

3.6 ±0.2 27 BLOSSIER 10 LATT MS scheme
3.40 ±0.07 28 DAVIES 10 LATT MS scheme
4.1 ±0.2 29 DOMINGUEZ 09 THEO MS scheme
3.72 ±0.41 30 ALLTON 08 LATT MS scheme

3.55 +0.65
�0.28

31 ISHIKAWA 08 LATT MS scheme

HTTP://PDG.LBL.GOV Page 4 Created: 6/16/2011 12:05
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• New results from [BMW] , smeared-Wilson clover.

• New results from [PACS-CS] . On physics point, quenched QED + QED reweighting, as
well as mu 6= md effects, NF = 1+1+1 colover-Wilson simulation.
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Calculate

This includes unwanted diagrams, while what we want is lbl only. 
Easier way to get rid of unwanted one?

Introduction
The hadronic vacuum polarization (HVP) contribution (O(↵2))

The hadronic light-by-light (HLbL) contribution (O(↵3))
aµ Implications for new physics

Summary/Outlook

New approach (QCD+QED on the lattice)

Average over combined gluon
and photon gauge configura-
tions

Quarks coupled to gluons and
photons

muon coupled to photons

[hep-lat/0509016;

Chowdhury et al. (2008);

Chowdhury Ph. D. thesis (2009)]

Tom Blum (UConn and RIKEN BNL Research Center) The muon anomalous magnetic moment

Alternative approach
M. Hayakawa, T. Blum, T. Izubuchi and NY, hep-lat/0509016



Calculate

One of photon propagators, whose analytical expression is known, is 
attached by hand.
This still includes unwanted diagrams. 

Alternative approach
M. Hayakawa, T. Blum, T. Izubuchi and NY, hep-lat/0509016

Introduction
The hadronic vacuum polarization (HVP) contribution (O(↵2))

The hadronic light-by-light (HLbL) contribution (O(↵3))
aµ Implications for new physics

Summary/Outlook

New approach (QCD+QED on the lattice)

Attach one photon by hand (see
why in a minute)

Correlation of hadronic loop
and muon line

[hep-lat/0509016;

Chowdhury et al. (2008);

Chowdhury Ph. D. thesis (2009)]

Tom Blum (UConn and RIKEN BNL Research Center) The muon anomalous magnetic moment



How to subtract unwanted one?

Introduction
The hadronic vacuum polarization (HVP) contribution (O(↵2))

The hadronic light-by-light (HLbL) contribution (O(↵3))
aµ Implications for new physics

Summary/Outlook

New approach: Formally expand in ↵

The leading and next-to-leading contributions in ↵ to magnetic
part of correlation function come from

Tom Blum (UConn and RIKEN BNL Research Center) The muon anomalous magnetic moment

Alternative approach
M. Hayakawa, T. Blum, T. Izubuchi and NY, hep-lat/0509016

Introduction
The hadronic vacuum polarization (HVP) contribution (O(↵2))

The hadronic light-by-light (HLbL) contribution (O(↵3))
aµ Implications for new physics

Summary/Outlook

New approach (QCD+QED on the lattice)

Attach one photon by hand (see
why in a minute)

Correlation of hadronic loop
and muon line

[hep-lat/0509016;

Chowdhury et al. (2008);

Chowdhury Ph. D. thesis (2009)]

Tom Blum (UConn and RIKEN BNL Research Center) The muon anomalous magnetic moment

=



Subtract the similar expectation value, but there the 
configuration average of the quark part and the muon part 
are taken separately.
⇒ No photon connecting quark and muon in the 2nd term.
⇒ Only lbl (and higher order terms) survives

Alternative approach
M. Hayakawa, T. Blum, T. Izubuchi and NY, hep-lat/0509016

Introduction
The hadronic vacuum polarization (HVP) contribution (O(↵2))

The hadronic light-by-light (HLbL) contribution (O(↵3))
aµ Implications for new physics

Summary/Outlook

New approach: Subtraction of lowest order piece

Subtraction term is product of
separate averages of the loop
and line

Gauge configurations identical
in both, so two are highly cor-
related

In PT, correlation function and
subtraction have same contri-
butions except the light-by-
light term which is absent in the
subtraction

Tom Blum (UConn and RIKEN BNL Research Center) The muon anomalous magnetic moment
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• Tests with only QED
- S. Chowdhury, T. Blum, T. Izubuchi, M. Hayakawa, NY and T. 

Yamazaki, PoS LATTICE 2008, 251 (2008)
- T. Blum and S. Chowdhury, NP(PS)189, 251 (2009)
- Chowdhury Ph. D. thesis, UConn, 2009
Consistent with PT if the spatial volume is as large as V=243.

• Tests with (2+1)f QCD+QED
- V= 163 × 32
- mπ ≈ 420MeV, mμ ≈ 190, 692 MeV(mμphys ~105MeV)
- Hlbl amplitude behaves as ∼ e4, while un-subtracted amplitude 

stays the same.

Numerical tests



• Tests with (2+1)f QCD+QED (preliminary)
- V=243×48 (~2.7 fm)
- mπ ≈ 329 MeV, mμ ≈ 190 MeV
- Two lowest values of Q2 (0.11 and 0.18 GeV2)
- All Mode Averaging (AMA)

Signal may be emerging in the model ballpark.
O(100 %) stat. error is encouraging!

Numerical tests
Introduction

The hadronic vacuum polarization (HVP) contribution (O(↵2))
The hadronic light-by-light (HLbL) contribution (O(↵3))

aµ Implications for new physics
Summary/Outlook

aµ(HLbL) in 2+1f lattice QCD+QED (PRELIMINARY)

Signal may be emerging in the model ballpark:

I F
2

(0.18 GeV2) = (0.142 ± 0.067) ⇥ �
↵
⇡

�
3

I F
2

(0.11 GeV2) = (0.038 ± 0.095) ⇥ �
↵
⇡

�
3

I aµ(HLbL/model) = (0.084 ± 0.020) ⇥ �
↵
⇡

�
3

Lattice size 243, m⇡ = 329 MeV, mµ ⇡ 190 MeV

model value/error is “Glasgow Consensus” (arXiv:0901.0306 [hep-ph])

Tom Blum (UConn and RIKEN BNL Research Center) The muon anomalous magnetic moment



Sources of systematic uncertainties

Introduction
The hadronic vacuum polarization (HVP) contribution (O(↵2))

The hadronic light-by-light (HLbL) contribution (O(↵3))
aµ Implications for new physics

Summary/Outlook

HLbL systematic error

“Disconnected” diagrams (quark loops connected by gluons)
not calculated yet (not suppressed).

Several possibilities,

1. Use multiple valence quark loops (qQED)

2. Re-weight in ↵ (T. Ishikawa) or dynamical QED in HMC

3. “/A source” (see Izubuchi’s talk) (no subtraction)

Tom Blum (UConn and RIKEN BNL Research Center) The muon anomalous magnetic moment



Many improvements remain to be done.

•Disconnected diagrams
Not easy. But several promising methods almost ready to test.

•q2 → 0 [Twisted b.c. applicable?]
•mq → mq,phys, mμ→ mμ,phys

•Finite volume. Excited states/“around the world” effects
•a → 0 
•QED renormalization
•···

Personally, even 50 % uncertainty is sensible,
and such a accuracy will be possible in 5 years.

(10 % error may not be too optimistic.)

Sources of systematic uncertainties

Introduction
The hadronic vacuum polarization (HVP) contribution (O(↵2))

The hadronic light-by-light (HLbL) contribution (O(↵3))
aµ Implications for new physics

Summary/Outlook

HLbL systematic error

“Disconnected” diagrams (quark loops connected by gluons)
not calculated yet (not suppressed).

Several possibilities,

1. Use multiple valence quark loops (qQED)

2. Re-weight in ↵ (T. Ishikawa) or dynamical QED in HMC

3. “/A source” (see Izubuchi’s talk) (no subtraction)

Tom Blum (UConn and RIKEN BNL Research Center) The muon anomalous magnetic moment



Summary



Prospect: Experiment on (g-2)μ

Two independent measurements@J-PARC and FNAL 
are planned.
• J-PARC: start data taking in 2016.

Exp uncertainty reduced by factor 4 in 5 years (by ~2017).
6.3×10-10 ⇒ 1.4 ×10-10

• FNAL: similar

EQUATIONS

N. YAMADA

aEXP
e = (11 596 521.807 6 ± 0.0027) ×10−10

aEXP
µ = (11 659 208.9 ± 6.3) ×10−10(1)

aHVP
µ =

1

4π2

∫ ∞

4m2
π

dsK(s)σtotal(s)(2)

aHVP
µ =

(α

π

)2
∫ ∞

0

dQ2f(Q2)Π(Q2)(3)

Πµν(Q) =
(
QµQν − Q2gµν

)
Π(Q2)(4)

Πµν(Q) = i

∫
d4x eiQ·x〈0|T [jµ(x)jν(0)]|0〉|0〉(5)

Γ(Hlbl)
µ (p2, p1) = ie6

∫
d4k1

(2π)4

d4k2

(2π)4

Π(4)
µνρσ(q, k1, k3, k2)

k2
1 k2

2 k2
3

×γνS
(µ)(p2 + k2)γρS

(µ)(p1 + k1)γσ

Π(4)
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Summary
• Lattice QCD can play an important role in (g-2)μ, through 

the determinations of HVP and Hlbl contribution.

• HVP:
Currently O(10) % level ⇒ O(a few %) using various techniques 
simultaneously
Cross check against dispersion + e+e- cross section.

• Hlbl:
Numerical tests are encouraging.
Many things to do (disconnected diagrams, physical masses, ...)
O(100 %) ⇒  40-50 % seems doable.

• After all, clear evidence for BSM might emerge.
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