LARGE volume scenario in 5D SUGRA models

arXiv:1307.5585

Yusuke Yamada (Waseda university) collaboration with Yutaka Sakamura (KEK)

Introduction

In STRING THEORY,

LARGE volume scenario (LVS) [1] was suggested as a model which naturally realizes an exponentially large extra dimensions and may solve the hierarchy problem . [1] J.P.Conlon et al. JHEP 0508,007 (2005)

Stabilization

$$V = e^{K} \left(D_{I} W K^{I\bar{J}} D_{\bar{J}} \bar{W} - 3 |W|^{2} \right)$$
$$\sim \frac{1}{\hat{\mathcal{N}}} \left(\frac{2\hat{\mathcal{N}}}{3C_{s}\tau_{s}(1-\frac{\delta}{6})} (aA)^{2} e^{-2a\tau_{s}} + 4a\tau_{s}(1+\frac{\epsilon}{6})W_{0}Ae^{-a\tau_{s}} \cos(a\sigma) \right)$$

minimization

 $m_{\rm soft} \sim \mathcal{O}(1 \text{TeV})$ from Planck scale parameters without fine-tunings!!

cf. KKLT scenario requires a fine-tuned small parameter.

The important ingredients in this scenario are

multi-moduli (at least two),

• breaking of the no scale structure $K_I K^{I\bar{J}} K_{\bar{J}} = 3$ by the **a' correction**.

We show that LVS can be realized in 5D supergravity without stringy effects.

In the well investigated 5D SUGRA models on S^1/Z_2 orbifold, there is only a single modulus multiplet (radion multiplet).

$$\langle \hat{\mathcal{N}} \rangle \sim \frac{3\xi W_0 e^{a \langle \tau_s \rangle}}{a \langle \tau_s \rangle A} \qquad \langle \tau_s \rangle \sim \left(\frac{\xi}{C_s}\right)^{\frac{1}{3}}$$
$$L_{\text{phys}} = \langle \hat{\mathcal{N}}^{1/3} \rangle \gg 1$$

The size of the extra dimension is **exponentially** larger than the Planck length.

Gravitino mass & F-terms

 $m_{3/2} \sim \frac{W_0}{\langle \sqrt{\hat{\mathcal{N}}} \rangle} \quad \frac{\langle F^{T_b} \rangle}{\langle T_b + \bar{T}_b \rangle} \sim \frac{W_0}{\sqrt{\langle \hat{\mathcal{N}} \rangle}} = m_{3/2} \quad \frac{\langle F^{T_s} \rangle}{\langle T_s + \bar{T}_s \rangle} \sim \frac{W_0}{\sqrt{\langle (a\tau_s)\hat{\mathcal{N}} \rangle}} = \frac{m_{3/2}}{\langle a\tau_s \rangle}$

Soft terms

$$\mathcal{L} = \int d^4\theta |\phi_C|^2 (\Omega_{\text{bulk}} + \Omega_{\text{brane}}) + \left[\int d^2\theta \phi^3 W + \text{h.c.} \right]$$
$$- \left[\int d^2\theta \frac{1}{2} f^r \text{tr}(\mathcal{W}^2) + \text{h.c.} \right]$$

 $m_{KK} \sim \frac{1}{L_{\rm phys}} \sim \mathcal{O}\left(\frac{1}{\hat{\mathcal{N}}^{1/3}}\right)$ $m_{\tau_b} \sim \mathcal{O}\left(\frac{1}{\langle\hat{\mathcal{N}}\rangle}\right)$

Moduli & KK mass

However,

Set-up

in general, there are **multi-moduli** multiplets from 5D vector multiplets.

5D multiplet	Hypermultiplet		Vector multiplet				
Role in 4D	matter		vec	tor	moduli		
Superfield in 4D	\mathcal{Q}_a (chiral)	\mathcal{Q}_a^c (chiral)	V^{I_e} (vector)	\sum^{I_e} (chiral)	V^{I_o} (vector)	$\sum_{(\text{chiral})}^{I_o}$	
Z_2 parity	+		+			+	
Zero mode	Q_a		V^{I_e}			T^{I_o}	

The number of moduli multiplets and their Kahler potential are determined by the norm function $\hat{\mathcal{N}}$.

	$-\left[\int d$	$d^{-}\theta - f^{r} \operatorname{tr}(VV_{r}^{-}) +$	n.c.							
Ω_{bulk} =	$= \mathcal{Y}_a Q_a$	$^{2} + \cdots$	$\Omega_{ m bran}$	$_{\rm e} = h_q q ^2$	$\left(1 - \frac{6}{8}\right)^{-1}$	$\frac{\zeta(3)}{\pi^2\hat{\mathcal{N}}} + \cdots$	•			
fr_	$\int c^r T_s$	(bulk)	$\mathcal{V}_a = 2\hat{\mathcal{N}}^{1/3} \frac{1}{2}$	$\frac{-e^{-2d_a \cdot \operatorname{Re}T}}{2d_a \cdot \operatorname{Re}T}$						
J —	const	(brane)	n_q does not	depend on the	moduli.					
: In this scenario, the anomaly mediation is extremely $\frac{\langle F^{\phi_C} \rangle}{\langle \phi_C \rangle} \sim \frac{m_{3/2}}{\langle \hat{\mathcal{N}} \rangle}$										
		Gaugino (b	ulk)	Scalar (b	oulk)	Scalar (k	orane)			
Soft m	าลรร	Gaugino (b $M^r = F^I \partial_I \ln(\text{Re}f)$ $\sim \frac{m_{3/2}}{\langle a\tau_s \rangle}$	ulk)	Scalar (b $p_a = \sqrt{-F^I F^J}$ $\sim m_3/$	bulk) $\partial_I \partial_{\bar{J}} \ln \mathcal{Y}_a$ 2	Scalar (k $m_q = \sqrt{-F^I F^J \partial_I \partial_J h}$ $\sim \frac{m}{\langle \sqrt{\gamma} \rangle}$	$\frac{1-\frac{\zeta(3)}{8\pi^2\hat{\mathcal{N}}}}{\hat{\hat{\mathcal{N}}}}$			
Soft m sample	Show (ξ, C)	Gaugino (b $M^r = F^I \partial_I \ln(\operatorname{Re} f)$ $\sim \frac{m_{3/2}}{\langle a \tau_s \rangle}$	ulk) %	Scalar (b $p_a = \sqrt{-F^I F^J}$ $\sim m_3/$ $1, 8\pi^2)$	bulk) $\partial_I \partial_{\bar{J}} \ln \mathcal{Y}_a$ 2	Scalar (k $m_q = \sqrt{-F^I F^J \partial_I \partial_J h} \sim \frac{m}{\sqrt{\sqrt{1/3}}}$ $m_q = \langle \hat{\mathcal{N}}^{1/3} \rangle$ (in Plane	Prane) $a_q \left(1 - \frac{\zeta(3)}{8\pi^2 \hat{\mathcal{N}}}\right)$ $\frac{3/2}{\hat{\mathcal{N}}}$ $\sim 10^5$ ck unit)			

Model

$$K = -\log(\hat{\mathcal{N}} + \xi) \qquad \qquad W = W_0 + A$$

 $\hat{\mathcal{N}} = (\text{Re}T_b)^3 - C_s(\text{Re}T_s)^3$

$$W = W_0 + Ae^{-aT_s}$$

 ξ : correction from 1 -loop effects
(The role of this correction is sat

(The role of this correction is same as the α ' correction in stringy LVS.)

 $K_{I}K^{I\bar{J}}K_{\bar{J}} = 3 + \frac{6\xi}{\hat{N}} \left(1 + \frac{C_{s}\tau_{s}^{3}}{3\xi}\epsilon(1 + \frac{\epsilon}{12})\right) \quad \text{(Broken no-scale relation)}$

$$\xi \equiv \frac{(\bar{n}_H - n_V - 1)\zeta(3)}{32\pi^2}$$

n_V: number of vector multiplets
n *n_V*: effective number of hypermultiplets

(Detailed derivation of 1-loop effects can be found in Ref.[2].)
[2] Y. Sakamura, Nucl. Phys.B 873,165 (2013)

$$T_b = \tau_b + i\rho ~\sim~ ext{Radion}$$

 $T_s = au_s + i\sigma \sim {
m Non-geometric} {
m modulus}$

Summary

General set-up of 5D SUGRA contains non-geometric moduli and they give new possibility for the model buildings.

> e.g. LVS can be realized with non-geometric moduli & 1-loop correction.

Another application of the non-geometric moduli model was studied in Ref.[3]. In Ref.[3], we focused on SUSY flavor structure.

[3] H.Abe, H.Otsuka, Y.Sakamura and Y.Yamada, Eur. Phys. J. C 72, 2018 (2012)