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Today’s Plan

o

R Inflation by a scalar field with flat potential
R Natural inflation and 1ts demand

R Phase locking



Inflation by scalar with

flat potential
R

Inflaton should have a flat potential



Cosmic inflation

Guth (1981), Sato (1981), Starobinsky (1980)
SR s = e

Quasi- exponential expansion of the universe at the very early universe

&R Solve the Horizon problem
&R Solve the Flatness problem

R Generate the cosmic perturbation

The universe we observe
x ) Flat and homogeneous !




Cosmic inflation

Guth (1981), Sato (1981), Starobinsky (1980)
R = .

Quasi- exponential expansion of the universe at the very early universe

R Solve the Horizon problem
R Solve the Flatness problem

R Generate the cosmic perturbation Mukhanov and Chibisov (1981)
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Condition for Inflaton

o —
Potential energy >> kinetic energy Potential
Let us check the consistency
&—F 3H¢+V¢(¢) =1 V¢2
% 2
~Ms— <KLV
S2ME = V() PO = Mgy

Time ]‘
derivative 6 5 1 Li 5 1 ( Vqﬁ / V) 2 << 1
< Slow-roll conditions

gy = M§1V¢¢/V < 1



Flat potential

Slow-roll conditions

What is the origin of the almost flat potential ?
How 1s the potential controlled ?
Is quantum effect negligible ?



Natural inflation and
1ts demand

§, Freese, Frieman and Olinto (1990)

Inflaton 1s a NGB
Decay constant must be larger than the Planck scale

More detail : See Takahashi-san’s talk



NGB

o

Assume spontaneous breaking of a global symmetry

Associated flat direction :
Nambu-Goldstone Boson ¢

Shift symmetry ¢ = ¢ —I_ C



Pseudo-NGB

—onere—

Assume explicit breaking of the global symmetry
to a discrete one by a small amount

V(¢) = A*(1 — cos(¢/F))

Flatness 1s controlled by symmetry and smallness of its breaking
Flatness 1s natural in ‘t Hooft’s sense



Slow-roll conditions
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Toy model

o
Assume a global U(1) symmetry

X = | < X > |expli¢/F)
=2k
=X = | =

E - v

Expicit breaking

AV = M3X + h.c.
V($) = A*(1 — cos(¢/F))



Higher dimensional term

C—aNe
Gravity = Theory with Planck scale suppressed interactions

Without any reason, we expect

ey v
M2 I 62 M4 s
Pl Pl Cn = 0(1)

e — N1 -



Higher dimensional term

s
o (X X*)?

AV = M°X(1 |

stagm ta g

But Cp, << 1 is required to suppress the potential

4-dim QFT with an approximate U(1) symmetry seems not enough.
We need to understand how higher dimensional terms are controlled.
1.e. knowledge about beyond the Planck scale is necessary.



Phase locking
R

Large decay constant from small energy scale



Hierarchical U(1) charge

Harigaya and Ibe (2014)
RRS arXiv: 1404.3511

Assume SSB of the U(1)
Uu(l) N 1

¢ — vgexp (iNa/F) a: NGB field
S — vgexp (ta/F)

= \/2(N2v§5 + vg)

The decay constant is enhanced by N



Phase Locking

e o
21

Arg(¢)

NGB direction

Arg(S)

i



Breaking U(1)

o
Just by hand softly

Vbreaking — 138 + h.c.

By anomaly

L = ySQE Q:hidden matter in hidden QCD-like theory



Breaking U(1)

¢ — vpexp (¢Na/F) =D
Gy VseXp (ZCL/F) V(a) — A4(]_ — COS(CL/F))
F = /2(N20} + v2)

3
Vbreaking s st hic:
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Monodromy inflation

B e = = ; :
Silverstein and Westpal (2008)

in string theory
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Summary and discussion

o

Inflation requires flat potential

In natural inflation, inflaton 1s 1dentified with a
pseudo-NGB

Large decay constant is obtained from a field theory
with small energy scale by phase locking

Supersymmetrization, initial condition problem : see
the second paper

arXiv: 1404.3511, 1407.4893



Back up



Hori1zon problem

o r—
Why i1s the universe almost homogeneous ?

Ex. Cosmic microwave background

2.725 K 2.725 K

Size of the universe at that time

Last scattering surface



Flatness problem

e
dr?
1 — Kr2

st = =gl =Rl [ I (d6’2 -+ SinQquSQ)]

Observation :

B 0 (ag=1)
e o= e

In the early universe, (I << 1 ‘K / CLQ| <K H %

The energy density must be extremely tuned



Can ordinary expansion explain the
flatness or the horizon problem?

e
No.

Physical size OC

Hubble horizon xa?(RD),
a’/?(MD),

a(negative curvature)

10

For a given scale (e.g. CMB scale),
the horizon used to be relatively smaller



Constant energy!

—oner—
Hubble horizon = constant

/\//\/

The horizon used to be relatively larger

All the scale we observe used be within a Hubble radius



Closed universe

A o T

In FRW metric,

R e o 2 (d62 + sin20d¢?
s© = —dt* + a*(t) I_KTQ—I—:B( + sin ¢) K>0
L/VE dr T

— Finite univer

/O \/1 = KTQ 5 T( te erse

a(t)

Finite Life time




Open universe

—orer—

In FRW metric,
dr?
Je = =G e [

2 I (d6’2 + 3in2¢9d¢2) K <0

a(t)

Infinite size,
infinite life time




Riemann surface

o

Ciey ¢—1/N

U(1) N 1

3 —1/N
Vbreaking = V"5 ~ ¢ /

4 Mp.

M Inflaton potential on
N a Riemann surface

L —

Inflaton




