A Light Higgs Scenario from TeV-scale SUSY Strong Dynamics

Toshifumi Yamada (Univ. of Tokyo)

In collaboration with S. Kanemura (*Toyama*), T. Shindou (*Kogakuin*)

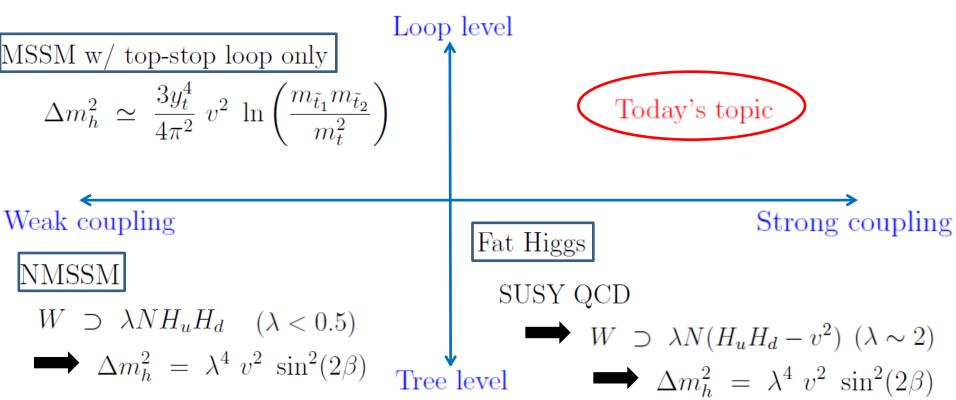
Introduction

Extended Higgs Sector with Large Couplings in SUSY Models

)) · Large

$$\mathcal{L} = \int d^2\theta \left\{ \lambda_u H_u \mathcal{O}_u + \lambda_d H_d \mathcal{O}_d + f(\mathcal{O}_u, \mathcal{O}_d) \right\} + \text{h.c.},$$

(but no $NH_u H_d$ coupling.)


"Large coupling" := Landau pole exists somewhere below Planck scale.

- Enhance the mass of the SM-like Higgs boson w/o large soft SUSY breaking mass.
- Realize strongly 1st order EW phase transition for EW baryogenesis. Kanemura, Shindou, Senaha (2011)

125 GeV Higgs with SUSY Standard Models

- ATLAS and CMS SM Higgs search suggests 125 GeV Higgs boson.
- In MSSM, $m_h|_{tree} \leq M_Z^2 \cos^2(2\beta)$. We have to somehow enhance m_h .

• Four ways to enhance the Higgs boson mass :

 We consider an extended Higgs sector with large couplings that contributes to the SM-like Higgs mass through radiative corrections.

What waits beyond the Landau Pole ?

• We want to build a UV-complete model.

 Consider SUSY SU(2) gauge theory with 3 pairs of matter superfields (the same setup as "Fat Higgs") R. Harnik et al. (2003)

The theory becomes strongly coupled at an IR scale. Low-energy effective theory is described by Meson superfields, which have large couplings. Higgs superfields = Mesons of SUSY gauge theory

Framework

UV Theory

SUSY $SU(2)_H$ gauge theory with six doublets $T_1, T_2, ..., T_6$, charged under SM gauge groups and <u>a new Z_2 -parity</u>.

To suppress FCNCs mediated by extra Higgs doublets.

Field	$SU(2)_L$	$U(1)_Y$	Z_2
$\left(\begin{array}{c}T_1\\T_2\end{array}\right)$	2	0	+
T_3	1	+1/2	+
T_4	1	-1/2	+
T_5	1	+1/2	_
T_6	1	-1/2	—

Most general mass term ("current mass")

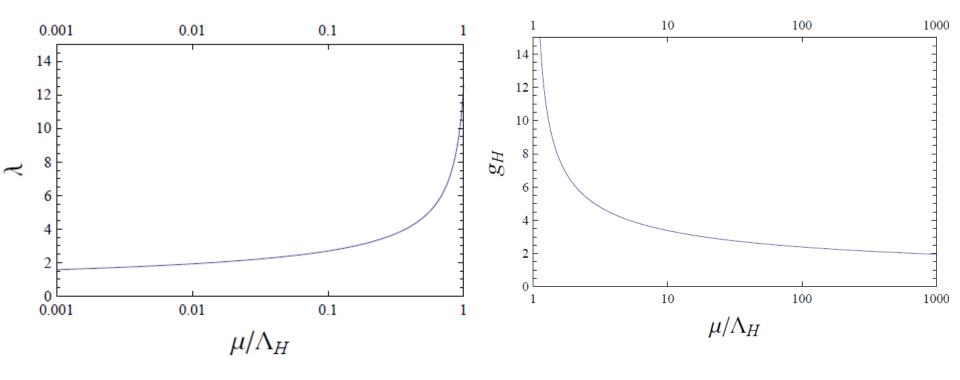
 $W_{tree} = m_1 T_1 T_2 + m_3 T_3 T_4 + m_5 T_5 T_6$

IR Theory

- The gauge theory becomes strongly coupled at Λ_H .
- Below Λ_H , the theory is described by Meson superfields: From holomorphy, mesons are given as

 $M_{ij} \propto T_i T_j$.

The effective superpotential obeys approximate SU(6) flavor symmetry:


 $W_{eff} \propto \epsilon_{ijklmn} M_{ij} M_{kl} M_{mn} + m_1 M_{12} + m_3 M_{34} + m_5 M_{56}$

• Kähler potential cannot be determined, but SUSY Naïve Dimensional Analysis suggests $\mathcal{L} \simeq \frac{1}{(4\pi)^2} \int d^4\theta \, \frac{1}{\Lambda_H^2} M_{ij}^{\dagger} M_{ij}$

 $+\frac{1}{(4\pi)^2} \int d^2\theta \left[\frac{1}{\Lambda_H^3} \epsilon_{ijklmn} M_{ij} M_{kl} M_{mn} + m_1 M_{12} + m_3 M_{34} + m_5 M_{56} \right].$

• After canonically normalizing the mesons, we have $W_{eff} \simeq -\lambda \epsilon^{ijklmn} M_{ij}M_{kl}M_{mn} + \xi_{\Omega}M_{12} + \xi_{\Phi}M_{34} + \xi M_{56}$ with $\lambda(\Lambda_H) \simeq 4\pi$, $\xi \simeq \frac{m_1\Lambda_H}{4\pi}$, ...

• g_H and λ evolve as follows:

Extended Higgs Sector

Mesons = Higgses

Identify the fifteen mesons with the fields of an extended Higgs sector.

	Field	$SU(2)_L$	$U(1)_Y$	Z_2	
	H_u	2	+1/2	+	
MSSM Higgs doublets –	H_d	2	-1/2	+	
Extra Higgs doublets	Φ_u	2	+1/2	_	$ \longrightarrow M_{ij} $
	Φ_d	2	-1/2	_	
	Ω^+	1	+1	_	
Charged singlets	Ω^{-}	1	-1	_	
Z_2 -even Neutral singlets	N, N_{Φ}, N_{Ω}	1	0	+	
Z_2 -odd Neutral singlets	ζ,η	1	0		

• The superpotential is rewritten as

$$W_{eff} = \lambda \left\{ N(H_u H_d + v_0^2) + N_{\Phi}(\Phi_u \Phi_d + v_{\Phi}^2) + N_{\Omega}(\Omega^+ \Omega^- + v_{\Omega}^2) - NN_{\Phi}N_{\Omega} - N_{\Omega}\zeta\eta + \zeta H_d \Phi_u + \eta H_u \Phi_d - \Omega^+ H_d \Phi_d - \Omega^- H_u \Phi_u \right\}$$

Large, $\lambda(M_Z) \sim 2$

Potential Analysis

- $W_{eff} = \lambda \{ N(H_u H_d + v_0^2) + N_{\Phi}(\Phi_u \Phi_d + v_{\Phi}^2) + N_{\Omega}(\Omega^+ \Omega^- + v_{\Omega}^2) \}$
 - $NN_{\Phi}N_{\Omega} N_{\Omega}\zeta\eta + \zeta H_{d}\Phi_{u} + \eta H_{u}\Phi_{d} \Omega^{+}H_{d}\Phi_{d} \Omega^{-}H_{u}\Phi_{u} \}$

Look for charge-conserving vacua.

Focus on SUSY limit.

• VEVs of N, N_{Ω}, N_{Φ} arise from tad-pole terms.

 \rightarrow Effective μ -terms.

• EW symmetry breaking does not occur in SUSY limit because $0 = \frac{1}{\lambda} \frac{\partial W_{eff}}{\partial H_d^0} = -NH_u^0 + \zeta \Phi_u^0$, $0 = \frac{1}{\lambda} \frac{\partial W_{eff}}{\partial \Phi_d^0} = -N_{\Phi} \Phi_u^0 - \eta H_u^0$ $0 = \frac{1}{\lambda} \frac{\partial W_{eff}}{\partial N_{\Omega}} = -NN_{\Phi} - \zeta \eta + v_{\Omega}^2$ if $v_{\Omega} \neq 0$.

We resort to radiative breaking scenario (c.f. "Fat Higgs")

Scale of Λ_H

- "SUSY tadpole problem" puts a constraint on Λ_H .
- Soft SUSY breaking terms contribute to the tadpole terms for N, N_Ω, N_Φ :

Source of SUSY breaking

• In order that these contributions do not spoil the SUSY's solution to the gauge hierarchy problem,

$$\frac{\Lambda_H}{4\pi} \lesssim 1 \text{ TeV}$$

• (Another way to evade SUSY tadpole problem

 \blacktriangleright assigning Z₆-parity to $T_1, T_2, ..., T_6$.(similar to NMSSM))

Extension with one Singlet

• We add one Z_2 -even, $SU(2)_H$ and SM gauge singlet, S. Most general superpotential involving S: $W_S = (y_1T_1T_2 + y_3T_3T_4 + y_5T_5T_6)S + \frac{M_S}{2}S^2 + \frac{\kappa}{3}S^3$

$$W_S = \left(\frac{y_1}{4\pi}\Lambda_H M_{12} + \frac{y_3}{4\pi}\Lambda_H M_{34} + \frac{y_5}{4\pi}\Lambda_H M_{56}\right)S + \frac{M_S}{2}S^2 + \frac{\kappa}{3}S^3$$

- We assume $\Lambda_H \sim M_S$ and $O(1) \sim y_1 \gg y_3, y_5$. y_1 remains perturbative up to the Planck scale.
- Integrating S out, and with <u>conformal enhancement</u>, we have $\Delta W_{eff} = -\frac{M_N}{2}N^2$ with $M_N \sim \Lambda_H$.

"Conformal enhancement"

Introduce two more $SU(2)_H$ doublets, T_7, T_8 , with mass term: $W_7 = m_7 T_7 T_8$ ($m_7 > \Lambda_H$). The theory above the scale m_7 is in the conformal window. Assume that the theory approaches to the IR fixed point at the scale $\Lambda_7 (> m_7)$. conformal m_7 Λ_H Couplings y_i are enhanced by $\left(\frac{\Lambda_7}{m_7}\right)^{1/2}$ while running from Λ_7 to m_7 .

This is necessary to derive the O(1) top Yukawa coupling, anyway.

Effective Superpotential

• Since N has the large mass of $M_N \sim \Lambda_H$, we may integrate it out below Λ_H and obtain:

$$W_{eff} = \lambda \left\{ N_{\Phi}(\Phi_u \Phi_d + v_{\Phi}^2) + N_{\Omega}(\Omega^+ \Omega^- + v_{\Omega}^2) \right\}$$

$$- N_{\Omega}\zeta\eta + \zeta H_{d}\Phi_{u} + \eta H_{u}\Phi_{d} - \Omega^{+}H_{d}\Phi_{d} - \Omega^{-}H_{u}\Phi_{u} \}$$
$$+ \frac{\lambda^{2}}{2M_{N}}(H_{u}H_{d} + v_{0}^{2} - N_{\Phi}N_{\Omega})^{2}.$$

- No three-point superpotential coupling for $H_u H_d$.
- By taking $\Lambda_H > m_5 \gg m_1, m_3$, we can have O(100) GeV μ -terms for $(H_u, H_d), (\Phi_u, \Phi_d), (\Omega^+, \Omega^-)$ from the VEVs of N, N_{Ω}, N_{Φ} .

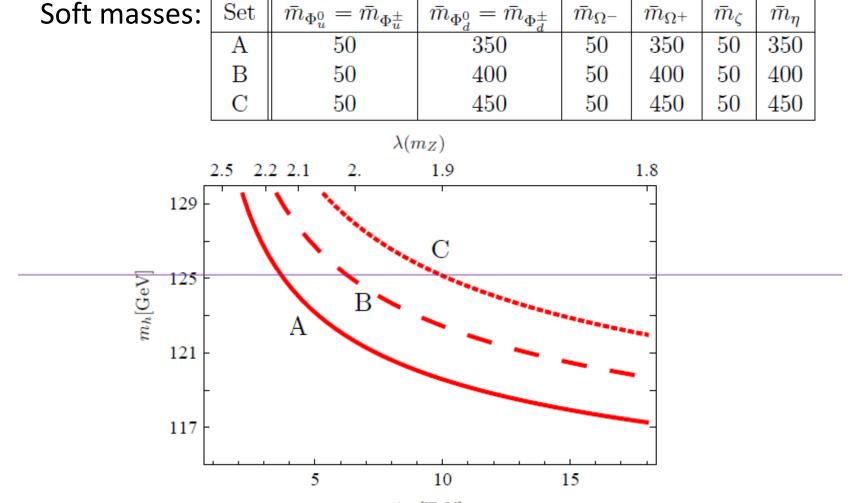
$$W_{eff} = -\mu(H_uH_d - n_{\Phi}n_{\Omega}) - \mu_{\Phi}\Phi_u\Phi_d - \mu_{\Omega}(\Omega^+\Omega^- - \zeta\eta) + \lambda \left\{ H_d\Phi_u\zeta + H_u\Phi_d\eta - H_u\Phi_u\Omega^- - H_d\Phi_d\Omega^+ + n_{\Phi}\Phi_u\Phi_d + n_{\Omega}(\Omega^+\Omega^- - \zeta\eta) \right\} + \cdots,$$

Phenomenology of One-Singlet Extension

SM-like Higgs Boson Mass

• $(\Phi_u, \Phi_d), (\Omega^+, \Omega^-), (\zeta, \eta)$ contribute to the SM-like Higgs mass through loop corrections:

$$m_h^2 \simeq m_Z^2 \cos^2 2\beta + (\text{MSSM-loop}) + \underbrace{\frac{\lambda^4 v^2}{16\pi^2}}_{m_h^2} \left(c_\beta^4 \ln \frac{m_{\Omega^+}^2 m_{\Phi_d^\pm}^2 m_{\Phi_u^0}^2 m_{\zeta}^2}{m_{\tilde{\chi}_1^{\prime\pm}}^4 m_{\tilde{\chi}_1^{\prime0}}^4} + s_\beta^4 \ln \frac{m_{\Omega^-}^2 m_{\Phi_d^\pm}^2 m_{\Phi_d^0}^2 m_{\eta}^2}{m_{\tilde{\chi}_2^{\prime\pm}}^4 m_{\tilde{\chi}_2^{\prime0}}^4} \right)$$


 $\lambda^4 v^2$

- $\overline{16\pi^2}$ with $\lambda \sim 2$ is of an appropriate magnitude to realize 125 GeV Higgs.
- (No large soft SUSY breaking nor tuning of aneta is necessary.)

• SM-like Higgs mass at benchmark points.

 $\bar{m}_{\tilde{t}_L}^2 = \bar{m}_{\tilde{t}_R}^2 = 1000 \text{ GeV}$, $A_t + \mu \cot \beta = 500 \text{ GeV}$, $m_A = 500 \text{ GeV}$, $\tan \beta = 3$

 $\mu=200~{
m GeV}$, $\mu_{\Phi}=\mu_{\Omega}=0$ (extra-Higgsino masses come from Higgs VEVs),

 Λ_H [TeV]

Correction on Partial Width

• $\Gamma(h \rightarrow \gamma \gamma)$ is affected by **multiple** extra charged Higgses that couple with SM-like Higgs thru **large** couplings.

The correction can be large.

But large current masses m_1 , m_3 , m_5 can make the μ -terms for (Φ_u, Φ_d) , (Ω^+, Ω^-) large (as large as Λ_H), so extra Higgs bosons /Higgsinos can be decoupled.

The correction can be small.

Conclusion

- SUSY extended Higgs sector w/ large couplings arising from strongly coupled SUSY SU(2) gauge theory.
- Our model is UV-complete.
- Natural realization of 125 GeV SM-like Higgs.
- Strong 1st order EW phase transition is possible.
- Other phenomenological implications ...