LHC実験における8TeVでのSUSY探索 および14TeVへの展望

山中 隆志東京大学 素粒子センター (ICEPP)

Discovery of a Higgs Boson

ヒッグス粒子(らしきもの) をm=126 GeVに発見!

見えている粒子はSM Higgsにほぼconsistent

2013年8月7日

126 GeV Higgs for SUSY

Strategy for SUSY Search

Contents

- 2012年のLHC運転状況
- vs=8 TeVでのSUSY探索
 - MET-based Analysis
 - gluino (squark) search
 - stop search
 - Gluino mediated stop
 - EW gaugino search
 - Without MET Analysis
 - Long lived particle
 - Exotic signature
- vs=14 TeVでのSUSY探索
- まとめ

LHC 2012

- 2012年には√s=8 TeVで、約20/fbのデータを取得
 - 高い効率で取得 (Recorded/Delivered=93% at ATLAS)
 - また、高い効率で検出器がGood condition (Good/Recorded>96% at ATLAS)

Pileup

Pileupへの対処が重要

 $Z \rightarrow \mu \mu$ with 20 pileup event (p_T>0.4 GeV tracks are shown, yellow lines show muons from Z)

1衝突あたりのPileup数の分布

Pileupへの対処 online trigger

 electron: calorimeter isolation, hadronic leackage

offline analysis

- jet, MET: pileup subtraction, vertex association
- Monte Carlo: pileup reweighting

2013年8月7日

MET-based Analysis

Gluino/Squark Search

- ~q~qから~g~gまで広くtopologyをcoverするために、jet数ごとにsignal regionを設定(2-6 jets)
- 更にm_{eff} (=MET+jet pt sum)のselectionを各jet 数ごとに数個に分けることにより、広い kinematics regionをcover

	Channel									
Requirement	A (2-jets)		B (3-jets)		C (4-jets)		D (5-jets) E (6-jet		E (6-jets))
	L	М	М	Т	М	Т	-	L	М	Т
$E_{\rm T}^{\rm miss}[{\rm GeV}] >$					160					
$p_{\rm T}(j_1) [{\rm GeV}] >$		130								
$p_{\rm T}(j_2) [{\rm GeV}] >$		60								
$p_{\rm T}(j_3)$ [GeV] >	_		60		60		60	60		
$p_{\rm T}(j_4) [{\rm GeV}] >$	_		_		6	0	60		60	
$p_{\rm T}(j_5)$ [GeV] >	-	-	_		-	-	60	60		
$p_{\rm T}(j_6) [{\rm GeV}] >$	-			-	-		-	60		
$\Delta \phi(\text{jet}_i, \mathbf{E}_{\mathrm{T}}^{\mathrm{miss}})_{\mathrm{min}} >$	$0.4 \ (i = \{1, 2, (3 \text{ if } p_{\mathrm{T}}(j_3) > 40 \text{ GeV})\})$				$0.4 \ (i = \{1, 2, 3\}), 0.2 \ (p_{\rm T} > 40 \text{ GeV jets})$)	
$E_{\rm T}^{\rm miss}/m_{\rm eff}(Nj) >$	0.2	_a	0.3	0.4	0.25	0.25	0.2	0.15	0.2	0.25
$m_{\rm eff}({\rm incl.}) [{\rm GeV}] >$	1000	1600	1800	2200	1200	2200	1600	1000	1200	1500

(a) For SR A-medium the cut on $E_{\rm T}^{\rm miss}/m_{\rm eff}(Nj)$ is replaced by a requirement $E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}} > 15 \,{\rm GeV^{1/2}}$.

Gluino/Squark Search at ATLAS

- Background estimation
 - 各backgroundをenhanceする ように取られたcontrol region からsignal regionへの transfer factorをMC sample でestimate
 - control regionでMCをdataに fitし、transfer factorを使い、 signal regionでのbackground をestimate

Gluino/Squark Search at CMS

• CMSも基本的な解析方針は同じ

Number of jetsごとに signal regionを分ける
各Njet regionをさらにHT (=jet pt sum)とMETの2次元 で分けることにより、広い kinematics regionをcover

Background estimationはほぼ data-driven

- QCD: jet resolution smearing
- W→TV (hadronic)+jets: µ+jets replacement
- W→e/µv+jets: lepton ID inversion
- Z→vv+jets: γ+jets replacemnt

Results

2013年8月7日

2013年8月7日

500

基研研究会 素粒子物理学の進展2013

Gluino/Squark (Higgs Aware CMSSM) LAU

- もはやHiggs 126 GeVを説明しな いmodelはnon-sense
- |A₀|をほぼstopのmaximal mixingを満たすよう取り、Higgs massにconsistentに調整した modelでのinterpretation.

L dt = 5.8 fb¹, s=8 TeV

Observed limit (±1 of theorem

Expected limit $(\pm 1\sigma_{exp})$

Non-convergent RGE

No EW-SB

2500

Observed limit (4.7 fb⁻¹, 7 Te\

3000

3500 m_o [GeV]

0-lepton combined

MSUGRA/CMSSM: tanβ = 10, A = 0, μ>0

1000

ATLAS Preliminary

g (1600 GeV)

1000 GeV)

1500

 $A_0=0$, tan $\beta=10$

ĝ (1400 GeV)

g (1200 GeV)

2000

m_{1/2} [GeV]

800

750

700

650

600

550

500

450

400

350

300

SM_Higgs_mass

600

stau LSP region

Higgs interesting

region

125 120

115

110

Naturalness

- 比較的stop (and sbottom)
 が軽いのでdirect
 productionが可能
- gluinoも比較的軽いことが 期待され、そのdecay modeではstop (top)へが 優勢になる
- Higgsinoも同様に軽いこと が期待される

Stop Signature

 Stop pair productionからの崩壊過程でもmodel (parameter)によって kinematicsが大きく異なる。

主にchargino/neutralinoのmass relationおよびwino/bino/higgsino compositionにより崩壊過程が変わる。

→ Topology baseで解析することによりmodel independentにcover

	0-lep 6-jets	1-lep 4-jets	2-lep 2-jets	0-lep 2-jets	2/3-lep (Z) 3-jets	△:可能なfinal
t+N1	0	0	Δ			stateだがsensitivity
b+C1	Δ	0	0	0		は低い (2):まだ
b+W+N1	Δ	0	0			Background study
c+N1				O (c-tag)		中
b+f+f'+N1	Δ	O(?)		O(?)		
b+C1/t+N1 (GMSB)	Δ				0	

2013年8月7日

1-lepton Analysis

1-lepton channel: W, WからのBRが比較的大きく、triggerによ るlossも少ない → 縮退したmodelからhigh METのtailまで広く coverできる 25 Ge/ 10⁶ 0.2

Pre-selection

- 1-electron (pT>30GeV) or 1-muon (pT>25 GeV)
- At least 4-jets pT>30 GeV
- At least 1 b-tagged jet
- MET>100 GeV
- MT>120 GeV

BDT (multivariate discriminant)を用いてsignal をenhanceする。

使用する変数

- MET
- HTratio
- M_T^{2W}
- Hadronic top χ² or leading b-jet pT
- min $\Delta \phi$ (MET vs. 2 leading jets)

$$\chi^{2} = \frac{(M_{j_{1}j_{2}j_{3}} - M_{\text{top}})^{2}}{\sigma^{2}_{j_{1}j_{2}j_{3}}} + \frac{(M_{j_{1}j_{2}} - M_{\text{W}})}{\sigma^{2}_{j_{1}j_{2}}}$$

10⁵

 $M_{T2}^{W} = \text{minimum} \left\{ m_y \text{ consistent with:} \begin{bmatrix} \vec{p}_1^T + \vec{p}_2^T = \vec{E}_T^{miss}, p_1^2 = 0, (p_1 + p_l)^2 = p_2^2 = M_{W'}^2 \\ (p_1 + p_l + p_{b_1})^2 = (p_2 + p_{b_2})^2 = m_y^2 \end{bmatrix} \right\}$

• BDT results

Stop→Charm+LSP

もしm(~t)-m(~chi10) < m(W)+m(b)なら、
 stop→c+~chi10が主なdecay processになりえる。→
 stop pair productionからのc+LSPへのdecayを探索

- At most 3 jets pT>30 GeV
- Δφ(jet,MET) > 0.4
- leading jet pT >280 GeV
- MET > 220 GeV

Charm-tagged selection

- At least 4 jets pT>30 GeV
- b-veto to 2nd, 3rd jets
- c-tag to 4th jet
- Δφ(jet,MET)>0.4
- leading jet pT >270 GeV
- MET > 410 GeV

 $\mathfrak{m}_{\widetilde{\chi}_1^0}$ [GeV]

2013年8月7日

m_x [GeV]

400

300

200

100

Summary of Stop Search

- stop mass ~ 650 GeV, neutralino mass ~ 200 GeV までの領域をほぼ exclude
- Stop mass~neutralino massの領域では S/Nが悪く、まだ強いlimitが付いていな

700

m_t [GeV]

Gluino→t+t+LSP

- Gluinoも軽ければ、gluino productionがdominant
- Stopが軽いため、stopへのdecayが優勢になる

2種類のmodelを探索

- stop mass>>gluino massとして gluino→t+tbar+LSPの3体崩壊
- gluino mass > stop mass > neutralino
 massとして、gluinoからの1-step decay

終状態の多様さからさまざまなsignature での解析が可能

- 0-lepton, multi-jets (>6)
- 0/1-lepton, 3b-jets
- 2-lepton same sign, b-jets
- 3-lepton, b-jets

3b-jets 解析

 3 b-jetsを要求することでttbar backgroundを抑制

0, 1-lepton channelのm_{eff}分布.

• Reducible background (fake b-jet events)はdata-drivenに推定

m_{eff}: pT sum of jets (and lepton pT)
$$m_{\rm T} = \sqrt{2p_{\rm T}E_{\rm T}^{\rm miss}(1 - \cos\Delta\phi(\ell, E_{\rm T}^{\rm miss}))}$$

・gluino production cross-sectionで limitされる領域までほぼexclude

Gluino→t+t+LSP まとめ

- gluino mass ~ 1400 GeV, neutralino mass = 600 GeVまでを exclude.
 - on-shell topを仮定すればsoftなkinematicsはあまりない。
 - CMSはoff-shell top decayまでextend

EW Production

- Direct productionのcross sectionが小さいため、leptonを用いたcleanな環境で解析がmain
- Topology-baseで、
 - 2-lepton+MET (opposite sign/same sign)
 - 2-lepton+2-jets + MET
 - 2jets from W or Z hadronic decay
 - 3-lepton+MET, with or w/o Z mass veto
 - 4-lepton+MET

3-lepton Analysis

- Main backgroundがWZで、比較的cleanな channel.
- Event selection
 - leading lepton (e,mu,hadronic tau) pT>20
 GeV
 - other two lepton pT>10 GeV
 - Include opposite sign same flavor lepton pair
 - MET>50 GeV
- Events are "binned" in
 - Mll [0, 75, 105, ∞] GeV
 - MET [50,100,150,200,∞] GeV
 - MT [0, 120, 160, 160] GeV

sleptonを介してのdecay

3-lepton Analysis

- Background estimation
 - WZ
 - MET resolutionがvertex数とHT (jet pt sum)で表されるとしてdata に一致するparameterを決定
 - MC sampleにMET resolutionの degradationをかけて推定

$$p(E_{\mathrm{T}}^{\mathrm{miss}}) = \sum_{ij} W_{ij} \frac{E_{\mathrm{T}}^{\mathrm{miss}}}{\sigma_{ij}^2} e^{-E_{\mathrm{T}}^{\mathrm{miss}^2/2\sigma_{ij}^2}}$$

- Fake lepton
 - Fake-leptonがIsolationのselectionを 通る確率をQCD dijet eventsで測定(その他Z+jets, ttbar eventsも使用)
 - 3-leptonの内1-leptonのisolation requirementを逆にしたeventsから signal regionに残るeventsにfake rate をかけて推定

各MET, MII, MTのbinでのDataと estimationの比較

- 仮定するlepton BRによって、sensitivityが 大きく変化
 - 最もoptimisticな場合では~chi1+, ~chi20
 mass 740 GeVまでをexclude
 - 逆に最もpessimistic (Wのleptonic decay)
 の場合には300 GeV程度のexclude

without MET Analysis

Long Lived Particle Search

Motivation

- AMSB Wino LSP
- GMSB stau NLSP
- GMSB neutralino NLSP ($\rightarrow \gamma + \sim G$)
- Split SUSY gluino→R-hadron
- R-parity violation (RPV)
- 探索方法
 - Heavy stable charged particle (stau, R-hadron)
 - Decay in flight (AMSB wino, RPV)
 - Kink/disappearing track
 - Displaced vertex
 - Non-pointing photon
 - Stopped particle

Detector Layout

сτ 0).1mm	1 cm	10 cm	1 m		>
	Displaced vertex	dE/dx in Pixel	Kink/disappear ing track	Time of flight in Calorimeter	Time of flight in Muon Spectrometer	Stopped in detector
RPV	0		O(?)			
AMSB		O(?)	0			
Stau		0	0	0	0	
R-hadron		0		0	Δ	0

	ATLAS	CMS
Vertex	0.1 mm	0.1 mm
Pixel (dE/dx)	5-10 cm	5-100 cm
TRT	50-100 cm	No
HCal	2-4 m	1.5-2.5 m
Muon	5-10 m	4-6 m

TRT: Transition Radiation Tracker

2013年8月7日

Heavy Stable Particle

- β、βγ、momentumを使い、m=p/βγから質量を求める
- ・2種類の解析方法
 - Inner Detector Calorimeter
 - Calorimeter cell timeからβを、Inner detectorでのenergy lossから βγ、Inner detectorでmomentumを測定
 - R-hadronの場合、detectorと相互作用してchargeが変わる可能性があるため、Muon spectrometerを必要としないこの方法が取られる
 - Inner Detector Muon Spectrometer
 - Muon spectrometer hitsとcalorimeter cell timeからβを、Inner detectorでのenergy lossからβγを、Inner detectorとMuon spectrometerをcombineしてmomentumを測定
 - sleptonの場合にこの方法が可能

Displaced Vertex

- Pileupと区別するため、muonがあるvertexについてのみ探索を行っている
 - 主なbackgroundはmis-reconstruction、残留ガス とのhadronic interaction.

RPV modelでのexclusion limit

残留ガスからのbackground の場合、vertex massが小さく 出るため、signalと分離可能

3 4 5 6 7 8 10 20 30 40 Number of tracks in vertex

Sample	$m_{ ilde{q}}$	σ	$m_{\tilde{\chi}_1^0}$	$\langle \gamma \beta \rangle_{\tilde{\chi}^0_1}$	$c\tau_{\rm MC}$	λ'_{211}
	[GeV]	[fb]	[GeV]		[mm]	
MH	700	66.4	494	1.0	78	3.0×10^{-6}
ML	700	66.4	108	3.1	101	1.5×10^{-5}
HH	1500	0.2	494	1.9	82	1.5×10^{-5}

RPV bench mark modelのparameter

Disappearing Track

- Anomaly Mediated SUSY Braking (AMSB) model
 - Mass of Bino:Wino:Gluino~3:1:8
 - NLSP,LSP→wino-like, Δm (~chi1+ -~chi10)~150 MeV → charginoの寿命 は~0.1-1 ns → O(1-10) cm

Tracks

Results

- 8 TeVでの解析結果
 - Track pt spectrumをbackgroundとsignalのshapeを使ってfit
 - 主なbackgroundはfaketrackとhadron track
 - AMSBから予測される高いtrack pt regionには有意はexcessはなし
 - pure AMSBを考えた場合、m(chargino)<270 GeVをexclude

Expectation for 14 TeV

- Δm=160 MeVはlife time~0.2 nsに相当
- 14 TeVではchargino mass 500 GeV程度までdiscovery/exclusion potentialがあると 推定

Stopped Particle

- β<<1のR-hadronがenergyを失って、検出器内で止まり、しば らくしてからdecayする信号を探索
- Collision backgroundを減らすためempty bunchでtrigger
 - empty bunchを使うことで、proton/bunch < 10⁸ (filled bunchでは10¹¹)
- 主なbackgroundは宇宙線とBeam halo

Other Exotic Signature

- RPVの場合、LSPによる消失エネルギーがないため、
 代わりに特殊な終状態を利用して探索
 - multi-leptons
 - neutralinoのdecayからの4-lepton+MET
 (この場合METあり)
 - multi-jets
 - ~g pair productionからのdecay \rightarrow 3jets × 2, 5jets × 2

- resonance
 - RPVならsingle particle productionが可能になるため、終状態の粒子でmassを組むことで元のSUSY粒子のmassを再構成可能

RPV Stop

- RPVであることにより、naturalnessの 条件が緩くなる
- またMET based searchでstopが発見
 出来ていなかった可能性を考慮

Event selection

- ・3-lepton以上(tauを含む)
- S_T (MET, jet pT, lepton pTの scalar sum)を用いてsignalを enhance

RPV Stop Result

stop mass vs. neutralino massでのexclusion limit

$$W_{\rm RPV} = \frac{1}{2} \lambda_{ijk} L_i L_j \overline{E}_k + \lambda'_{ijk} L_i Q_j \overline{D}_k + \frac{1}{2} \lambda''_{ijk} \overline{U}_i \overline{D}_j \overline{D}_k$$

Summary of 8 TeV Analysis

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: EPS 2013

ATLAS Preliminary

 $\int \mathcal{L} dt = (4.4 - 22.9) \text{ fb}^{-1}$ $\sqrt{s} = 7, 8 \text{ TeV}$

	Model	e, μ, τ, γ	Jets	$\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$	∫£ dt[fl	-1] Mass limit	Reference
Inclusive Searches	$ \begin{array}{l} \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \overline{q}, \overline{q} \rightarrow q_1^{V_1} \\ \overline{g}, \overline{g}, \overline{g} \rightarrow q_1^{V_1} \\ \text{GMSB} (\overline{\ell} \text{ NLSP}) \\ \text{GMSB} (\overline{\ell} \text{ NLSP}) \\ \text{GGM (wino NLSP)} \\ \text{GGM (wino NLSP)} \\ \text{GGM (wino NLSP)} \\ \text{GGM (higgsino-bino NLSP)} \\ \text{Gravitino LSP} \\ \text{Gravitino LSP} \\ \end{array} $	$\begin{matrix} 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ (SS) \\ 2 \ e, \mu \\ 1-2 \ \tau \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu \\ (Z) \\ 0 \end{matrix}$	2-6 jets 3-6 jets 7-10 jets 2-6 jets 3-6 jets 3-6 jets 3-6 jets 3-6 jets 0-2 jets 0 0 1 b 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.7 4.7 20.7 4.8 4.8 4.8 5.8 10.5	G.E 1.7 TeV m(ā)=m(ā) J 8 1.2 TeV any m(ā) J 8 1.1 TeV any m(ā) J 9 740 GeV m(t ² 1)=0 GeV J 8 1.1 TeV m(t ² 1)=0 GeV J 8 1.3 TeV m(t ² 1)=0 GeV J 8 1.3 TeV m(t ² 1)=0 GeV J 8 1.18 TeV m(t ² 1)=0 GeV J 8 1.18 TeV m(t ² 1)=0 GeV J 8 1.24 TeV m(t ² 1)=0 SeV J 8 1.24 TeV tan%>18 J 8 1.07 TeV m(t ² 1)=50 GeV J 8 619 GeV m(t ² 1)=50 GeV J 8 900 GeV m(t ² 1)=50 GeV J 8 900 GeV m(t ² 1)=50 GeV J 8 900 GeV m(t ² 1)=50 GeV J 9 690 GeV m(t ² 1)=50 GeV J 9 690 GeV m(t ² 1)=50 GeV J	ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 ATLAS-CONF-2013-062 ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 ATLAS-CONF-2013-062 1209.4688 ATLAS-CONF-2013-062 1209.0753 ATLAS-CONF-2012-0152 ATLAS-CONF-2012-152 ATLAS-CONF-2012-152 ATLAS-CONF-2012-147
3 rd gen. ĝ med.	$\begin{array}{l} \bar{g} \rightarrow b \bar{b} \bar{k}_{1}^{0} \\ \bar{g} \rightarrow t \bar{t} \bar{k}_{1}^{0} \\ \bar{g} \rightarrow t \bar{t} \bar{k}_{1}^{1} \\ \tilde{g} \rightarrow b \bar{t} \bar{k}_{1}^{+} \end{array}$	0 0 0-1 e,μ 0-1 e,μ	3 b 7-10 jets 3 b 3 b	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	Image: Second	ATLAS-CONF-2013-061 ATLAS-CONF-2013-054 ATLAS-CONF-2013-061 ATLAS-CONF-2013-061
3rd gen. squarks direct production	$ \begin{array}{l} \underbrace{ b_1 b_1, \ b_1 \rightarrow b \tilde{k}_1^0 } \\ b_1 b_1, \ b_1 \rightarrow b \tilde{k}_1^0 \\ \vdots \\ b_1 b_1, \ b_1 \rightarrow b \tilde{k}_1^0 \\ \tilde{k}_1 \ \tilde{k}_1 \ (light), \ \tilde{k}_1 \rightarrow b \tilde{k}_1^0 \\ \tilde{k}_1 \ \tilde{k}_1 \ (light), \ \tilde{k}_1 \rightarrow b \tilde{k}_1^0 \\ \tilde{k}_1 \ \tilde{k}_1 \ (light), \ \tilde{k}_1 \rightarrow b \tilde{k}_1^0 \\ \tilde{k}_1 \ \tilde{k}_1 \ (light), \ \tilde{k}_1 \rightarrow b \tilde{k}_1^0 \\ \tilde{k}_1 \ \tilde{k}_1 \ (light), \ \tilde{k}_1 \rightarrow b \tilde{k}_1^0 \\ \tilde{k}_1 \ \tilde{k}_1 \ (light), \ \tilde{k}_1 \rightarrow b \tilde{k}_1^0 \\ \tilde{k}_1 \ \tilde{k}_1 \ (light), \ \tilde{k}_1 \rightarrow b \tilde{k}_1^0 \\ \tilde{k}_1 \ \tilde{k}_1 \ (light), \ \tilde{k}_1 \rightarrow b \tilde{k}_1^0 \\ \tilde{k}_1 \ \tilde{k}_1 \ \tilde{k}_1 \rightarrow \tilde{k}_1^0 \\ \tilde{k}_1 \ \tilde{k}_1 \rightarrow \tilde{k}_1 \rightarrow \tilde{k}_1^0 \\ \tilde{k}_1 \ \tilde{k}_1 \ \tilde{k}_1 \rightarrow \tilde{k}_1 \rightarrow \tilde{k}_1^0 \\ \tilde{k}_1 \ \tilde{k}_1 \ \tilde{k}_1 \rightarrow \tilde{k}_1 \rightarrow \tilde{k}_1^0 \\ \tilde{k}_1 \ \tilde{k}_1 \ \tilde{k}_1 \rightarrow \tilde{k}_1 \rightarrow \tilde{k}_1 \rightarrow \tilde{k}_1^0 \\ \tilde{k}_1 \ \tilde{k}_1 \ \tilde{k}_1 \rightarrow \tilde{k}_$	$\begin{array}{c} 0 \\ 2 \ e, \mu \ (\text{SS}) \\ 1 \cdot 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 0 \\ 1 \ e, \mu \\ 0 \\ 1 \ e, \mu \\ 0 \\ 3 \ e, \mu \ (Z) \end{array}$	2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b ono-jet/c-t 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes Yes tag Yes Yes	20.1 20.7 4.7 20.3 20.3 20.1 20.7 20.5 20.3 20.7 20.7	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ATLAS-CONF-2013-052 ATLAS-CONF-2013-007 1208-4305, 1209-2102 ATLAS-CONF-2013-065 ATLAS-CONF-2013-065 ATLAS-CONF-2013-065 ATLAS-CONF-2013-025 ATLAS-CONF-2013-025 ATLAS-CONF-2013-025 ATLAS-CONF-2013-025
EW direct	$ \begin{array}{c} \tilde{\ell}_{\mathbb{L},\mathbb{R}}\tilde{\ell}_{\mathbb{L},\mathbb{R}}, \tilde{\ell} \rightarrow \ell\tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell}\nu(\ell\tilde{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{r}\nu(\tau\tilde{\nu}) \\ \tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{1}\nu\tilde{\ell}_{1}\ell(\ell\tilde{\nu}\nu), \ell\tilde{\nu}\tilde{\ell}_{1}\ell(\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0} \rightarrow W^{*}\tilde{\chi}_{1}^{0}Z^{*}\tilde{\chi}_{1}^{0} \end{array} $	2 e, μ 2 e, μ 2 τ 3 e, μ 3 e, μ	0 0 0 0	Yes Yes Yes Yes Yes	20.3 20.3 20.7 20.7 20.7	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ATLAS-CONF-2013-049 ATLAS-CONF-2013-049 ATLAS-CONF-2013-026 ATLAS-CONF-2013-026 ATLAS-CONF-2013-035 ATLAS-CONF-2013-035
Long-lived particles	$\begin{array}{l} \text{Direct} \tilde{\chi}_1^+ \tilde{\chi}_1^- \text{ prod., long-lived } \tilde{\chi}_1^\pm \\ \text{Stable, stopped } \tilde{g} \text{ R-hadron} \\ \text{GMSB, stable } \tilde{\tau}, \tilde{\chi}_1^0 {\rightarrow} \tilde{\tau}(\tilde{e}, \tilde{\mu}) {+} \tau (\epsilon \\ \text{GMSB, } \tilde{\chi}_1^0 {\rightarrow} \gamma \bar{G}, \text{ long-lived } \tilde{\chi}_1^0 \\ \tilde{\chi}_1^0 {\rightarrow} q q \mu \text{ (RPV)} \end{array}$	Disapp. trk 0 e, μ) 1-2 μ 2 γ 1 μ	1 jet 1-5 jets 0 0 0	Yes Yes - Yes Yes	20.3 22.9 15.9 4.7 4.4	X [±] 270 GeV m(k [±] ₁) +m(k [±] ₁) = 160 MeV, r(k [±] ₁) = 0.2 ns # ğ 857 GeV m(k [±] ₁) = 160 MeV, r(k [±] ₁) = 0.2 ns # k [±] 857 GeV m(k [±] ₁) = 100 GeV, 10 µs <r(k<sup>±) < 1000 s</r(k<sup>	ATLAS-CONF-2013-069 ATLAS-CONF-2013-057 ATLAS-CONF-2013-058 1304.6310 1210.7451
RPV	$ \begin{array}{l} LFV pp \rightarrow \widetilde{v}_{\tau} + X, \widetilde{v}_{\tau} \rightarrow e + \mu \\ LFV pp \rightarrow \widetilde{v}_{\tau} + X, \widetilde{v}_{\tau} \rightarrow e(\mu) + \tau \\ Bilinear RPV CMSSM \\ \widetilde{x}_{1}^{+}\widetilde{x}_{1}, \widetilde{x}_{1}^{+} \rightarrow W \widetilde{x}_{1}^{0}, \widetilde{x}_{1}^{0} \rightarrow ee\widetilde{v}_{\mu}, e\mu \widetilde{v} \\ \widetilde{x}_{1}^{+}\widetilde{x}_{1}, \widetilde{x}_{1}^{+} \rightarrow W \widetilde{x}_{1}^{0}, \widetilde{x}_{1}^{-} \rightarrow ee\widetilde{v}_{\mu}, e\mu \widetilde{v} \\ \widetilde{x}_{1}^{+}\widetilde{x}_{1}, \widetilde{x}_{1}^{+} \rightarrow W \widetilde{x}_{1}^{0}, \widetilde{x}_{1}^{-} \rightarrow \tau \tau \widetilde{v}_{e}, e\tau \widetilde{v} \\ \widetilde{g} \rightarrow qq \\ \widetilde{g} \rightarrow \widetilde{q}_{1}\tau, \widetilde{t}_{1} \rightarrow bs \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 1 \ e, \mu \\ e \end{array} \\ \begin{array}{c} 4 \ e, \mu \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu \left(\text{SS} \right) \end{array}$	0 0 7 jets 0 6 jets 0-3 <i>b</i>	- Yes Yes - Yes	4.6 4.6 20.7 20.7 4.6 20.7	Fr 1.61 TeV t'_{311} =0.10, t_{122} =0.06 Fr 1.1 TeV t'_{311} =0.10, t_{1213} =0.05 6.6 1.2 TeV m(3)-m(2), rt_{2013} t_1^{+1} 760 GeV m(3)-m(2), rt_{2013} t_1^{+1} 760 GeV m(t_1^{+1})>300 GeV, t_{2213} t_1^{+1} 350 GeV m(t_1^{+1})>80 GeV, t_{333} t_2^{-1} 880 GeV 4	1212.1272 1212.1272 ATLAS-CONF-2012-140 ATLAS-CONF-2013-036 ATLAS-CONF-2013-036 1210.4813 ATLAS-CONF-2013-007
Other	Scalar gluon WIMP interaction (D5, Dirac χ)	0 0	4 jets mono-jet	- Yes	4.6 10.5	sgluon 100-287 GeV ind. limit from 1110.2893 M* scale 704 GeV mit of <687 GeV for D8 //	1210.4826 ATLAS-CONF-2012-147
	$\sqrt{s} = 7 \text{ TeV}$ full data	√s = 8 TeV artial data	√s = full	8 TeV data		10 ⁻¹ 1 Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

√s=14 TeVでの展望

Plan for 14 TeV LHC

- 13-14 TeVでのLHC運転
 - − bunch spacing 50 ns \rightarrow 25 ns
 - peak luminosity 2-3×10³⁴ cm⁻²s⁻¹、1回のビーム衝突時の平均反応
 回数μ~69
- 2020年までに300 fb⁻¹ (Phase-I)
- High Luminosity LHC €3000 fb⁻¹ (Phase-II)
 L=5 × 10³⁴ cm⁻²s⁻¹, μ~140
- PDFによるhigh mass particleのcross sectionの増加
- 一方でpileupによるresolutionの悪化など

Trigger@14 TeV

- High massのSUSY探索ではvs=14 TeVでのtrigger thresholdの上昇による影響はほとんどない
- ただし、縮退したmodelやMETなしの解析では無視できない影響

- 現在、調査中

L=2×10³⁴ cm⁻²s⁻¹でのtrigger thresholdの予測値

	L1 threshold	Offline threshold
single electron (pT)	28 GeV	33 GeV
single muon (pT)	20 GeV	25 GeV
single jet (pT)	100 GeV	250 GeV
pure ETmiss	60 GeV	190 GeV

Stop Search@14 TeV

- Event selection (for t+LSP)
 - 1-lepton (electron or muon) p_⊤>25 GeV
 - − 4 jets p_T>120,100,50,50 GeV
 - At least one b-tagged jet $p_T > 40$ GeV
 - E_{τ}^{miss} >225 GeV
 - m_{T} (lepton, E_{T}^{miss})>140 GeV
 - Optimum 1st, 2nd jet p_T , E_T^{miss} , E_{T}^{miss}/VH_{T} , m_T cuts for each signal point

300 fb⁻¹ではstop→t+LSPの場合、 stop mass 800 GeV (LSP mass ~0 GeVのとき) まで発見の可能性あり

Squark, Gluino Search@14 TeV

- √s=14 TeVでの発見感度の予測
- Event selection
 - No electron or muon (p_T>20 GeV)
 - At least 4 jets p_T>60 GeV
 - $E_T^{miss}/VH_T > 15 \text{ GeV}^{1/2}$

300 fb⁻¹ではsquark mass 2.4 TeV, gluino mass 2 TeV程度まで発見の 可能性あり

CMS 14 TeV Expectation

•現在の探索結果から外挿した予測値 -おおよそATLASと同程度の感度

CMS Submission to the European Strategy Preparatory Group

新学術領域研究

EW Gaugino Search@14 TeV

- vs=14 TeVでのEW
 gauginoの発見感度
- Event selection
 - 3 lepton pT>10 GeV, at least one lepton pT> GeV
 - no b-jet
 - same flavor, opposite sign
 lepton pair mass > 20 GeV
 - $E_T^{miss} > 150 \text{ GeV}$
 - Multivariate of E_T^{miss}, mT, lepton pT, mll, pT(ll), ΣpT(jet)

300 fb⁻¹ではneutralino2, chargino mass 540 GeV (LSP mass ~50 GeV のとき) まで発見の可能性あり

Summary

- LHC vs=8 TeVでのSUSY探索においてその兆 候はなし
- Higgs 126 GeVを考えると軽いSUSYは難しそう
 何かおまけが必要
 - Naturalness (large |A| term): light stop
 - Gaugino sector
- いずれにせよ、LHC vs=14 TeVでもこれまでの 解析を踏まえてtopology baseに探索